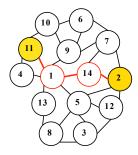
A Highly Scalable Labelling Approach for Exact Distance Queries in Complex Networks

Muhammad Farhan, Qing Wang, Yu Lin, and Brendan Mckay

Australian National University Research School of Computer Science Canberra, Australia

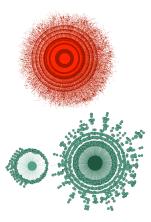
{muhammad.farhan,qing.wang,yu.lin,brendan.mckay}@anu.edu.au


June 17, 2021

Exact Shortest Path Distance Queries

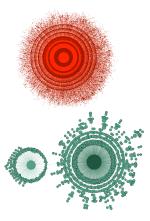
Problem: Given a graph G = (V, E) and any two vertices s, t ∈ V, to answer the shortest path distance d_G(s, t).

Exact Shortest Path Distance Queries


Problem: Given a graph G = (V, E) and any two vertices s, t ∈ V, to answer the shortest path distance d_G(s, t).

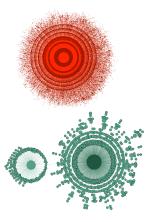
$$d_G(2,11)=3$$

How to efficiently answer $d_G(s, t)$ in a very large network?

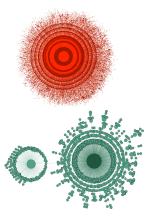

How to efficiently answer $d_G(s, t)$ in a very large network?

(two complex networks)

- What kinds of networks?
 - Complex networks


How to efficiently answer $d_G(s, t)$ in a very large network?

(two complex networks)


- What kinds of networks?
 - Complex networks
- How large is a network?
 - $-\,$ Billions of vertices and billions of edges

How to efficiently answer $d_G(s, t)$ in a very large network?

- What kinds of networks?
 - Complex networks
- How large is a network?
 - $-\,$ Billions of vertices and billions of edges
- How efficiently is it answered?
 - In the order of milliseconds


How to efficiently answer $d_G(s, t)$ in a very large network?

(two complex networks)

- What kinds of networks?
 - Complex networks
- How large is a network?
 - Billions of vertices and billions of edges
- How efficiently is it answered?
 - In the order of milliseconds
- Computational resources?
 - Scalable construction time (of indexing)
 - Scalable labelling size

- Context-aware web search
- Social network analysis
 - Socially sensitive search
 - Closeness centrality
 - Community detection/search
 - ...
- Route navigation
- . . .

• Search-based approaches

- Dijkstra's algorithm
- BFS or Bidirectional BFS

• Search-based approaches

- Dijkstra's algorithm
- BFS or Bidirectional BFS

• Labelling-based approaches

- TreE Decomposition based Indexing (TEDI) method [SIGMOD2010]
- Improved TEDI method [EDBT2012]
- Hierarchical Hub-Labeling (HHL) algorithm [ESA2012]
- Pruned Landmark Labeling (PLL) algorithm [SIGMOD2013] outperforming Impoved TEDI and HHL

• Search-based approaches

- Dijkstra's algorithm
- BFS or Bidirectional BFS

Labelling-based approaches

- TreE Decomposition based Indexing (TEDI) method [SIGMOD2010]
- Improved TEDI method [EDBT2012]
- Hierarchical Hub-Labeling (HHL) algorithm [ESA2012]
- Pruned Landmark Labeling (PLL) algorithm [SIGMOD2013] outperforming Impoved TEDI and HHL

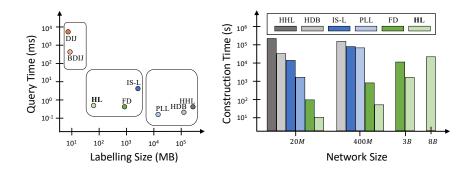
• Hybrid approaches

- IS-Label (IS-L) method [VLDB2013] outperforming HCL and TEDI
- Fully Dynamic (FD) method [CIKM2016] outperforming PLL, HDB, RXL and CRXL

• Search-based approaches

- Dijkstra's algorithm
- BFS or Bidirectional BFS

• Labelling-based approaches


- TreE Decomposition based Indexing (TEDI) method [SIGMOD2010]
- Improved TEDI method [EDBT2012]
- Hierarchical Hub-Labeling (HHL) algorithm [ESA2012]
- Pruned Landmark Labeling (PLL) algorithm [SIGMOD2013] outperforming Impoved TEDI and HHL

• Hybrid approaches

- IS-Label (IS-L) method [VLDB2013] outperforming HCL and TEDI
- Fully Dynamic (FD) method [CIKM2016] outperforming PLL, HDB, RXL and CRXL

No work can handle graphs with billions of vertices and billions of edges.

