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Abstract

The distance query problem is to find the shortest-path distance between an arbitrary
pair of vertices in a graph. It is considered as a fundamental problem in graph theory.
Despite a tremendous amount of research on the subject, there is still no satisfactory
solution that can scale to large complex networks which may have billions of vertices
and edges. Furthermore, many real-world complex networks such as social networks
and web graphs are typically dynamic, undergoing discrete changes such as edge
insertion and deletion in their topological structure over time. Thus, there is also a
pressing need to address the distance query problem on dynamic networks.

The goal of this thesis is to address the distance query problem on large static and
dynamic complex networks. Labelling-based methods are well-known for rendering
fast response time to distance queries; however, existing labelling-based methods can
only construct distance labelling for moderately large graphs with millions of vertices
and edges and cannot scale to large graphs with billions of vertices and edges due
to their prohibitively large space requirements and unbearably long pre-processing
time. This thesis proposes a scalable approach that enables fast construction of a
distance labelling of a limited size, which contains only distance information from
all vertices in a graph to some “important” vertices (not all) - called landmarks. Such
a distance labelling is considered as a partial distance labelling, in contrast to a full
distance labelling that contains distance information for all pairs of vertices in a graph.
Then, we combine a partial distance labelling that can be computed in an offline
manner with online searching to leverage the advantages from both sides - accelerat-
ing query processing through a small sized partial distance labelling that provides a
good approximation to bound online searches. The proposed method can efficiently
construct a distance labelling for a graph with billions of vertices and edges, and
enable fast distance computation, e.g. in the order of milliseconds.

Since graphs in real-world are dynamic that undergo changes such as edge in-
sertion or deletion in their topological structure, existing labelling-based methods
still greatly suffer from the drawback of scalability on dynamic graphs and they can
hardly update a distance labelling efficiently. In this thesis, we propose a fully dy-
namic method which can efficiently reflect graph changes (i.e., single edge insertions
or deletions) by dynamically maintaining a distance labelling in order to answer dis-
tance queries on dynamice graphs. At its core, our proposed method incorporates
two building blocks: (i) incremental algorithm for handling incremental update op-
erations, i.e. edge insertion, and (ii) decremental algorithm for handling decremental
update operations, i.e. edge deletion. Moreover, this thesis also introduces a batch-
dynamic method which can process batch of updates (i.e., batches of edge insertions
and deletions) efficiently to further improve the performance of answering distance

xxi
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queries on graphs that undergo rapid changes in their topological structure. The
proposed batch-dynamic method enables us to unify edge insertions and deletion,
helps us to avoid unnecessary and repeated computations, and allows us to exploit
the potential of parallelism which as a result is much more efficient than processing
graph changes separately one by one.

In this thesis, we have conducted extensive experiments on 15-17 real-world net-
works from a variety of application domains to test the scalability, efficiency, and
robustness of the proposed static and dynamic methods against existing state-of-the-
art static and dynamic methods.



Chapter 1

Introduction

A network, which is also referred to as a graph in mathematics, consists of a set
of entities, called vertices, and the relationships between those entities, called edges.
Networks are used to model real-world problems in various domains, such as trans-
portation, communication infrastructures, information flow, power grids, and social
interactions. One such problem is to find the shortest-path distance between a pair of
vertices in a graph. This is considered to be a fundamental problem in graph theory
that has been widely studied in the last several decades [Cohen et al. 2002; Madkour
et al. 2017; Akiba et al. 2012; Potamias et al. 2009].

1.1 Background

The distance query problem is, given any two vertices in a graph, to find the shortest-
path distance between these two vertices in the graph. It has a wide range of real-
world applications [Ukkonen et al. 2008; Vieira et al. 2007; Yahia et al. 2008; Freeman
1977; Sabidussi 1966; Backstrom et al. 2006; Boccaletti et al. 2006]. In web graphs, giv-
ing ranks to web pages based on their distances to a recently visited web page helps
in finding the more relevant web pages, which is referred to as context-aware web
search [Ukkonen et al. 2008; Potamias et al. 2009]. In social networks, it is used to
perform socially-sensitive search, the purpose of which is to find more relevant users
or contents on social networking sites [Vieira et al. 2007; Yahia et al. 2008]. Moreover,
shortest-path distance is also used as a key measure to solve many complicated prob-
lems such as centrality [Freeman 1977; Sabidussi 1966], similarity [Cohen et al. 2013;
Liben-Nowell and Kleinberg 2003] and community search [Backstrom et al. 2006],
which require distances to be computed for a large number of vertex pairs in order
to perform social network analysis.

The classical approach to compute the shortest-path distance between a pair of
vertices in a graph is to run an instance of the Dijkstra’s algorithm [Tarjan 1983] for
non-negative weighted graphs or breadth-first search (BFS) algorithm for unweighted
graphs. However, these algorithms are inefficient and cannot scale to graphs with
millions of vertices and edges (i.e., million-scale graphs). For such graphs, they may
take several seconds or even longer to find the shortest-path distance between a single
pair of vertices. This is not acceptable for applications such as context-aware web
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search or socially-sensitive search since they involve real-time interactions between
users and thus have low latency requirements (i.e., require distances to be provided in
the order of microseconds or milliseconds), because they need shortest-path distances
between a large fraction of vertex pairs to rank items for each search query. To
improve query response time, a well-established approach is to pre-compute and
store shortest-path distance information for all pairs of vertices in a data structure,
called distance labelling.

1.1.1 Complex Networks

There are two major classes of real-world networks that have been attracting the
interest of researchers in database community. The first one is road networks and
the other is complex networks. Research focusing on road networks has been very
successful because they often have a (hierarchical) structure which helps researchers
to easily grasp and exploit their topology [Geisberger et al. 2012; Abraham et al.
2011; Abraham et al. 2012; Goldberg and Harrelson 2005]. In [Abraham et al. 2011],
a distance query on a Western Europe road network with 18 million vertices and 22.5
million road segments takes 276 nanoseconds and on a USA road network with 24
million vertices and 29.1 million road segments can be processed in 266 nanoseconds,
on average. In contrast, answering distance queries on complex networks is still a
highly challenging problem.

