#### **Geometric Learning on Graph Structured Data**

#### Asiri Wijesinghe

asiri.wijesinghe@anu.edu.au School of Computing College of Engineering and Computer Science Australian National University, Canberra, Australia



#### **Geometric Graph Learning**



#### **Research Questions**

• How can we design more powerful machine learning models to take the advantage of rich structure of graphs for better prediction?



- Graph representation learning
- Graph similarity learning

# **Key Challenges**

- How to improve the representation power of machine learning models?
- How to effectively design a model to preserve intrinsic properties of graphs during the learning?
- How to ensure theoretical properties to guarantee the convergence and numerical stability for machine learning techniques on graphs?

#### **Thesis Contributions**

- \* Part 1: Graph Representation Learning
  - **Spatial GNNs** A. Wijesinghe and Q. Wang. A New Perspective on "How Graph Neural Networks Go Beyond Weisfeiler-Lehman?". (ICLR 2022)
  - **Spectral GNNs** A. Wijesinghe and Q. Wang. DFNets: Spectral CNNs for Graphs with Feedback-Looped Filters. (NeurIPS 2019)
  - **Diffusion GNNs** A. Wijesinghe and Q. Wang. Dynamic PageRank for Graph Neural Networks. (Under Review)
- \* Part 2: Graph Similarity Learning
  - **Optimal Transport Graph Kernel** A. Wijesinghe, Q. Wang and S. Gould. A Regularized Wasserstein Framework for Graph Kernels. (ICDM 2021)





Spatial GNNs



Spectral GNNs



Diffusion GNNs





Diffusion GNNs

<sup>1</sup>A. Wijesinghe and Q. Wang. A New Perspective on "How Graph Neural Networks Go Beyond Weisfeiler-Lehman?". (ICLR 2022)

#### **Research Question**

• How to design expressive yet simple GNNs that can go beyond the WL test with a theoretically provable guarantee?



#### **Current State**

• Known results:



- > 1-WL
  - e.g., k-dimensional GNN (k-GNN) [Morris et al. 2019]
- $\equiv$  1-WL
  - e.g., Graph Isomorphism Network (GIN) [Xu et al. 2019]
- < 1-WL
  - e.g., Graph Convolutional Network (GCN) [Kipf and Welling 2017]

#### Contributions



#### A New Hierarchy of Local Isomorphism

| Neighborhood<br>Subgraph | Subgraph<br>Isomorphism | Theorem                                                                                              |
|--------------------------|-------------------------|------------------------------------------------------------------------------------------------------|
| Overlap<br>Subgraphs     | Overlap<br>Isomorphism  | If $S_i \simeq_{subgraph} S_j$ , then $S_i \simeq_{overlap} S_j$ , but<br>not vice versa.<br>Theorem |
| Neighborhood<br>Subtree  | Subtree<br>Isomorphism  | If $S_i \simeq_{overlap} S_j$ , then $S_i \simeq_{subtree} S_j$ , but not vice versa.                |

• For each vertex v, the **neighborhood subgraph**  $S_v$  is the subgraph induced by  $\mathcal{N}(v) \cup \{v\}$ .





Neighborhood subtree (GIN)



Overlap subgraphs (our work)

• For two adjacent vertices v and u, the **overlap subgraph** is  $S_{vu} = S_v \cap S_u$ .



• An instance:

$$A_{vu} = rac{|E_{vu}|}{|V_{vu}| \cdot |V_{vu} - 1|} |V_{vu}|^{\lambda}, \ \lambda > 0$$

• A single layer:

• Multiple layers (same as GIN)<sup>1</sup>:

$$h_G = \operatorname{CONCAT}(\operatorname{Readout}(\{\{h_v^{(t)}|v \in V\}\})|t = 1, \dots, k)$$

#### Theorem

GraphSNN is strictly more expressive than 1-WL.