A High-level Overview

(Note that, the left figure is based on networks of sizes up to 400M edges)

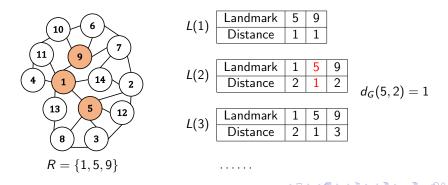
• Trade-offs among query time, labelling size and construction time.

Our method proceeds in two steps:

- A highly scalable labelling algorithm for constructing the distance labelling using a highway:
 - Relax the 2-hop cover property with a novel property, called the highway cover property
 - Enjoy some other nice properties: order independence, minimality of labelling, and parallel construction
- A querying framework that supports fast distance bounded searches on a sparsified graph

Distance Labelling

• Given a set of landmarks $R \subseteq V$ of G, a label L(v) for each $v \in V$ can be precomputed, i.e.,


$$L(v) = \{(r_1, \delta(r_1, v)), \dots, (r_n, \delta(r_n, v))\},\$$
where $r_i \in R$ and $\delta(r_i, v) = d_G(r_i, v).$

Distance Labelling

• Given a set of landmarks $R \subseteq V$ of G, a label L(v) for each $v \in V$ can be precomputed, i.e.,

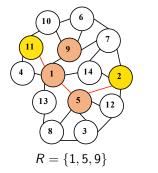
$$L(v) = \{ (r_1, \delta(r_1, v)), \dots, (r_n, \delta(r_n, v)) \},\$$

where $r_i \in R$ and $\delta(r_i, v) = d_G(r_i, v)$.

2-Hop Labelling

• 2-Hop cover property

For any two vertices $s, t \in V$, there exists at least one landmark $r \in R$ in both L(s) and L(t), which is on the shortest path between s and t.

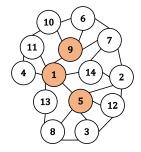

$$d_G(s,t) = \min_{r \in L(s) \cap L(t)} \{\delta(r,s) + \delta(r,t)\}$$

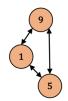
2-Hop Labelling

• 2-Hop cover property

For any two vertices $s, t \in V$, there exists at least one landmark $r \in R$ in both L(s) and L(t), which is on the shortest path between s and t.

$$d_G(s,t) = \min_{r \in L(s) \cap L(t)} \{\delta(r,s) + \delta(r,t)\}$$

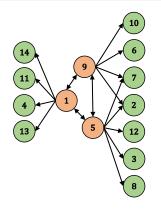



L(2)	Landmark	1	5	9
L(2)	Distance	2	1	2
L(11)	Landmark	1		
	Distance	1		

 $d_G(2,11) = d_G(1,2) + d_G(1,11) = 3$

Definition (Highway)

A highway *H* is a pair (R, δ_H) , where *R* is a set of landmarks and δ_H is a *distance decoding function*, i.e. $\delta_H : R \times R \to \mathbb{N}^+$, such that for any $\{r_1, r_2\} \subseteq R$ we have $\delta_H(r_1, r_2) = d_G(r_1, r_2)$.



Highway Cover Labelling

Definition (Highway Cover)

Let G = (V, E) be a graph and $H = (R, \delta_H)$ a highway. For any vertex $u \in V \setminus R$ and any $r \in R$, there must exist $r' \in R$ in L(u) such that r' is on the shortest path between u and r (r and r' may be the same).

