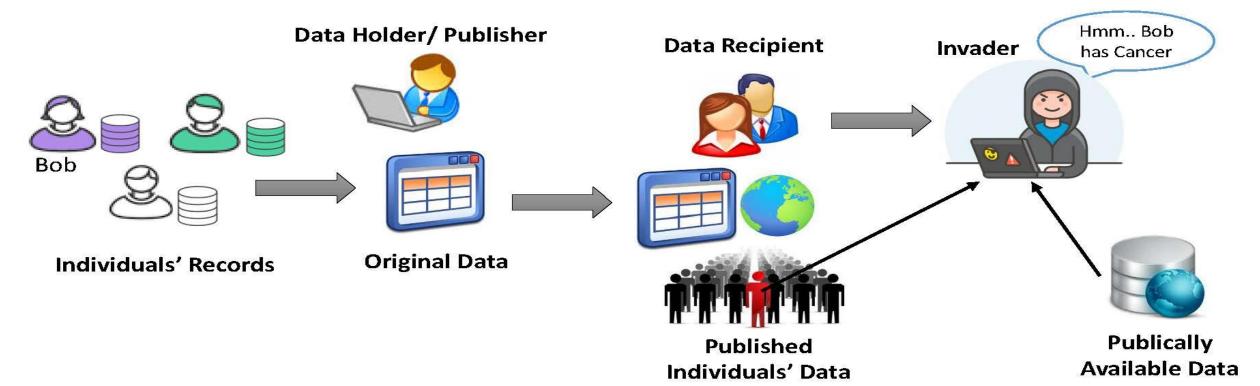
Publishing Differentially Private Datasets via Stable Microaggregation

Masooma Iftikhar, Qing Wang, Yu Lin {masooma.iftikhar, qing.wang, yu.lin}@anu.edu.au

ANU College of **Engineering and Computer Science**

Introduction

Publishing data about individuals poses a privacy threat because data may contain the sensitive information about individuals, e.g., medical history, and publishing them would intrude upon individual privacy.



Challenges and Contributions

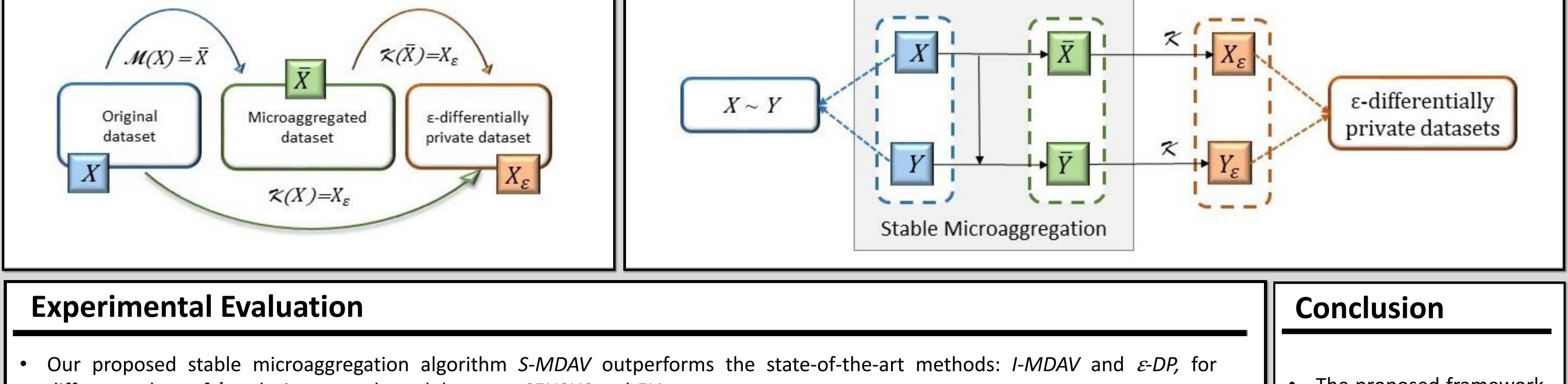
- **Aim**: To generate ε-differentially private datasets by using microaggregation for improving data utility.
- **Key Challenge:** To Enhance utility of published data by providing better within-cluster homogeneity and reducing the amount of noise, in comparison with the state-of-the-art methods.
- **Contributions**:
 - Developed a microaggregation-based framework for generating ε -differentially private datasets a) based on a novel notion of *stable microaggregation*;