Complex networks are quite prevalent in various disciplines, which are used to
model complicated connections between different real-world entities. The examples
of complex networks include social networks, World Wide Web networks, and com-
puter networks. In a social network, users are represented as the set of vertices, and
different types of relationships between users such as friendship, following, mes-
saging and endorsement are represented as the set of edges of the network. The
World Wide Web forms a complex network where web pages are the vertices, and
the hyperlinks among web pages form the edges. In a computer network, computers
are connected and communicated through routers, subnets, interfaces, and network
locations which form a complicated network infrastructure. All of these complex
networks have a non-trivial topological structure which is very difficult to grasp and
exploit. However, they all share several characteristics. One of the interesting charac-
teristics is the small-world phenomenon [Watts and Strogatz 1998], which states that
the longest distance between any pair of vertices in a small-world network is usually
a small constant. Furthermore, navigability [Kleinberg 2000] is one of the important
characteristics in small-world networks. Complex networks also share other charac-
teristics such as clustering coefficient and power-law degree distribution, which can
be useful to understand the non-trivial nature of such networks.

Answering distance queries on complex networks requires researchers to have a
good understanding of their topological structure when designing efficient methods.
Methods for road networks do not work well for complex networks because they
are designed based on different understandings in the topological structure of road
networks. Many exact and approximate methods [Abraham et al. 2012; Akiba et al.
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2013; Akiba et al. 2012; Wei 2010; Jin et al. 2012; Potamias et al. 2009; Tretyakov et al.
2011; Gubichev et al. 2010] have been proposed for complex networks, but they all
suffer from the drawback of scalability. The exact distance querying methods often
take tens to thousands of seconds to construct a distance labelling for networks with
millions of vertices and edges [Akiba et al. 2013; Wei 2010; Jin et al. 2012; Hayashi
et al. 2016; Fu et al. 2013]. The approximate methods normally loose precision for
close pairs of vertices thus cannot be considered by applications such as socially-
sensitive search or context-aware search since these applications distinguish close
objects [Akiba et al. 2012; Qiao et al. 2014]. Some of them also claim better precision
at the the cost of longer time to perform a distance query [Qiao et al. 2014; Tretyakov
et al. 2011; Gubichev et al. 2010].

1.1.2 Dynamic Networks

Networks in real-world applications are typically dynamic, undergoing discrete changes
in their topological structure by either adding or deleting edges and vertices. For ex-
ample, road networks may be dynamically changing in many real-world scenarios
such as changing traffic conditions under congestion or accidents, road construction
or signal placements. Complex networks such as social networks are also reported
to be highly dynamic [Myers and Leskovec 2014; Kumar et al. 2006; Xu et al. 2013],
thereby requiring distance information to be dynamically updated in order to per-
form social network analysis accurately i.e., to find closeness and similarity between
users and contents [Vieira et al. 2007; Yahia et al. 2008]. In social networks, new
users may sign up, existing users may leave, and links between users may change
dynamically. Similarly, communication networks may have faults being detected and
recovered, and web graphs may have invalid links or new links being added as the
web evolves. We discuss a few examples of real-world applications/scenarios in de-
tail that require shortest-path distance computation under dynamic changes below.

• In communication networks, links between network devices (e.g. routers) may
become slow or broken due to congestion of information flow over a network
or a deadly fault in a network device. Efficient maintenance of shortest paths to
reflect the underlying changes helps vendors to activate new links and preserve
the quality of their service [Boccaletti et al. 2006].

• In social networks, Twitter is highly dynamic [Myers and Leskovec 2014] –
about 9% of all connections change in a month. Users having 100 followers
on average were found to obtain 10% more new followers but lose about 3%
of existing followers in a given month. Distance information is often used to
recommend the relevant content or new connections [Yahia et al. 2008; Vieira
et al. 2007].
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1.2 Research Objectives

This thesis primarily focuses on addressing the distance query problem over net-
works that are typically large (with billions of vertices and edges), complex (with
non-trivial topological structure), and either static (with unchanged topological struc-
ture) or dynamic (with changes in their topological structure over time).

Current state-of-the-art research for answering distance queries has directed con-
siderable attention towards the development of distance labelling methods. They
capture distance information between all pairs of vertices in a graph into a distance
labelling and typically called as full distance labelling. Then, this full distance labelling
can be used to answer a distance query (i.e., find the distance between any two vertices)
in constant time by just using a pre-computed distance information in the labelling.
Although these distance labelling methods [Akiba et al. 2013; Li et al. 2019; Li et al.
2017] often provide promising query response time, they cannot scale to very large
networks due to the quadratic growth in labelling sizes, leading to very high space
requirements and unbearably long construction time. We will show in Tables 4.3 and
5.3, PLL [Akiba et al. 2013] has failed to construct distance labelling on networks
with over hundreds of millions of edges, and the parallel variant of PLL [Li et al.
2019] has failed to construct distance labelling on networks with over 1.2 billions of
edges.

Objective I - The first research objective of this thesis is to develop a scalable solution
for answering exact distance queries over billion-scale static graphs which has the
following desirable characteristics:

(1) Time efficiency: Construction time of a distance labelling is scalable with the size
of a graph. The query time remains in the order of milliseconds, even in graphs
with billions of nodes and edges.

(2) Space efficiency: Size of a distance labelling is minimized so as to reduce the
space overhead.

(3) Scalability: Construction time and labelling size is scalable to graphs with bil-
lions of vertices and edges.

When a graph dynamically changes by edge insertions and deletions, its distance
labelling needs to be changed accordingly; otherwise, distance queries may yield
underestimated or overestimated distances. Thus, after an edge is inserted into or
deleted from a graph, one could naturally consider either of the following two choices
in order to be able to answer distance queries correctly:

(1) recompute a distance labelling from scratch;

(2) conduct an online search on the changed graph.

However, both of these approaches are very inefficient. Take graphs with a couple
of millions of vertices such as Livejournal [Leskovec and Sosič 2016] and Hollywood
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Figure 1.1: Distribution of affected vertices by a single graph change in various networks,
where the results for 1000 randomly selected graph changes, containing 50% edge insertions
and 50% edge deletions are sorted in the descending order.

[Boldi and Vigna 2004] for example, distance labelling methods may require signifi-
cant amount of time, typically tens to thousands of seconds, to recompute a distance
labelling from scratch as a result of a single change. Furthermore, if only a very small
portion of a graph is affected against a change, recomputing a distance labelling from
scratch would not only waste computing resources, but also prevent the availability
of distance queries during recomputing. As shown in Figure 1.1, the percentage of
affected vertices by a single change often ranges from 10−5% to 10% in various real-
world complex networks. On the other hand, answering a distance query entirely
based on online search is often too slow to be useful in time-sensitive applications;
for example, it takes about 30 seconds on average to answer a distance query on a
Twitter network with 42 millions of vertices [Boldi and Vigna 2004].