<sup>1</sup>code: https://github.com/wokas36/GraphSNN



#### A Generalised Message Passing GNN

- A layer of a Message-Passing GNN is defined as:
  - 1. Aggregate "messages" from neighbors  $\mathcal{N}(v)$

$$\begin{split} h^{(t)} &= \operatorname{Aggregate}\left(\left\{\!\!\left\{h_{u}^{(t)}|u \in \mathcal{N}(v)\right\}\!\!\right\}\right) \\ &\hookrightarrow m_{a}^{(t)} = \operatorname{Aggregate}^{N}\left(\left\{\!\!\left\{(\tilde{A}_{vu}, h_{u}^{(t)})|u \in \mathcal{N}(v)\right\}\!\!\right\}\right) \\ &\hookrightarrow m_{v}^{(t)} = \operatorname{Aggregate}^{I}\left(\left\{\!\!\left\{\tilde{A}_{vu}|u \in \mathcal{N}(v)\right\}\!\!\right\}\right) \\ h_{v}^{(t)} \end{split}$$

2. Combine with its own "message"  $h_v^{(t)}$ 

$$\begin{aligned} & h_v^{(t+1)} = \text{Combine}\Big(h_v^{(t)}, h^{(t)}\Big) \\ & \hookrightarrow h_v^{(t+1)} = \text{Combine}\Big(m_v^{(t)}, m_a^{(t)}\Big) \end{aligned}$$

• Classification on Open Graph Benchmark (OGB) datasets, including four molecular graph datasets and one protein-protein association network.

| Method        | ogbg-molhiv      | ogbg-moltox21    | ogbg-moltoxcast    | ogbg-ppa         | ogbg-molpcba       |
|---------------|------------------|------------------|--------------------|------------------|--------------------|
| GIN           | $75.58{\pm}1.40$ | $74.91{\pm}0.51$ | $63.41 {\pm} 0.74$ | $68.92{\pm}1.00$ | 22.66±0.28         |
| <b>GIN+VN</b> | $75.20{\pm}1.30$ | $76.21{\pm}0.82$ | $66.18 {\pm} 0.68$ | $70.37{\pm}1.07$ | $27.03 {\pm} 0.23$ |
| GSN           | $77.99{\pm}1.00$ | -                | -                  | -                | -                  |
| PNA           | $79.05{\pm}1.30$ | -                | -                  | -                | $28.38 {\pm} 0.35$ |
| ID-GNN        | $78.30{\pm}2.00$ | -                | -                  | -                | -                  |
| Deep LRP      | $77.19{\pm}1.40$ | -                | -                  | -                | -                  |
| GraphSNN      | $78.51{\pm}1.70$ | $75.45{\pm}1.10$ | $65.40 {\pm} 0.71$ | $70.66{\pm}1.65$ | $24.96{\pm}1.50$   |
| GraphSNN+VN   | 79.72±1.83       | 76.78±1.27       | 67.68±0.92         | 72.02±1.48       | $28.50{\pm}1.68$   |

Table: Classification accuracy on large graph classification.

#### **Numerical Experiments**

• Classification w.r.t GraphSNN<sub>M</sub> models by replacing GCN, GAT, GIN, and GraphSAGE aggregation schemes by our aggregation scheme.

| Method                        | Cora                             | Citeseer                         | Pubmed                           | NELL                             | ogbn-arxiv                         |
|-------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------|
| GCN                           | $81.5\pm0.4$                     | $70.3\pm0.5$                     | $79.0\pm0.5$                     | $66.0\pm1.7$                     | $71.74\pm0.29$                     |
| GraphSNN <sub>GCN</sub>       | $\textbf{83.1}\pm\textbf{1.8}$   | $\textbf{72.3} \pm \textbf{1.5}$ | $\textbf{79.8}\pm\textbf{1.2}$   | $\textbf{68.3} \pm \textbf{1.6}$ | $\textbf{72.20}\pm\textbf{0.90}$   |
| GAT                           | $83.0\pm0.6$                     | $72.6\pm0.6$                     | $78.5\pm0.3$                     | -                                | -                                  |
| GraphSNN <sub>GAT</sub>       | $\textbf{83.8} \pm \textbf{1.2}$ | $\textbf{73.5}\pm\textbf{1.6}$   | $\textbf{79.6}\pm\textbf{1.4}$   | -                                | -                                  |
| GIN                           | $77.6\pm1.1$                     | $66.1\pm1.5$                     | $77.0\pm1.2$                     | $61.5\pm2.3$                     | -                                  |
| GraphSNN <sub>GIN</sub>       | $\textbf{79.2}\pm\textbf{1.7}$   | $\textbf{68.3} \pm \textbf{1.5}$ | $\textbf{78.8} \pm \textbf{1.3}$ | $\textbf{63.8} \pm \textbf{2.7}$ | -                                  |
| GraphSAGE                     | $79.2\pm3.7$                     | $71.6\pm1.9$                     | $77.4 \pm 2.2$                   | $63.7\pm5.2$                     | $71.49\pm0.27$                     |
| GraphSNN <sub>GraphSAGE</sub> | $\textbf{80.5}~\pm~\textbf{2.5}$ | $\textbf{72.7}~\pm~\textbf{3.2}$ | $\textbf{79.0}~\pm~\textbf{3.5}$ | $\textbf{66.3} \pm \textbf{5.6}$ | $\textbf{71.80} \pm \textbf{0.70}$ |

Table: Classification accuracy on semi-supervised node classification.