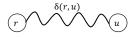
Label	Distance Entries
L(2)	(5,1) (9,2)
L(3)	(5,1)
L(4)	(1,1)
L(6)	(9,1)
L(7)	(5,2) (9,1)
L(8)	(5,1)
L(10)	(9,1)
L(11)	(1,1)
L(12)	(5,1)
L(13)	(1,1)
L(14)	(1,1)

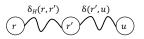
Definition (Highway Cover Labelling Problem)

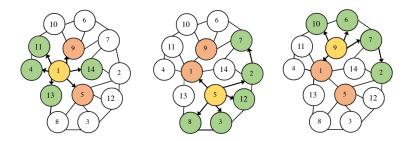
Given a graph G and a highway H over G, the highway cover labelling problem is to efficiently construct a highway cover labelling L.

Definition (Highway Cover Labelling Problem)

Given a graph G and a highway H over G, the highway cover labelling problem is to efficiently construct a highway cover labelling L.


• Some properties of labelling methods:


Methods	Ordering Dependent?	HIGHWAY COVER MINIMAL?	PARALLEL?	
HL (ours)	no	yes	landmarks	
FD [CIKM2016]	no	no	neighbours	
IS-L [VLDB2013]	yes	no	no	
PLL [SIGMOD2013]	yes	no	neighbours	
HDB [VLDB2014]	yes	no	no	
HHL [ESA2012]	yes	no	no	

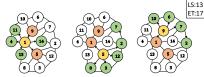

Highway Cover Labelling: Our Algorithm

• Conduct a BFS from each landmark $r \in R$

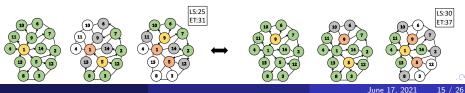
- Add a distance entry $(r, \delta(r, v))$ into the label of $v \in V \setminus R$ iff there does not exist any other landmark $r' \in R$ that appears in the shortest path between r and u.

Order Independence

Lemma


Let L_1 and L_2 be the highway cover labellings constructed by our HL Algorithm using two different labelling orders, then $L_1(v) = L_2(v)$ for every $v \in V \setminus R$.

Order Independence


Lemma

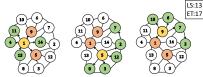
Let L_1 and L_2 be the highway cover labellings constructed by our HL Algorithm using two different labelling orders, then $L_1(v) = L_2(v)$ for every $v \in V \setminus R$.

• Highway cover Labelling (HL) algorithm (ours)

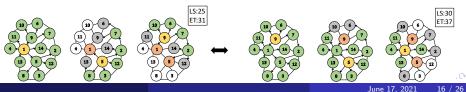
• Pruned Landmark Labelling (PLL) algorithm [SIGMOD2013]

Minimality

Theorem


The highway cover labelling L over (G, H) constructed by our algorithm is minimal, i.e., for any highway cover distance labelling L' over (G, H), $size(L') \ge size(L)$ must hold.

Minimality


Theorem

The highway cover labelling L over (G, H) constructed by our algorithm is minimal, i.e., for any highway cover distance labelling L' over (G, H), $size(L') \ge size(L)$ must hold.

• Highway cover Labelling (HL) algorithm (ours)

• Pruned Landmark Labelling (PLL) algorithm [SIGMOD2013]

• Highway cover Labelling (HL) algorithm (ours)

- Landmark Parallelism (LP):

Run parallel BFSs from multiple landmarks (depending on the number of processors) to construct labelling in an extremely efficient way for massive networks

- Pruned Landmark Labelling (PLL) algorithm [SIGMOD2013]
 - **Bit-Parallelism** (BP):

Perform BFSs from a given landmark r and up to 64 of its neighbors simultaneously, and encode the relative distances (-1, 0 or 1) of these neighbors w.r.t. the shortest paths between r and each vertex v into a 64-bit unsigned integer.

Two steps for answering $d_G(s, t)$ in a graph G:

- (1) Computing an upper bound d_{st}^{\top} of $d_G(s, t)$ using the highway cover distance labelling;
- (2) Computing $d_G(s, t)$ using a distance-bounded shortest-path search over a sparsified graph $G[V \setminus R]$.