Objective II - The second research objective of this thesis is to develop scalable and
efficient solutions that can quickly reflect dynamic changes such as edge insertions
and edge deletions in the single-update setting (i.e., one edge insertion or deletion at
a time) into graphs. The proposed solutions should be able to answer exact distance
queries efficiently and accurately on dynamic graphs and must have the following
desirable characteristics:

– Fully dynamics: handle both types of changes i.e., edge/node insertion and
deletion on a dynamic graph.

– Time efficiency: answer exact distance queries and update distance labelling as
a result of changes on a dynamic graph efficiently i.e., in the order of millisec-
onds.

– Space efficiency: guarantee the minimum size of a distance labelling under dy-
namic changes to reduce storage space.
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– Scalability: scale to very large networks with billions of vertices and edges with-
out compromising query and update performance.

Objective III - The third research objective of this thesis is to develop an efficient
yet scalable method to process edge insertions and deletions in the batch-update
setting (i.e., multiple edge insertions or deletions together in a batch). The proposed
solution must also possess the aforementioned characteristics. We aim to explore
the following research questions that are critical in designing such a batch-dynamic
method to answer exact distance queries efficiently and accurately:

– Is it possible to design batch-dynamic algorithms for distance queries, which
can efficiently reflect batch updates on graphs?

– Can such batch-dynamic algorithms offer significant performance gains in com-
parison with state-of-the-art algorithms in the single-update setting?

– Can we parallelize such batch-dynamic algorithms to further boost perfor-
mance in a parallel setting, whenever parallel computing resources are avail-
able?

1.3 Research Challenges

Recent research [Hayashi et al. 2016; Li et al. 2017; Li et al. 2019] has shown that the
labelling based methods are the fastest methods for answering exact distance queries
on million-scale graphs. However, they cannot scale to large graphs with billions
of vertices and edges (i.e., billion-scale graphs) due to quadratic space requirements
and unbearably long labelling construction time. Thus, the question is still open
as to how scalable solutions to answer exact distance queries in billion-scale graphs
can be developed. Essentially, there are three computational factors to be considered
concerning the performance of algorithms for answering distance queries: labelling
construction time, labelling size, and querying time. A plethora of existing work
[Abraham et al. 2011; Abraham et al. 2012; Akiba et al. 2013; Akiba et al. 2012; Wei
2010; Hayashi et al. 2016; Tretyakov et al. 2011; Potamias et al. 2009; Fu et al. 2013;
Jin et al. 2012; Qiao et al. 2014; Gubichev et al. 2010; Li et al. 2017; Chang et al. 2012;
Delling et al. 2014] has focused on exploring trade-offs among these computational
factors for a distance labelling that can be constructed using a variety of different
properties such as 2-hop cover property [Cohen et al. 2002; Akiba et al. 2013], tree-
width decomposition [Wei 2010; Akiba et al. 2012], or highway based property [Jin
et al. 2012; Akiba et al. 2014]. Despite extensive efforts in addressing the shortest-
path distance query problem for many years, there is still a high demand for scalable
solutions that can be used to support analysis tasks over large and ever-growing
networks.

Previously, the primary focus of these studies is to answer distance queries on
static graphs, with limited attention being paid to dynamics on graphs. It has been
reported [Akiba et al. 2014; D’angelo et al. 2019] that designing a fully dynamic
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method for answering distance queries is very challenging. The difficulty of updating
a distance labelling lies in two aspects:

(1) When adding an edge into a graph, outdated and redundant entries of distance
labelling may occur. Although outdated and redundant entries do not affect
the correctness of distance query answering, they would deteriorate the query
performance over time. However, identifying and removing such entries is
known to be a complicated task [Akiba et al. 2014].

(2) When deleting an edge from a graph, outdated distance entries have to be
removed; otherwise distance queries cannot be correctly answered. Hence,
entries of distance labelling being affected must be accurately identified and
repaired with new distances. However, finding the new distances between af-
fected vertices is computationally expensive and indeed much more challeng-
ing than the case of adding an edge into a graph [Qin et al. 2017; Akiba et al.
2014; D’angelo et al. 2019].

Both aspects, in a nutshell, require us to pinpoint affected vertices so as to update
their labels efficiently. Moreover, although query time and update time are both
critical for answering distance queries on dynamic graphs, it is not easy, if not im-
possible, to design a solution that is efficient in both. This requires us to find new
insights into dynamic properties of a distance labelling, as well as a good trade-off
between query time and update time. Last but not least, scaling distance queries to
dynamic graphs with billions of nodes and edges is hard. Previous work [Akiba et al.
2014; Qin et al. 2017; Hayashi et al. 2016; D’angelo et al. 2019] has mostly considered
2-hop distance labelling [Cohen et al. 2002], which has quadratic space requirements
and unbearably long labelling construction time; as a result, their query and update
performance is dramatically degraded on large-scale dynamic graphs. Ideally, the
labelling size of a graph should be much smaller than its original size. This is impor-
tant for achieving efficiency in updating a distance labelling on large dynamic graphs
because of its small size. However, the state-of-the-art distance labelling method, i.e.
pruned landmark labelling method (PLL) [Akiba et al. 2013], still yields a distance
labelling whose size is several orders of magnitude larger than the original size of a
dataset. Furthermore, distance labelling methods for dynamic graphs [Akiba et al.
2014; D’angelo et al. 2019; Qin et al. 2017] cannot perform updates efficiently be-
cause they update a distance labelling of very large size and require much more
complicated analyses to reflect graph changes into a distance labelling that captures
distance information of all pairs of vertices in a graph.

Up to now, several distance labelling methods for distance queries on dynamic
graphs have been studied in the single-update setting, which handles one single up-
date (e.g., edge insertion or edge deletion) at a time [Akiba et al. 2014; D’angelo et al.
2019; Qin et al. 2017; Hayashi et al. 2016]. Due to the rapid nature of data acquisi-
tion, it is often unrealistic to process graph changes sequentially in the single-update
setting. Rather, updates may be aggregated in batches, and reflected into graphs in a
batch-update setting [Dhulipala et al. 2020], i.e., process all the updates in a batch to-
gether. However, the batch-update setting poses significant challenges on algorithm
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design due to the combinatorial explosion of different interactions possibly occur-
ring among updates. Very recently, several batch-dynamic algorithms have been
reported, mostly focusing on traditional graph problems such as graph connectivity
[Acar et al. 2019], dynamic trees [Acar et al. 2020] and k-clique counting [Dhulipala
et al. 2020]. As of yet, batch-dynamic algorithms for shortest-path distance have been
left unexplored, despite the fact that computing the distance between an arbitrary
pair of vertices (i.e., distance queries) is a fundamental problem in many real-world
applications.