Spatial GNNs

Spectral GNNs <sup>2</sup>

Diffusion GNNs

<sup>2</sup>A. Wijesinghe and Q. Wang. **DFNets: Spectral CNNs for Graphs with Feedback-Looped Filters**. (NeurIPS 2019)

#### **Research Question**

• How to design spectral graph filters and tackle the problem of designing an effective, yet efficient GNNs with spectral graph filters?



#### **Current State**



- Rational polynomial filters
   e.g., Cayley
   [Ron et al. 2017]
- Polynomial filters
  - e.g., Lanczos [Renjie et al. 2019]
- Basis-dependent filters

#### Contributions



Learnable optimal coefficients

A new spectral convolutional layer

#### A New Class of Spectral Graph Filters

• Feedback-looped filters belong to a class of ARMA filters.

$$h_{\psi,\phi}(L)x = \left(I + \sum_{j=1}^{p} \psi_j L^j\right)^{-1} \left(\sum_{j=0}^{q} \phi_j L^j\right)x \tag{1}$$

• Feedback-looped filters use the following approximation.

$$\bar{x}^{(0)} = x \text{ and } \bar{x}^{(t)} = -\sum_{j=1}^{p} \psi_j \tilde{\mathcal{L}}^j \bar{x}^{(t-1)} + \sum_{j=0}^{q} \phi_j \tilde{\mathcal{L}}^j x$$
 (2)

#### Learnable Optimal Coefficients

• The frequency response of feedback-looped filters is defined as:

$$h(\lambda_i) = \frac{\sum_{j=0}^{q} \phi_j \lambda_i^j}{1 + \sum_{j=1}^{p} \psi_j \lambda_i^j}.$$
(3)

• The stable coefficients  $\psi$  and  $\phi$  can be learned by a convex constrained least-squares optimization problem:

$$\begin{array}{l} \text{minimize}_{\psi,\phi} \mid \mid \hat{h} + diag(\hat{h})\alpha\psi - \beta\phi \mid \mid_{2} \\ \text{subject to} \mid \mid \alpha\psi \mid \mid_{\infty} \leq \gamma \text{ and } \gamma < 1 \end{array}$$

#### A New Spectral Convolutional Layer

• Propagation rule of a spectral convolutional layer is defined as: <sup>2</sup>



<sup>&</sup>lt;sup>2</sup>code: https://github.com/wokas36/DFNets

#### A New Spectral Convolutional Layer



#### **Numerical Experiments**

| Model                | Cora                             | Citeseer                         | Pubmed                           | NELL                             |
|----------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| SemiEmb              | 59.0                             | 59.6                             | 71.1                             | 26.7                             |
| LP                   | 68.0                             | 45.3                             | 63.0                             | 26.5                             |
| DeepWalk             | 67.2                             | 43.2                             | 65.3                             | 58.1                             |
| ICA                  | 75.1                             | 69.1                             | 73.9                             | 23.1                             |
| Planetoid*           | 64.7                             | 75.7                             | 77.2                             | 61.9                             |
| Chebyshev            | 81.2                             | 69.8                             | 74.4                             | -                                |
| GCN                  | 81.5                             | 70.3                             | 79.0                             | 66.0                             |
| LNet                 | 79.5                             | 66.2                             | 78.3                             | -                                |
| AdaLNet              | 80.4                             | 68.7                             | 78.1                             | -                                |
| CayleyNet            | 81.9*                            | -                                | -                                | -                                |
| ARMA <sub>1</sub>    | 84.7                             | 73.8                             | 81.4                             | -                                |
| GAT                  | 83.0                             | 72.5                             | 79.0                             | -                                |
| GCN + DenseBlock     | $82.7\pm0.5$                     | $71.3\pm0.3$                     | $81.5\pm0.5$                     | $66.4\pm0.3$                     |
| $GAT + Dense\ Block$ | $83.8\pm0.3$                     | $73.1\pm0.3$                     | $81.8\pm0.3$                     | -                                |
| DFNet (ours)         | $\textbf{85.2} \pm \textbf{0.5}$ | $\textbf{74.2} \pm \textbf{0.3}$ | $\textbf{84.3} \pm \textbf{0.4}$ | $\textbf{68.3} \pm \textbf{0.4}$ |
| DFNet-ATT (ours)     | $\textbf{86.0} \pm \textbf{0.4}$ | $\textbf{74.7} \pm \textbf{0.4}$ | $\textbf{85.2} \pm \textbf{0.3}$ | $\textbf{68.8} \pm \textbf{0.3}$ |
| DF-ATT (ours)        | $83.4\pm0.5$                     | $73.1\pm0.4$                     | $\textbf{82.3} \pm \textbf{0.3}$ | $\textbf{67.6} \pm \textbf{0.3}$ |

Table: Classification accuracy on semi-supervised node classification.



