Restructuring Graph for Higher Homophily via Adaptive Spectral Clustering

o Abstract: Although the ability to handle less-homophilic graphs is restricted, classical GNNs still stand out in several

nice properties such as efficiency, simplicity, and explainability. In this work, we propose a novel graph restructuring
method that can be integrated into any type of GNNs, including classical GNNs, to leverage the benefits of existing
GNNs while alleviating their limitations. Our method learns to cluster nodes using eigenvectors beyond spectral

clustering. We also proposed a new density-aware homophilic metric to better reflect the homophily of a graph.
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a. WISCONSIN: T-SNE with the leading 5 eigenvectors (left); visualized using
the 22th, 44th and 206th eigenvectors (right).

b. EUROPE AIRPORT: T-SNE with the leading 5 eigenvectors (left); visualized using
the 366th, 382th and 3rd eigenvectors (right).

Density-aware homophily metric
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Synthetic heterophilic graphs
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(b) SGC performance
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o The model can best recover images filtered using low-,
band- and high-pass functions.

o The restructured real-world graphs have higher
homophily which improves GNNs performance by an
average 25%.

« The method yields high accuracy on synthetic
heterophilic graphs.