1.4 Contributions

Traditional distance labelling methods pre-compute a full distance labelling and are
the fastest known methods for the distance query problem. However, as we have dis-
cussed before, they significantly suffer from the drawbacks of: (1) scalability when
an input graph is large, and (2) efficiency when the underlying structure of an input
graph is dynamic. To address these limitations, this thesis aims to develop distance
labelling methods that pre-compute a partial distance labelling rather than a full dis-
tance labelling, which only capture the distance information of some essential pairs
of vertices (e.g., the distance between a vertex and a landmark or between two land-
marks) in a graph. Such a partial distance labelling then can be combined with an
online search to answer exact distance queries.

1.4.1 Highway Cover Labelling For Distance Queries

We develop a scalable solution for answering exact distance queries to accomplish the
first objective. Our solution is based on two ingredients: (i) a scalable algorithm for
constructing a partial distance labelling, and (ii) a querying framework that supports
fast distance-bounded shortest-path search on a sparsified graph. More specifically,
we first develop a novel labelling construction algorithm that can scale to graphs at
the billion-scale. We observed that, for a given number of landmarks, the distance
entries from these landmarks to other vertices in a graph can be further minimized
if the definition of 2-hop cover distance labelling is relaxed. Thus, we formulate a
relaxed notion for labelling, called the highway cover distance labelling, and develop
a simple yet scalable labelling algorithm that adds a significantly small number of
distance entries into the label of each vertex. We prove that a distance labelling
constructed by our labelling algorithm is minimal, and also experimentally verify
that the construction process is scalable in Chapter 4.

Then, we formalize a querying framework for exact distance queries, which
combines our proposed highway cover distance labelling with distance-bounded
shortest-path searches to enable fast distance computation. This querying frame-
work is capable of balancing the trade-off between construction time, index size and
query time through an offline component (i.e. the proposed highway cover distance
labelling) and an online component (i.e. distance-bounded searches). The basic idea
is to select a small number of highly central landmarks that allow us to efficiently
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compute the upper bounds of distances between all pairs of vertices using an offline
distance labelling, and then conduct a distance-bounded search over a sparsified
graph to find distances efficiently. We present experiments in Chapter 4 which show
that the query time of distance queries within this framework is still in milliseconds
for large graphs with billions of vertices and edges.

1.4.2 Fully Dynamic Labelling For Distance Queries

We choose to design our dynamic algorithms based on the highway cover distance la-
belling approach that is introduced in Chapter 4, rather than a full distance labelling
[Akiba et al. 2013]. Previous distance labelling methods such as pruned landmark
labelling (PLL) [Akiba et al. 2013] can efficiently answer distance queries using a
full distance labelling; however, their labelling size grows quadratically with the size
of a graph and the computational cost of updating such a labelling to reflect rapid
changes is often unbearably high. Hence, we choose to combine offline labelling
and online searching so as to leverage the advantages from both sides - accelerating
query processing through a partial distance labelling that is of limited size but pro-
vides a good approximation to bound online searches. This brings two significant
computational benefits: (i) labelling construction can scale to very large graphs; (ii)
labelling maintenance can be efficiently handled on dynamic graphs.

To deal with the second objective, we develop an efficient method that consider
the single-update setting for updates occurring on dynamic graphs. That is, it pro-
cesses each update either an edge insertion or deletion individually i.e., one by one.
Our proposed fully dynamic method efficiently updates a partial distance labelling
to answer distance queries over large dynamic graphs. At its core, our proposed
method incorporates two building blocks: (i) incremental algorithm for handling in-
cremental update operations, i.e. edge insertion, and (ii) decremental algorithm for
handling decremental update operations, i.e. edge deletion. These two building
blocks are built in the highly scalable framework of distance query answering in-
troduced in Chapter 4. To the best of our knowledge, our method is the first fully
dynamic method that can scale to graphs with billions of vertices and edges, without
compromising performance on query time and labelling size.

1.4.3 Batch-Dynamic Labelling For Distance Queries

Similarly, we choose to develop our batch-dynamic method based on the highway
cover labelling approach presented in Chapter 4 due to the same reason as mentioned
in the second contribution. To deal with the third objective, we propose a robust
method that processes multiple updates in the batch-update setting to achieve better
efficiency for performing both updates and distance queries in a way that reflects
batch updates on a graph. Our propose batch-dynamic method, called BatchHL, dy-
namizes a highway cover distance labelling efficiently in order to reflect large batches
of updates on a graph. BatchHL consists of two phases: (1) Batch search which finds
vertices whose labels are affected by batch updates; (2) Batch repair which repairs the
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labels of affected vertices to ensure correctness and minimality of labelling. To the
best of our knowledge, this is the first study to develop a batch-dynamic solution for
answering distance queries on large-scale graphs which has the following benefits:

– Unifying edge insertion and deletion: We explore the core properties shared by
edge insertion and edge deletion in a batch. Based on this, we unearth an
elegant pattern that unifies these two fundamental kinds of graph updates.

– Avoiding unnecessary and repeated computation: We analyse how updates interact
with each other, and based on that, design pruning rules to reduce search and
repair spaces so as to leverage the computational efficiency of batch updates.

– Exploiting the potential of parallelism: We parallelize batch search and batch repair
in a simple but easy-to-implement way to speedup the performance.

1.5 Outline

The rest of this thesis is organised as follows. In Chapter 2, we present the notations
and definitions used in this thesis. In Chapter 3, we provide a comprehensive lit-
erature review of the related work studied in this thesis by outlining the strengths
and weaknesses of the existing approaches. In Chapter 4, we study the problem of
answering exact distance queries on static networks. In Chapter 5, we study the prob-
lem of answering exact distance queries on dynamic networks in the single-update
setting. In Chapter 6, we study the problem of answering distance queries on dy-
namic networks in the batch-update setting. In Chapter 7, we discuss extensions. We
finally conclude the thesis and discuss future research opportunities in Chapter 8.

For each of Chapters 4, 5 and 6, we start with an overview of the specific problem
studied in the chapter. We then propose the models and the algorithms for solving
the problem. We finish each chapter by presenting our experimental results and a
summary of the chapter.



Chapter 2

Preliminaries

This chapter presents the basic definitions and notations to be used throughout the
thesis. Table 2 summarises the frequently used notations.