<sup>3</sup>A. Wijesinghe and Q. Wang. Dynamic PageRank for Graph Neural Networks. (Under Review)

#### **Research Question**

• How to build powerful GNNs by graph diffusion to capture rich and varying graph structures, i.e, homophily and heterophily?



#### **Current State**



- Non-homogeneous anisotropic diffusion e.g., DGN
   [Dominique et al. 2021]
- Non-homogeneous isotropic diffusion
   e.g., GRAND
   [Chamberlain et al. 2021]
- Homogeneous isotropic diffusion
   e.g., GDC, APPNP, GPRGNN
   [Klicpera et al. 2019, Chien et al. 2021]

#### Contributions



#### Learnable PageRank Transition

- Limitations of standard PageRank:
  - Restricting landing probabilities to 1-hop neighbors.
  - Landing probabilities in **P** are pre-determined and fixed.
- We reformulate **P** with a learnable weighted linear combination of transition probabilities of different lengths.

$$\mathbf{P} = f_{\phi}(\mathbf{L}) = \sum_{i=1}^{k} \phi_i \mathbf{L}^i$$
(5)

#### **Dynamic PageRank with FE Solution**

• Standard PageRank can be represented as an iterative scheme;

$$y(t+1) = (1-\alpha)x + \alpha \mathbf{P}y(t)$$
(6)

- PageRank with time-dependent teleportation vector x(t);  $\frac{\partial y(t)}{\partial t} = (1 - \alpha)x(t) - (\mathbf{I} - \alpha \mathbf{P})y(t)$ (7)
- Connection with the message-passing GNNs.

$$\mathbf{Y}^{(t)} = \left( (1 - \alpha)\mathbf{I} + \alpha \mathbf{P} \right) \mathbf{Y}^{(t-1)}$$
(8)

#### **Dynamic PageRank with IF Solution**

• Dynamic PageRank generalizes both personalized PageRank and heat kernel;  $y(t) = y_{ppr} + exp \Big\{ -t(\mathbf{I} - \alpha \mathbf{P}) \Big\} (y(0) - y_{ppr})$ (9)

• Connection with the message-passing GNNs;

$$\mathbf{Y}^{(t)} = \mathbf{Y}_{ppr} + exp\{-t(\mathbf{I} - \alpha \mathbf{P})\}(\mathbf{Y}^{(0)} - \mathbf{Y}_{ppr})$$
(10)

#### A New GNN with Deeper Single Layers

• A new GNN with deeper single layer is defined as;

$$\mathbf{Z}^{(l+1)} = \sigma \Big( \sum_{i=1}^{q} \left( \mathbf{Z}_{i}^{(l)} \mathbf{W}_{i}^{(l)} + b_{i}^{(l)} \right) \Big)$$
(11)

#### Theorem

When  $t \to \infty$ , dynamic PageRank diffusion schemes in  $\mathcal{Z}_{EF}$  are guaranteed to converge.

#### Theorem

The scheme of the forward Euler solution is equivalent to the spectral convolution layer.