Problem Statement

- Two datasets X, Y $\in \mathcal{D}$ are said to be *neighboring*, denoted ulletas $X \sim Y$, if |X| = |Y| = n, but X and Y differ in one record.
- A randomized mechanism $\mathcal{K}: \mathcal{D} \to \mathcal{D}$ provides ε -differentially \bullet private datasets, if for each pair of neighboring datasets X~Y, and all possible outputs $\mathcal{D}_{\varsigma} \subseteq \operatorname{range}(\mathcal{K})$, it holds

 $\Pr[\mathcal{K}(\mathbf{X}) \in \mathcal{D}_{\varepsilon}] \leq e^{\varepsilon} \times \Pr[\mathcal{K}(\mathbf{Y}) \in \mathcal{D}_{\varepsilon}]$

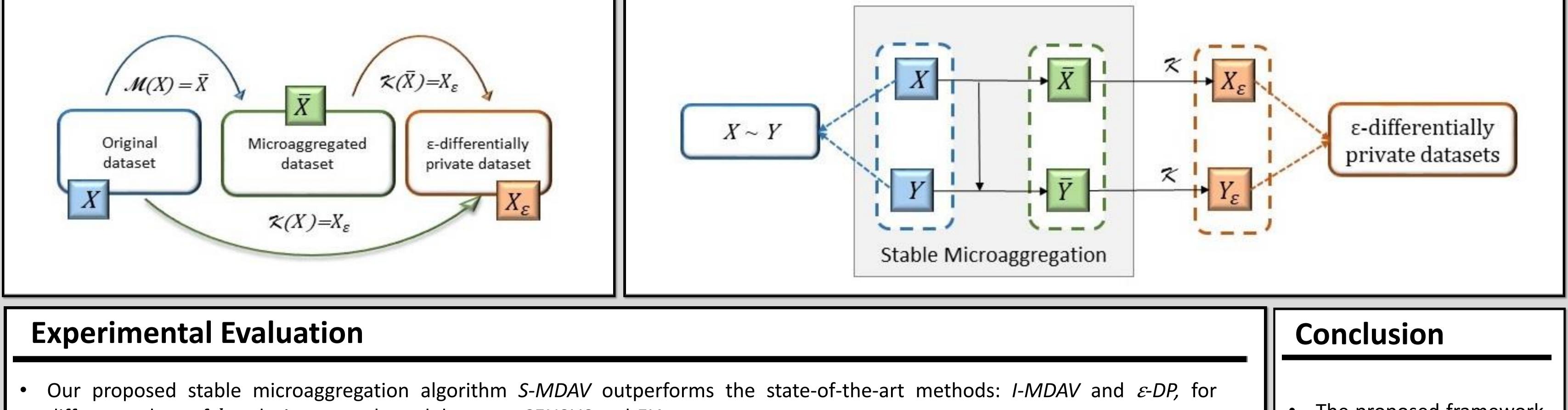
• $\epsilon > 0$ is the differential privacy parameter. Smaller values of ϵ provide stronger privacy guarantees.