In this thesis, we model a network as a graph G = (V, E), where V is a set of
vertices and E ⊆ V ×V is a set of edges representing relationships between vertices.
We have n = |V| and m = |E|. Without loss of generality, we assume that the graph
G is an undirected and unweighted. We denote by N(v) the set of neighbors of vertex
v ∈ V, i.e. N(v) = {u ∈ V | (u, v) ∈ E}. We use PG(u, v) to denote the set of all
shortest paths between u and v in G. Given a subset of vertices V ′ ⊆ V, the induced
graph of V ′, denoted by G[V ′], is a subgraph of G whose vertex set is V ′ and whose
edge set consists of all of the edges in E that have both endpoints in V ′.

The distance between two vertices s and t in G, denoted as dG(s, t), is the length
of a shortest-path from s to t. We consider dG(s, t) = ∞, if there does not exist a path
from s to t.

Fact 1. For any three vertices s, u, t ∈ V, the following triangle inequalities are satisfied:

dG(s, t) ≤ dG(s, u) + dG(u, t) (2.1)

dG(s, t) ≥ |dG(s, u)− dG(u, t)| (2.2)

If u ∈ PG(s, t), then dG(s, t) = dG(s, u) + dG(u, t) holds.

Given a special subset of vertices R ⊆ V of G, so-called landmarks, a label L(v)
for each vertex v ∈ V is a set of distance entries {(ri, δL(ri, v))}|R|i=1 where ri ∈ R,
δL(ri, v) = dG(ri, v). We call (ri, δL(ri, v)) the ri-label of vertex v. The set of labels for
all vertices in V, i.e., {L(v)}v∈V , form a distance labelling over G. The size of a distance
labelling is defined as ∑v∈V |L(v)|.

In the literature, a distance labelling is often constructed following the 2-hop
cover property [Cohen et al. 2002] which requires at least one vertex (w, δL(r, w)) ∈
L(u) ∩ L(v) to be on a shortest-path between u and v.

Definition 1 (2-hop Cover Labelling). A distance labelling L over a graph G = (V, E) is

11
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a 2-hop cover labelling if the following holds for any two vertices u, v ∈ V:

dG(u, v) = min{δL(ri, u) + δL(rj, v) | (ri, δL(ri, u)) ∈ L(u),

(rj, δL(rj, v)) ∈ L(v)} (2.3)

Thus, for any two vertices u, v ∈ V, an exact distance query can be answered
by only looking up the labels of u and v in a 2-hop cover labelling. We define
Q(s, t, L) = ∞, if L(s) and L(t) do not share any landmark. If Q(s, t, L) = dG(s, t)
holds for any two vertices s and t of G, L is called a 2-hop cover distance labelling over G
[Cohen et al. 2002; Abraham et al. 2012]. Given a graph G, the complexity of finding
a minimal 2-hop cover labelling of G is known to be NP-hard [Cohen et al. 2002].

We consider two fundamental types of updates on graphs, edge insertion and edge
deletion. Given a graph G = (V, E), an edge insertion is to add an edge (a, b) into G
where {a, b} ⊆ V and (a, b) /∈ E. Conversely, an edge deletion is to delete an edge
(a, b) from G where (a, b) ∈ E. We define two settings to reflect such updates on
graphs, unit update setting and batch update setting.

– In the unit update setting, a sequence of edge insertions and deletions are pro-
cessed one by one. In this setting, we consider vertex insertion and vertex dele-
tion as a sequence of edge insertions and edge deletions, respectively. When
inserting a new vertex, we first create an isolated vertex and then insert edges
incident to it, and vice versa for deleting a vertex.

– In the batch update setting a sequence of edge insertions and deletions are pro-
cessed altogether. In this setting, we consider node insertion or deletion as a
batch update containing only edge insertions or only edge deletions, respec-
tively.

In the case that the same edge is being inserted and deleted within one batch
update, we simply eliminate both of them. An update is valid if it makes a change
on a graph, i.e., inserting an edge (a, b) into G when (a, b) /∈ E, and deleting an
edge (a, b) from G when (a, b) ∈ E. We ignore invalid updates. We use G ↪→ G′

to explicitly indicate that a graph G is changed to a graph G′ by a unit update or a
batch update.

The following facts are important for designing dynamic algorithms. They state
that an edge insertion may decrease distances between vertices, and conversely an
edge deletion may increase distances between vertices.

Fact 2. Let G′ = (V, E ∪ {(u, v)}) be the graph after inserting an edge (u, v) into G =
(V, E). Then for any two vertices s, t ∈ V, dG(s, t) ≥ dG′(s, t).

Fact 3. Let G′ = (V, E ∪ {(u, v)}) be the graph after deleting an edge (u, v) from G =
(V, E). Then for any two vertices s, t ∈ V, dG(s, t) ≤ dG′(s, t).
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Table 2.1: Summary of notations.
Notation Description

G = (V, E) A graph G with the set of vertices V and edges E
n Number of vertices in a graph G = (V, E)
m Number of edges in a graph G = (V, E)
R A subset of vertices, also called landmarks
L A distance labelling

L(v) Label of a vertex v
H A highway

Γ = (H, L) A highway cover labelling
Pst Set of vertices in a shortest-path between s and t

NG(v) Set of vertices adjacent to v in a graph G
dG(u, v) Length of a shortest-path between u and v in a graph G
d∗G′(r, v) Contingent distance i.e., the minimum distance through unaffected

neighbors of v to landmark r
PG(u, v) Set of all shortest paths between u and v in a graph G
δH(u, v) Highway distance between u and v
δL(u, v) Labelling distance between u and v

δBFS(u, v) BFS distance between u and v
G ↪→ G′ A graph G is changed to a graph G′ by an edge insertion or an edge

deletion
G[V ′] An induced subgraph with vertex set V ′ and edge set with end-

points in V ′

G[V\R] A sparsified graph after removing R from G
d>uv An upper distance bound between s and t

Q(u, v, Γ) An exact query between two vertices u and v using highway cover
labelling Γ

Λr Set of affected vertices w.r.t. a landmark r ∈ R
Vaff Set of composite-path affected (CP-affected) vertices w.r.t. a land-

mark r ∈ R
Vaff+ Set of landmark-distance affected (LD-affected) vertices w.r.t. a

landmark r ∈ R
B A batch update
N Length of a path p
B Deletion flag, True iff a path p passes through a deleted edge, oth-

erwise False
⊕ Append operator to update the landmark length of a path

dbou(v, S) Distance bound of a vertex v w.r.t. a set S
dL

bou
(v, S) Landmark distance bound of a vertex v w.r.t. a set S
|S| Number of elements in a set S
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Chapter 3

Literature Review

This chapter provides the background and related work on the distance query prob-
lem. Specifically, this chapter discusses different types of methods, i.e., search-based
methods, labelling-based methods, and hybrid methods, which have been developed
in the literature for distance computation over static and dynamic complex networks.