#### A New GNN with Deeper Single Layers



#### **Numerical Experiments**

| Model                            | Cora                                                            | Pubmed                                                    | Photo                                                           | Computers                                                                                           |
|----------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| GCN                              | $86.87\pm0.26$                                                  | $86.97\pm0.12$                                            | $90.54\pm0.21$                                                  | $82.52\pm0.32$                                                                                      |
| GAT                              | $87.52\pm0.24$                                                  | $86.64\pm0.11$                                            | $90.09\pm0.27$                                                  | $81.95\pm0.38$                                                                                      |
| APPNP                            | $88.10\pm0.23$                                                  | $89.15\pm0.13$                                            | $91.11\pm0.26$                                                  | $81.99\pm0.26$                                                                                      |
| JKNet                            | $86.97\pm0.27$                                                  | $87.38\pm0.13$                                            | $87.70\pm0.70$                                                  | $77.80\pm0.97$                                                                                      |
| Geom-GCN                         | $85.40\pm0.26$                                                  | $88.51\pm0.08$                                            | -                                                               | -                                                                                                   |
| U-GCN                            | 84.00                                                           | 74.08                                                     | 85.22                                                           |                                                                                                     |
| $H_2GCN$                         | $86.92\pm1.37$                                                  | $89.40\pm0.34$                                            | -                                                               | -                                                                                                   |
| ASGAT-Cheb                       | $87.50\pm0.50$                                                  | $89.90\pm0.90$                                            | -                                                               | -                                                                                                   |
| ASGAT-ARMA                       | $87.40\pm1.10$                                                  | $88.30\pm1.00$                                            | -                                                               | -                                                                                                   |
| NLMLP                            | $76.90\pm1.80$                                                  | $88.20\pm0.50$                                            | -                                                               | -                                                                                                   |
| NLGCN                            | $88.10\pm1.00$                                                  | $89.00\pm0.50$                                            | -                                                               | -                                                                                                   |
| GPRGNN                           | $88.65\pm0.28$                                                  | $89.18\pm0.15$                                            | $91.93\pm0.26$                                                  | $82.90\pm0.37$                                                                                      |
| MLP+GCN                          | $87.01\pm1.35$                                                  | $89.77\pm0.39$                                            | -                                                               | -                                                                                                   |
| PDE-GCN                          | 88.60                                                           | 89.93                                                     | -                                                               | -                                                                                                   |
| DPRN-IF (ours)<br>DPRN-FE (ours) | $\begin{array}{c} 90.18 \pm 0.36 \\ 90.24 \pm 0.42 \end{array}$ | $\begin{array}{c} 90.80\pm1.96\\ 89.97\pm1.53\end{array}$ | $\begin{array}{c} 93.40 \pm 0.41 \\ 93.82 \pm 0.23 \end{array}$ | $\begin{array}{c} \textbf{86.11} \pm \textbf{0.21} \\ \textbf{85.76} \pm \textbf{0.17} \end{array}$ |

Table: Fully-supervised node classification on homophilic datasets.

| Model          | Actor                              | Wisconsin                          | Cornell                            | Texas                              | Chameleon                          |
|----------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| GCN            | $30.59\pm0.23$                     | -                                  | $66.72\pm1.37$                     | $75.16\pm0.96$                     | $60.96\pm0.78$                     |
| GAT            | $35.98\pm0.23$                     | -                                  | $76.00\pm1.01$                     | $78.87\pm0.86$                     | $63.9\pm0.46$                      |
| APPNP          | $38.86\pm0.24$                     | -                                  | $91.80\pm0.63$                     | $91.18\pm0.70$                     | $51.91\pm0.56$                     |
| JKNet          | $33.41\pm0.25$                     | -                                  | $66.73\pm1.73$                     | $75.53\pm1.16$                     | $62.92\pm0.49$                     |
| Geom-GCN       | $31.81\pm0.24$                     | -                                  | $55.59\pm1.59$                     | $58.56 \pm 1.77$                   | $61.06\pm0.49$                     |
| U-GCN          | -                                  | 69.89                              | 69.77                              | 71.72                              | 54.07                              |
| $H_2GCN$       | $35.86\pm1.03$                     | $86.67\pm4.69$                     | $82.16\pm4.80$                     | $84.86\pm6.77$                     | $57.11\pm1.58$                     |
| ASGAT-Cheb     | -                                  | $86.30\pm3.70$                     | $82.70\pm8.30$                     | $85.10\pm5.70$                     | $66.50\pm2.80$                     |
| ASGAT-ARMA     | -                                  | $84.70\pm4.40$                     | $83.20\pm5.50$                     | $79.50\pm7.70$                     | $65.80\pm2.20$                     |
| NLMLP          | $37.90\pm1.30$                     | $87.30\pm4.30$                     | $84.90\pm5.70$                     | $85.40\pm3.80$                     | $50.70\pm2.20$                     |
| GPRGNN         | $39.30\pm0.27$                     | -                                  | $91.36\pm0.70$                     | $92.92\pm0.61$                     | $67.48\pm0.40$                     |
| MLP+GCN        | $36.24\pm1.09$                     | $86.43\pm4.00$                     | $84.82\pm4.87$                     | $83.60\pm6.04$                     | $68.04\pm1.86$                     |
| PDE-GCN        | -                                  | 91.76                              | 89.73                              | 93.24                              | 66.01                              |
| DPRN-IF (ours) | $\textbf{41.82} \pm \textbf{0.78}$ | $\textbf{88.37} \pm \textbf{2.09}$ | $\textbf{92.78} \pm \textbf{1.67}$ | $\textbf{94.59} \pm \textbf{0.85}$ | $\textbf{68.56} \pm \textbf{1.92}$ |
| DPRN-FE (ours) | $\textbf{40.03} \pm \textbf{0.54}$ | $\textbf{93.25} \pm \textbf{1.14}$ | $\textbf{93.93} \pm \textbf{1.04}$ | $\textbf{94.75} \pm \textbf{0.65}$ | $65.00\pm2.31$                     |