Two steps for answering $d_G(s, t)$ in a graph G:

- (1) Computing an upper bound d_{st}^{\top} of $d_G(s, t)$ using the highway cover distance labelling;
- (2) Computing $d_G(s, t)$ using a distance-bounded shortest-path search over a sparsified graph $G[V \setminus R]$.

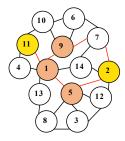
Definition

The bounded distance querying problem is to efficiently compute the shortest path distance between s and t over $G' = G[V \setminus R]$ under the upper bound d_{st}^{\top} such that,

$$d_G(s,t) = egin{cases} d_{G'}(s,t), & ext{if } d_{G'}(s,t) \leq d_{st}^ op \ d_{st}^ op, & ext{otherwise} \end{cases}$$

Computing Upper Bounds

• Find a path of the minimal length through a highway *H*:

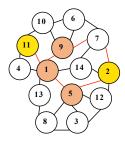

$$d_{st}^{\top} = \min_{\substack{(r_i,\delta(r_i,s)) \in \mathcal{L}(s) \\ (r_j,\delta(r_j,t)) \in \mathcal{L}(t)}} \{\delta(r_i,s) + \delta_H(r_i,r_j) + \delta(r_j,t)\}$$

Computing Upper Bounds

• Find a path of the minimal length through a highway *H*:

$$d_{st}^{\top} = \min_{\substack{(r_i,\delta(r_i,s)) \in \mathcal{L}(s) \\ (r_j,\delta(r_j,t)) \in \mathcal{L}(t)}} \{\delta(r_i,s) + \delta_H(r_i,r_j) + \delta(r_j,t)\}$$

What is d_{st}^{\top} for s=2 and t=11?


I(11)	Landmark	1
<i>L</i> (11)	Distance	1

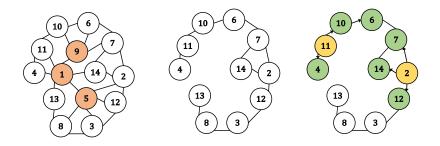
Computing Upper Bounds

• Find a path of the minimal length through a highway H:

$$d_{st}^{\top} = \min_{\substack{(r_i,\delta(r_i,s)) \in \mathcal{L}(s) \\ (r_j,\delta(r_j,t)) \in \mathcal{L}(t)}} \{\delta(r_i,s) + \delta_H(r_i,r_j) + \delta(r_j,t)\}$$

What is
$$d_{st}^{\top}$$
 for s=2 and t=11?

$$\begin{array}{c|c} L(2) & \hline Landmark & 5 & 9 \\ \hline Distance & 1 & 2 \end{array} & \bullet & 2 \rightarrow 5 \rightarrow 1 \rightarrow 11: \\ length & 3 \end{array} \\ \begin{array}{c} L(11) & \hline Landmark & 1 \\ \hline Distance & 1 \end{array} & \bullet & 2 \rightarrow 9 \rightarrow 1 \rightarrow 11: \\ length & 4 \end{array}$$


June 17, 2021

19 / 26

$$d_{st}^{\top} = 3$$

Distance Bounded Shortest Path Search

- Sparsify graph G by removing all landmarks in R, i.e. $G' = G[V \setminus R]$
- Conduct a bidirectional search on G' which is bounded by d_{st}^{\top}

 $d_G(2, 11) = 3$

Experiments

• 12 large-scale real-world networks

- Complex networks
- Undirected and unweighted graphs
- Sizes ranging from |V|=1.7M & |E|=11M to |V|=2B & |E|=8B
- Various domains: social networks, web networks, etc.

Evaluation measures

- Construction Time of Indexing (CT)
- Query Time (QT)
- Labelling Size (LS)

Distance queries

• Randomly sample 100,000 pairs of vertices from all pairs of vertices in each network

Construction Time (sec.)