3.1 Answering Distance Queries on Static Graphs

We first review the work related to static graphs whose topological structure remains
unchanged over time.

3.1.1 Search-based Methods

A traditional approach for exact shortest-path distance computation is to run the
Dijkstra’s search for non-negative weighted graphs in O(|E| + |V|log|V|) time or
breadth-first search (BFS) for unweighted graphs in O(E), from a source vertex to a
destination vertex [Tarjan 1983]. To improve search efficiency, a bidirectional scheme
can be used to run two such searches: one from the source vertex and the other
from the destination vertex [Pohl 1969]. However, these traditional approaches fail to
achieve desired response time performance required by many real-world applications
that operate on increasingly large graphs.

Generally, two types of methods have been proposed in the literature which can
improve the distance query response time tremendously i.e., labelling-based methods
and hybrid methods. In the following we discuss them in detail.

3.1.2 Labelling-based Methods

Labelling-based methods have emerged as an attractive way of accelerating response
time to distance queries [Cohen et al. 2002; Chang et al. 2012; Abraham et al. 2012; Jin
et al. 2012; Fu et al. 2013; Akiba et al. 2013; Wei 2010; Farhan et al. 2019; Chang et al.
2012; Abraham et al. 2011]. Most of these methods constructed a labelling based
on the 2-hop cover property [Cohen et al. 2002]. The 2-hop cover framework was
proposed by Cohen et al. [Cohen et al. 2002] for the purpose of computing a distance
labelling over a graph in order to answer distance queries efficiently. For each vertex

15
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v, it stores a list of intermediate vertices u in Lout(v) that can be reached by v along
with their shortest-path distances, and a list of vertices u in Lin(v) that can reach v
along with their distances. The size of labelling is determined by the total number of
intermediate vertices stored in the label(s) of each vertex. Then to answer a distance
query for a pair of vertices s and t, we only need to check vertices u ∈ Lout(s)∩ Lin(t)
and pick one minimizing dG(s, u) + dG(u, t) because the labels obey the 2-hop cover
property. This property requires that for any two vertices s and t, there must exist at
least one vertex in Lout(s) ∩ Lin(t) on one shortest-path from s to t. It has also been
shown that computing a minimal 2-hop cover labelling is NP-hard [Abraham et al.
2012; Cohen et al. 2002].

Generally, the labelling-based methods can be categorized into two classes based
on different types of networks such as complex networks and road networks which
we discuss in detail in the following.

A tremendous amount of research focusing on labelling-based methods [Cohen
et al. 2002; Chang et al. 2012; Abraham et al. 2012; Fu et al. 2013; Akiba et al. 2013;
Wei 2010; Chang et al. 2012; Potamias et al. 2009; Tretyakov et al. 2011; Gubichev et al.
2010; Li et al. 2019] has been conducted for shortest-path distance computation on
complex networks. In [Cohen et al. 2002], Cohen et al. proposed an algorithm which
can compute a 2-hop cover labelling in O(n4) with size no larger than the minimum
possible size of a 2-hop cover labelling and whose average label size is within a factor
of O(logn). However, the labelling construction time of this algorithm is very high in
practice thus making it limited to small-size networks with only thousands of vertices
and edges. Cheng and Yu [Cheng and Yu 2009] proposed a heuristic-based algorithm
to construct a 2-hop distance labelling on directed graphs. Their method used the
property of strongly connected components to exploit graph partitioning techniques.
However, such a graph partitioning process introduces high computational time cost
because it has to find vertex separators recursively. Furthermore, their method is
limited to handle only directed graphs.

Tree decomposition based approaches [Wei 2010; Akiba et al. 2012] have also been
studied for answering distance queries on graphs. Wei [Wei 2010] proposed an index
for shortest-path query answering, called TEDI, which heuristically decomposes a
graph into a tree through tree decomposition. Given a graph G, a tree decompo-
sition of G yields a tree T in which each vertex is associated with a set of vertices
in the graph G (also called a bag [Robertson and Seymour 1984]). The shortest-path
distances between all pairs of vertices in the same bag are pre-computed and stored
in the corresponding bags. Then, given a distance query, a bottom-up operation
along the tree T can be carried out to answer the distance query. Further, Akiba
et al. [Akiba et al. 2012] proposed an improved TEDI index that exploits a core-
fringe structure in a graph. However, due to the presence of core-fringe structure in
complex networks [Callaway et al. 2000; Newman et al. 2001], these methods may
produce bags of large sizes in a decomposed tree and computing pairwise distances
of vertices in these large bags can require long pre-processing time and huge storage
space, making it impractical on large graphs. Moreover, the decomposition time of
a large graph is very costly and only small-sized graphs can be processed within a
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reasonable amount of time.
Hierarchical hub-labelling (HHL) was proposed by Abraham et al. [Abraham

et al. 2012], which is based on a partial order of vertices. In their method, they use a
top-down approach to compute a partial order of vertices that can produce a small
sized HHL. However, their method is not scalable to handle large graphs due to very
high storage and computation requirements for finding a partial order of vertices.
Another method called Highway Centric labelling (HCL) was proposed by Jin et al.
[Jin et al. 2012], which exploits highway structure of a graph by finding a spanning
tree that can be used as a highway to efficiently compute 2-hop distance labelling for
fast distance computation.

Fu et al. proposed IS-Label [Fu et al. 2013] which gained a significant scalability
in precomputing a 2-hop cover distance labelling for large graphs in a memory-
constrained environment. IS-Label uses the notion of an independent set of vertices
in a graph. Their method preprocesses a graph to efficiently compute a distance la-
belling. It recursively computes independent sets of vertices and augments edges by
removing these sets to preserve the distance information. Akiba et al. proposed the
pruned landmark labelling (PLL) [Akiba et al. 2013] to pre-compute a 2-hop distance
labelling by performing a pruned breadth-first search from every vertex. The idea
is to prune vertices whose distance information can be obtained using the partially
available 2-hop distance labelling constructed via previous breadth-first searches.
This work helps to achieve low construction cost and small labelling size on million-
scale networks and serves as the state-of-the-art labelling-based method for distance
queries. Recently, Li et al. [Li et al. 2019] developed a parallel method called parallel
shortest distance labelling (PSL) for constructing PLL in parallel to increase scalabil-
ity for answering distance queries on graphs with billions of edges. Apart from these
2-hop distance labelling techniques, a multi-hop distance labelling approach has also
been studied in [Chang et al. 2012], which reduces the size of labelling at the cost of
increased response time.