Table: Fully-supervised node classification on heterophilic datasets.

### **Graph Similarity Learning**

#### Graph Kernels:

How to compare two graphs in a vector space?



### **Graph Similarity Learning**



Non-OT Graph Kernels



OT Graph Kernels

#### **Current State**



- OT graph kernels
   e.g., WWL, FGW
   [Matteo et al. 2019, Titouan et al. 2019]
- Non-OT graph kernels
   e.g., WL subtree kernel, Graphlet kernel
   [Nino et al. 2011]

### **Graph Similarity Learning**



<sup>&</sup>lt;sup>4</sup>A. Wijesinghe, Q. Wang and S. Gould. **A Regularized Wasserstein Framework for Graph Kernels**. (ICDM 2021)

• How to develop an optimal transport based kernel that can preserve intricate structures on graphs with theoretically guaranteed convergence?

# **Optimal Transport Theory**



• Optimal transport between two discrete distributions,

$$\hat{\gamma} = \underset{\gamma \in \pi(\mu,\nu)}{\operatorname{argmin}} \left\langle \gamma, \mathbf{C} \right\rangle_{F} = \underset{\gamma \in \pi(\mu,\nu)}{\operatorname{argmin}} \sum_{i,j} \gamma(i,j) C(i,j)$$
(12)

• Set of probabilistic couplings between metric spaces,

$$\pi(\mu,\nu) = \left\{ \gamma \in \mathbb{R}_{+}^{n_{1} \times n_{2}} \mid \gamma \mathbf{1}_{n_{2}} = \mu, \gamma^{\mathsf{T}} \mathbf{1}_{n_{1}} = \nu \right\}$$

• Regularized optimal transport between two probability distributions,

$$\hat{\gamma} = \operatorname*{argmin}_{\gamma \in \pi(\mu, 
u)} ig\langle \gamma, \mathbf{C} ig
angle_{\mathcal{F}} + \lambda \Theta(\gamma)$$

- Why regularize optimal transport?
  - Smooth the distance estimation.
  - Encode prior knowledge on the data.
  - Robust and guarantee the convergence.
  - Numerical stability in optimization.
  - Fast algorithms to solve the OT problem.

#### Contributions



A fast and numerically stable algorithm

A regularized Wasserstein Kernel

#### **Overview**



#### **Feature Local Variation**

• Feature local variation is used to quantify how graph signals change from a vertex to its neighboring vertices.



#### Local Barycentric Wasserstein Distance



$$LW(\mu,\nu) = \min_{\gamma \in \pi(\mu,\nu)} \langle \gamma, \mathbf{C}^{N} \rangle_{F} + \lambda_{\mu} tr(\mathbf{E}_{\nu}^{T} \gamma^{T} \mathbf{L}_{\mu} \gamma \mathbf{E}_{\nu}) + \lambda_{\nu} tr(\mathbf{E}_{\mu}^{T} \gamma \mathbf{L}_{\nu} \gamma^{T} \mathbf{E}_{\mu}) + \frac{\rho}{2} ||\gamma||_{F}^{2}$$

#### **Global Connectivity Wasserstein Distance**



$$GW(\mu,\nu) = \min_{\gamma \in \pi(\mu,\nu)} \langle \gamma, L_2(\mathbf{C}^P_{\mu},\mathbf{C}^P_{\nu}) \otimes \gamma \rangle_F - \lambda_g KL(\gamma \| \gamma')$$

#### A New OT Distance Metric on Graphs

• Regularized Wasserstein discrepancy preserves both features and structure of graphs;

$$RW(\mu,\nu) = \min_{\gamma \in \pi(\mu,\nu)} \left\langle \gamma, \mathbf{C}^{V} \right\rangle_{F} + \beta_{1} LW(\mu,\nu) + \beta_{2} GW(\mu,\nu)$$
(13)