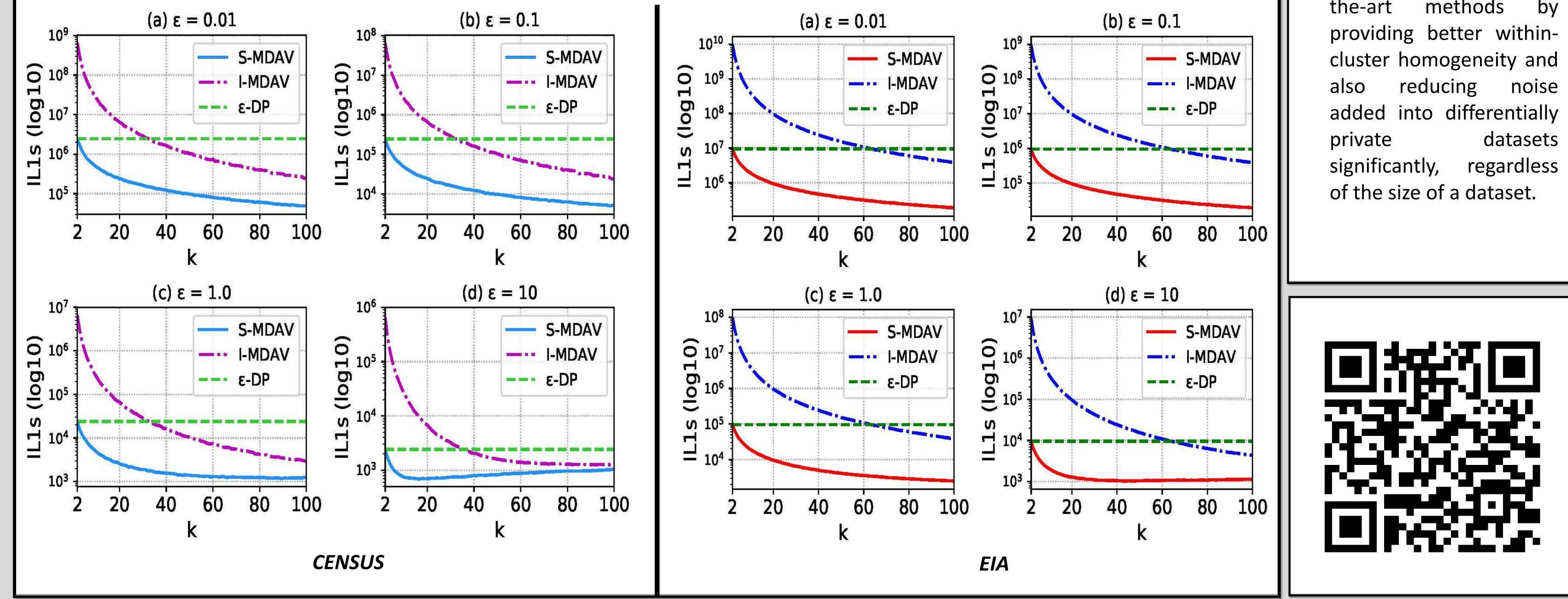
b) Design a stable microaggregation algorithm that outperforms the state-of-the-art methods .

Proposed Framework

- **Stable microaggregation:** Let \mathcal{M} be a microaggregation algorithm, $C_x = \{c_1, ..., c_n\}$ be the set of clusters that results from running \mathcal{M} on X, and $C_{Y} = \{c'_{1}, ..., c'_{n}\}$ be the set of clusters that results from running \mathcal{M} on Y, such that each cluster in C_x and C_y has at least k records. \mathcal{M} is **stable** if, for any X~Y, there is a bijection between C_x and C_y such that at most two pairs of corresponding clusters in C_x and C_y differ in a single record.
- By approximating a query f to $f \circ \mathcal{M}$ via stable microaggregation, the utility of ε -differentially private datasets is enhanced due to significant reduction in sensitivity as compared to the state-ofthe-art methods. The addition of noise can always be reduced in comparison with directly applying \mathcal{K} over X, regardless of the size of a dataset, when $k \ge 2$.



different values of k and ε in two real word datasets: CENSUS and EIA.



The proposed framework outperforms the state-ofmethods the-art by

Research School of Computer Science, College of Engineering and Computer Science, The Australian National University, Canberra ACT 0200, Australia