Furthermore, many labelling-based approximation methods [Potamias et al. 2009;
Tretyakov et al. 2011; Qiao et al. 2014; Gubichev et al. 2010; Das Sarma et al. 2010]
have also been studied to enhance scalability at the cost of loosing accuracy. The
general idea is to select a small set of landmarks R and pre-compute the shortest-
path distances from each landmark r ∈ R to all other vertices v ∈ V in a graph. Then
to answer the distance between a pair of vertices (s, t), they return minr∈R{δ(s, r) +
δ(r, t)} as the distance estimation. The quality of a distance query depends upon the
presence of landmarks on the shortest-paths between query pairs. In [Potamias et al.
2009], Potamias et al. attempted to find a minimum number of landmarks such that
for any pair of vertices (s, t) in G, there exists at least one landmark on a shortest-path
from s to t. They call it the Landmark-Cover problem which guarantees the exact
distance against a query search. Further, they show that this problem is NP-hard
and can be solved by a set-cover framework. Motivated by this, they then studied
different heuristics in order to select highly central landmarks and verified that these
heuristics provide better estimation accuracy in comparison with basic landmark
selection proxies such as selecting landmarks randomly and based on highest degree.
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These methods can answer distance queries efficiently but it is reported that they
do not have a high precision for close pairs of vertices [Tretyakov et al. 2011; Qiao
et al. 2014] which might be critical for applications such as socially sensitive search
or context-aware web search since these applications distinguish close objects using
distance queries.

Other labelling-based approximation methods include distance-sketch [Das Sarma
et al. 2010], a distance oracle which can provide fairly accurate estimation on real-
world web graphs. Gubichev et al. [Gubichev et al. 2010] proposed a path-sketch, a
distance oracle which not only discovers distances but also discovers shortest paths
in large graphs [Gubichev et al. 2010]. They observed that the average path lengths
in complex (small-world) networks are usually small enough to be considered as al-
most constant and therefore store shortest path information in addition to a distance
labelling. In their method, they introduced several techniques, such as cycle elimina-
tion and tree-based search, in order to improve the distance query accuracy. Later on,
many researchers focused on improving the accuracy of distance query estimation
[Tretyakov et al. 2011; Qiao et al. 2014]. Tretyakov et al. [Tretyakov et al. 2011], by
following the same line of thoughts further attempted to improve the accuracy and
proposed a method which by using highly central landmarks computes a path-sketch
for large networks. In order to approximate the distance between any two vertices,
this method extracts all the shortest-paths from a path-sketch, i.e., from query ver-
tices to all the landmarks and improves the answer by finding loops and shortcuts
during BFS traversal on an extracted subgraph. Although these methods significantly
improve the accuracy but they are slower up to three orders of magnitude than other
methods [Potamias et al. 2009; Vieira et al. 2007].

Labelling based methods for road networks have also been studied with great
success. Abraham et al. [Abraham et al. 2010] has discovered that several of the
fastest distance computation algorithms for road networks [Geisberger et al. 2008;
Sanders and Schultes 2005; Bast et al. 2007; Bauer et al. 2010] perform well on graphs
with small highway dimension. A graph has small highway dimension if for every r > 0,
there is a sparse set of vertices Sr such that every shortest-path of length greater than
r includes a vertex from Sr [Abraham et al. 2010]. A set is sparse if every ball of
radius O(r) contains a small number of elements of Sr. Further, they demonstrated
that the method with the best time bound for distance computation on road networks
is a 2-hop cover based labelling algorithm. In [Abraham et al. 2011], they proposed
a hub-based labelling algorithm which heuristically constructs a distance labelling
on large road networks by processing contraction hierarchies. Contraction hierarchy
algorithm proposed in [Geisberger et al. 2008] defines a total order among vertices
as a vertex hierarchy by assigning each vertex v a rank r(v) using some predefined
criteria and then applies a shortcut operation to each vertex in this order. When
preprocessing a vertex v, the shortcut operation temporarily removes v from the
graph and adds shortcut edges between its neighbors to preserve the shortest-path
distances. The output of contraction hierarchy algorithm is a graph G+ = (V, E∪ E+)
(where E+ is the set of shortcut edges added) and the order in which vertices were
preprocessed. During a label generation process, for a given vertex v, hub-based
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labelling algorithm [Abraham et al. 2011] runs a forward contraction hierarchy search
and a backward contraction hierarchy search on G+ from v and adds visited vertices
in L f (v) and Lb(v), respectively. Then, given any two vertices s and t, the intersection
of L f (s) and Lb(t) contains the maximum-rank vertex u on a shortest-path between
s and t, and δ(s, u) + δ(u, t) will be the shortest-path distance from s to t. Further, it
reduces the size of labels by removing vertices w from L f (v) and Lb(v) if δ(v, w) >
dG(v, w). More precisely, if a vertex u ∈ L f (s) ∩ Lb(t) with δ(s, u) = dG(s, u) and
δ(u, t) = dG(u, t), u will not be removed. The quality of the labelling depends on the
vertex order for contraction hierarchy.

Another method called pruned highway labelling was proposed by Akiba et al.
[Akiba et al. 2014]. This method aims to encode more information in each label,
i.e., store distances to paths instead of hubs in the labels for each vertex. It first
decomposes a road network into disjoint shortest paths and then computes a label
for each vertex v, which contains the distance from v to vertices in a small subset of
the computed paths. Using these labels, a distance query dG(s, t) can be answered
by hopping from s to a path starting from a vertex u ∈ L(s) ∩ L(t) and then hopping
from the path to t. Very recently, Dian et al. [Ouyang et al. 2018] proposed Hierarchical
2-Hop Index (H2H-Index) which has shown to outperform previous state-of-the-art
methods, hub labelling method and pruned highway labelling method. The general
idea of this method is to design a label for each vertex as well as a hierarchy among all
vertices in a road network. Then, it answers a shortest distance query dG(s, t) without
exploiting all vertices in the labels of s and t, and only visit a subset of vertices in the
labels of s and t attentively with the help of the vertex hierarchy. Intuitively, when
the distance between s and t is small which can be achieved with the assistance of
a vertex hierarchy, only a small subset of vertices in the labels of s and t need to be
visited and thus resulting in faster query processing time.