• Transform the above optimization problem into a following form of objective <sup>4</sup>;

$$\min_{\gamma \in \pi(\mu,\nu)} H(\gamma) = \min_{\gamma \in \pi(\mu,\nu)} f(\gamma) + g(\gamma) - h(\gamma)$$
(14)

<sup>&</sup>lt;sup>4</sup>code: https://github.com/wokas36/RWK

#### A Fast and Numerically Stable Algorithm

**Algorithm 1:** Training for RW Discrepancy 1 initialize i=0,  $\gamma^0 \leftarrow \mu \nu^T$ , and  $c^0 \leftarrow H(\gamma^0)$ 2 while i < t do  $i \leftarrow i + 1$ 3  $\nabla H(\gamma) \leftarrow \text{Gradient of } H(\gamma) \text{ w.r.t } \gamma^{(i-1)}$ 4  $\hat{\gamma}^{(i-1)} \leftarrow Sinkhorn-knopp (\mu, \nu, \nabla H(\gamma), \lambda, b)$ 5  $\Delta \gamma \leftarrow \hat{\gamma}^{(i-1)} \gamma^{(i-1)}$ 6  $\alpha^{(i)}, c^{(i)} \leftarrow \text{Line-search} (\gamma^{(i-1)}, \Delta\gamma, \nabla H(\gamma), c^{(i-1)})$ 7  $\gamma^{(i)} \leftarrow \gamma^{(i-1)} + \alpha^{(i)} \Delta \gamma$ 8  $\delta^{(i-1)} \leftarrow \left\langle \Delta \gamma, -\nabla H(\gamma) \right\rangle_{\tau}$ 9 if  $\delta^{(i-1)} < \epsilon$  then 10 11 stop end 12 13 end

#### A Regularized Wasserstein Kernel

#### Regularized Wasserstein Kernel

Given a set of graphs  $\mathcal{G}$ , RWK has a *kernel matrix*  $\mathbf{K} \in \mathbb{R}^{|\mathcal{G}| \times |\mathcal{G}|}$  defined as

$$\mathbf{K}_{\mu\nu}=e^{-\eta RW(\mu,\nu)},$$

where  $\eta > 0$  is a parameter,  $\mu$  and  $\nu$  correspond to any two graphs in  $\mathcal{G}$ , and  $RW(\mu, \nu)$  is the RW discrepancy between  $\mu$  and  $\nu$ .

|               | Method     | MUTAG                            | PTC-MR         | NCI1                             | D&D                              | NCI109                           | COLLAB                           |
|---------------|------------|----------------------------------|----------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
|               | WL         | $90.4\pm5.7$                     | $59.9\pm4.3$   | $86.0\pm1.8$                     | $79.4\pm0.3$                     | $85.9 \pm 1.5$                   | $78.9\pm1.9$                     |
| N OT I        | WL-OA      | $84.5\pm1.7$                     | $63.6\pm1.5$   | $86.1\pm0.2$                     | $79.2\pm0.4$                     | $86.3\pm0.2$                     | $80.7\pm0.1$                     |
| Non-OT graph  | RetGK      | $90.3\pm1.1$                     | $62.5\pm1.6$   | $84.5\pm0.2$                     | -                                | -                                | $81.0\pm0.3$                     |
| kernels       | GNTK       | $90.0\pm8.5$                     | $67.9\pm6.9$   | $84.2\pm1.5$                     | $75.6\pm3.9$                     | -                                | $83.6\pm1.0$                     |
|               | P-WL       | $90.5\pm1.3$                     | $64.0\pm0.8$   | $85.4\pm0.1$                     | $78.6\pm0.3$                     | $84.9\pm0.3$                     | -                                |
| OT based      | WL-PM      | $87.7\pm0.8$                     | $61.4\pm0.8$   | $86.4\pm0.2$                     | $78.6\pm0.2$                     | $85.3\pm0.2$                     | $81.5\pm0.5$                     |
| OT-based      | WWL        | $87.2\pm1.5$                     | $66.3\pm1.2$   | $85.7\pm0.2$                     | $79.6\pm0.5$                     | -                                | -                                |
| graph kernels | FGW        | $88.4\pm5.6$                     | $65.3\pm7.9$   | $86.4\pm1.6$                     | -                                | -                                | -                                |
|               | PATCHY-SAN | $92.6\pm4.2$                     | $60.0\pm4.8$   | $78.6\pm1.9$                     | $77.1 \pm 2.4$                   | -                                | $72.6 \pm 2.2$                   |
| GNN-based     | DGCNN      | $85.8\pm0.0$                     | $58.6\pm0.0$   | $74.4\pm0.0$                     | $76.6\pm0.0$                     | $75.0\pm0.0$                     | $73.7\pm0.0$                     |
| methods       | CapsGNN    | $86.6\pm1.5$                     | $66.0\pm1.8$   | $78.3\pm1.3$                     | $75.3\pm2.3$                     | $81.1\pm3.1$                     | $79.6\pm2.9$                     |
|               | GIN        | $89.4\pm5.6$                     | $64.6\pm7.0$   | $82.7\pm1.7$                     | $75.3\pm3.5$                     | $86.5\pm1.5$                     | $80.2\pm1.9$                     |
| Our work      | RWK        | $\textbf{93.6} \pm \textbf{3.7}$ | $69.5 \pm 6.1$ | $\textbf{88.0} \pm \textbf{4.5}$ | $\textbf{81.6} \pm \textbf{3.5}$ | $\textbf{87.3} \pm \textbf{6.1}$ | $\textbf{83.8} \pm \textbf{4.6}$ |
|               | RWK-1      | $92.5\pm3.1$                     | $68.9\pm5.1$   | $87.7\pm6.1$                     | $81.0\pm4.3$                     | $86.9\pm5.2$                     | $83.2\pm3.1$                     |
|               | RWK-0      | $90.7\pm4.2$                     | $67.8\pm3.6$   | $87.0\pm5.1$                     | $79.6\pm3.1$                     | $86.4\pm4.6$                     | $81.5\pm3.9$                     |