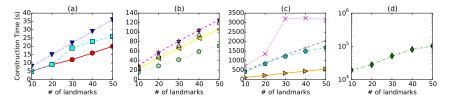
Dataset	 V 	E	HL-P (this work)	HL (this work)	FD (Hayashi+'16)	PLL (Akiba+'13)	IS-L (Fu+'13)
Skitter	1.7M	11M	2	13	30	638	1042
Flickr	1.7M	16M	2	14	41	1330	8359
Hollywood	1.1M	114M	3	17	107	31855	DNF
Orkut	3.1M	117M	10	62	366	DNF	DNF
enwiki2013	4.2M	101M	9	77	308	22080	DNF
LiveJournal	4.8M	69M	9	77	166	DNF	20583
Indochina	7.4M	194M	8	50	144	9456	DNF
it2004	41M	1.2B	66	304	1623	DNF	DNF
Twitter	42M	1.5B	133	1380	1838	DNF	DNF
Friendster	66M	1.8B	135	2229	9661	DNF	DNF
uk2007	106M	3.7B	110	1124	6201	DNF	DNF
ClueWeb09	2B	8B	4236	28124	DNF	DNF	DNF

- Much faster (may up to 70 times faster)
- Scalable (may scale to graphs with billions of vertices and edges)

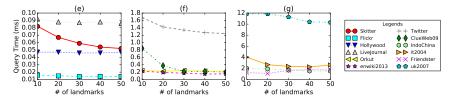
Query Time (ms)

Dataset	V	E	HL (this work)	FD (Hayashi+'16)	PLL (Akiba+'13)	IS-L (Fu+'13)
Skitter	1.7M	11M	0.067	0.043	0.008	3.556
Flickr	1.7M	16M	0.015	0.028	0.01	33.760
Hollywood	1.1M	114M	0.047	0.075	0.051	-
Orkut	3.1M	117M	0.224	0.251	-	-
enwiki2013	4.2M	101M	0.190	0.131	0.027	-
LiveJournal	4.8M	69M	0.088	0.111	-	56.847
Indochina	7.4M	194M	1.905	1.803	0.02	-
it2004	41M	1.2B	2.684	2.118	-	-
Twitter	42M	1.5B	1.424	0.432	-	-
Friendster	66M	1.8B	1.091	1.435	-	-
uk2007	106M	3.7B	11.841	18.979	-	-
ClueWeb09	2B	8B	0.309	-	-	-

• Comparable (answer queries within 1ms on a graph with 8B edges)


Labelling Size

Dataset	 V 	E	HL(8) (this work)	HL (this work)	FD (Hayashi+'16)	PLL (Akiba+'13)	IS-L (Fu+'13)
Skitter	1.7M	11M	42MB	102MB	202MB	2.5	507MB
Flickr	1.7M	16M	34MB	81MB	178MB	3.7GB	679MB
Hollywood	1.1M	114M	28MB	67MB	293MB	13GB	-
Orkut	3.1M	117M	70MB	170MB	756MB	-	-
enwiki2013	4.2M	101M	83MB	200MB	743MB	12GB	-
LiveJournal	4.8M	69M	123MB	299MB	778MB	-	3.8GB
Indochina	7.4M	194M	81MB	192MB	999MB	21GB	-
it2004	41M	1.2B	855MB	2GB	5.6GB	-	-
Twitter	42M	1.5B	1.2GB	2.8GB	4.8GB	-	-
Friendster	66M	1.8B	2.5GB	5.2GB	11.8GB	-	-
uk2007	106M	3.7B	1.8GB	4.3GB	14.1GB	-	-
ClueWeb09	2B	8B	4.7GB	9GB	-	-	-


• Much smaller (may save up to 90% of space)

Performance under varying Landmarks

Construction time using our method HL under varying landmarks

Query time using our method HL under varying landmarks

June 17, 2021

25 / 26

Main contributions

A highly scalable labelling algorithm that can scale to billion-scale graphs, which also has several nice properties:

- (1) Minimal labelling
- (2) Order independence
- (3) Parallel construction

Main contributions

A highly scalable labelling algorithm that can scale to billion-scale graphs, which also has several nice properties:

- (1) Minimal labelling
- (2) Order independence
- (3) Parallel construction

Future works

- Dynamic graphs
- Landmark selection strategies