Table: Classification accuracy on graphs with discrete attributes.

|               | Method | COX2                             | ENZYMES                          | PROTEINS                         | BZR                              | COX2-MD                          | BZR-MD                           |
|---------------|--------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
|               | GHK    | $76.4\pm1.3$                     | $65.6\pm0.8$                     | $74.7\pm0.2$                     | $76.4\pm0.9$                     | $66.2\pm1.0$                     | $69.1\pm2.0$                     |
| Non-OT graph  | PK     | $77.6\pm0.6$                     | $71.6\pm0.5$                     | $61.3\pm0.8$                     | $79.5\pm0.4$                     | -                                | -                                |
| kernels       | HGK-WL | $78.1\pm0.4$                     | $63.0\pm0.6$                     | $75.9\pm0.1$                     | $78.5\pm0.6$                     | $74.6\pm1.7$                     | $68.9\pm0.6$                     |
|               | HGK-SP | $72.5\pm1.1$                     | $66.3\pm0.3$                     | $75.7\pm0.1$                     | $76.4\pm0.7$                     | $68.5\pm1.0$                     | $66.1\pm1.0$                     |
| OT-based      | WWL    | $78.2\pm0.4$                     | $73.2\pm0.8$                     | $77.9\pm0.8$                     | $84.4\pm2.0$                     | $76.3\pm1.0$                     | $69.7\pm0.9$                     |
| graph kernels | FGW    | $77.2\pm4.8$                     | $71.0\pm6.7$                     | $74.5\pm2.7$                     | $85.1\pm4.1$                     | -                                | -                                |
|               | RWK    | $\textbf{81.2} \pm \textbf{5.3}$ | $\textbf{78.3} \pm \textbf{4.1}$ | $\textbf{79.3} \pm \textbf{6.1}$ | $\textbf{86.2} \pm \textbf{5.6}$ | $\textbf{78.1} \pm \textbf{4.3}$ | $\textbf{71.9} \pm \textbf{4.6}$ |
| Our work      | RWK-1  | $80.7\pm4.6$                     | $77.5\pm5.3$                     | $78.9\pm4.5$                     | $85.8\pm5.5$                     | $77.4\pm3.7$                     | $71.3\pm4.3$                     |
|               | RWK-0  | $79.6\pm3.1$                     | $76.4\pm4.5$                     | $78.2\pm5.6$                     | $85.2\pm4.3$                     | $76.7\pm5.5$                     | $70.5\pm3.7$                     |

Table: Classification accuracy on graphs with continuous attributes.

In summary, we have proposed three GNN approaches and a Graph Kernel approach for graph learning.

- GraphSNN: Graph Structured Neural Network.
- DFNets: Distributed Feedback-Looped Network.
- DPRN: Dynamic PageRank Network.
- RWK: Regularized Wasserstein Kernel.

# **Thank You**