3.1.3 Hybrid Methods

Goldberg et al. [Goldberg and Harrelson 2005] combined the bidirectional A* search
algorithm with labelling techniques to improve the search performance. In their
method, they pre-compute labelling based on landmarks to estimate the lower bounds,
and used that estimate with a bidirectional A* search for efficient computation of
shortest-path distances. However, this method is known to work only for road net-
works and does not scale well on complex networks.

IS-Label (IS-L) method discussed in Section 3.1.2 is generally regarded as a hy-
brid method which computes a partial distance labelling rather than a full distance
labelling to have a good trade-off between three main computational factors dis-
cussed in Chapter 1. It combines a partial distance labelling with graph traversal to
answer distance queries. Following the same line of thought, very recently, Hayashi
et al. [Hayashi et al. 2016] proposed a fully dynamic (FD) method to accelerate
shortest-path distance computation on million-scale complex networks. This work
is most closely related to our work that is presented in Chapter 4. The key idea of
the method in [Hayashi et al. 2016] is to select a small set of landmarks R and then
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pre-computes shortest-path trees (SPTs) rooted at each r ∈ R. Given any two vertices
s and t, it first computes the upper bound by taking the minimum length among the
paths that pass through R. Then a bidirectional BFS between s and t is conducted
on a graph G[V\R] to compute the shortest-path distances that do not pass through
any landmark in R and take the minimum of these two results as the answer to
an exact distance query between s and t. The experiments in [Hayashi et al. 2016]
showed that this method can scale to graphs with millions of vertices and billions
of edges, and outperforms the state-of-the-art exact methods PLL [Akiba et al. 2013],
HDB [Jiang et al. 2014], RXL and CRXL [Delling et al. 2014] with significantly re-
duced construction time and labelling size, while the query times are higher but still
remain acceptable.

Although the method proposed in [Hayashi et al. 2016] has been tested on a large
network with millions of vertices and billions of edges, it still fails to construct la-
belling for billion-scale networks in general, particularly with billions of vertices. In
contrast, the method we propose in Chapter 4 cannot only construct a distance la-
belling linearly with a set of landmarks in graphs with billions of vertices and edges,
but also enable the size of a distance labelling to be significantly smaller than the
original size of a graph. In addition to these, the deterministic nature of the distance
labelling presented in Chapter 4 allows us to achieve further gains in computational
efficiency using parallel BFSs w.r.t. multiple landmarks, which is highly scalable for
handling billion-scale networks.

3.2 Answering Distance Queries on Dynamic Graphs

Now we review the work related to dynamic graphs that undergo discrete changes
such as edge insertion and edge deletion in their topological structure over time.

3.2.1 Labelling-based Methods

A few attempts have been made to study distance queries over dynamic complex
networks [Akiba et al. 2014; Qin et al. 2017; Hayashi et al. 2016; D’angelo et al. 2019;
Ouyang et al. 2020], which are mostly based on the idea of dynamically maintain-
ing a 2-hop cover labelling or its variants. To reflect graph changes, Akiba et al.
[Akiba et al. 2014] studied the problem of updating pruned landmark labelling for
incremental updates (i.e. vertex additions and edge additions). This work however
does not remove outdated and redundant distance entries from the labels of affected
vertices because the authors considered that detecting such entries is too costly. This
inevitably breaks the minimality of pruned landmark labelling, leading to an ever
increase in the size of a distance labelling, and deteriorates query performance over
time. Qin et al. [Qin et al. 2017] and D’angelo et al. [D’angelo et al. 2019] studied the
problem of updating a pruned landmark labelling for decremental updates (i.e. edge
deletions). These methods can only scale to graphs with a few millions of nodes due
to their high time complexities. Their experiments [Qin et al. 2017; D’angelo et al.
2019] showed that the average update time of an edge deletion on a graph with 19
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millions of edges is 135 seconds in [Qin et al. 2017] and on a graph with 16 millions of
edges is 19 seconds in [D’angelo et al. 2019], which are significantly inefficient. In the
work by D’angelo et al. [D’angelo et al. 2019], they combined the algorithm for in-
cremental updates proposed in [Akiba et al. 2014] with their method for decremental
updates to form a fully dynamic algorithm. Nevertheless, this fully dynamic algo-
rithm can only be applied to networks with around 20 millions of edges. A recent
method by D’Emidio et al. [D’Emidio 2020] claims an improvement over the method
proposed in [D’angelo et al. 2019] for decremental updates. However, this method is
limited to graphs with few millions of nodes and updates labelling in the order of
seconds. Nonetheless, all of these methods only considered the unit-update setting
i.e., to perform updates one at a time. Very recently, Zhang et al. [Zhang et al. 2021]
has also attempted to extend a recent parallel method (PSL) for constructing PLL [Li
et al. 2019] to dynamic graphs for fast distance computation which unfortunately can
only accommodate million-scale graphs.

Alternatively, methods for maintaining all-pair shortest paths (APSP) have been
studied to allow direct look-up of the shortest-path distance at the cost of quadratic
space and update time. Theoretically, the update time and space complexities of
maintaining all-pair shortest paths (APSP) data structure are prohibitively very high
and cannot scale to large graphs, e.g., the dynamic algorithm proposed in [Deme-
trescu and Italiano 2004] takes Õ(n2) amortized time per update operation and O(n3)
space. A recent method [Gutenberg and Wulff-Nilsen 2020] proposed an improved
bound in the form of a deterministic algorithm with Õ(n2+2/3) update time and
a Las-Vegas algorithm with Õ(n2+1/2) update time for unweighted graphs having
Õ(n2) space requirements. With these quadratic time and space requirements, they
are not practical to be applied to large graphs having millions of vertices.

A labelling-based approximation algorithm proposed in [Tretyakov et al. 2011]
can also reflect dynamic graph changes into distance estimation. They proposed
algorithms to update the SPTs i.e., the distances of vertices from each landmark as a
result of an edge insertion or edge deletion. Approximate methods for dynamically
maintaining APSP have also been studied in order to improve the update time of
maintaining APSP data structure. The work in [Roditty and Zwick 2004] maintains
dynamic all-pair (1 + ε) approximate shortest paths in Õ(mn/t) update time and
Õ(n2) space, where t is a parameter that describes the trade-off between the update
time and query time. Another (2 + ε) approximate algorithm by Bernstein et al.
[Bernstein 2009] claimed a faster update time of o(mnεlogR/ε) for any fixed ε, where
R is the ratio between the largest and the smallest edge weights. Unfortunately, their
update times suffer the drawback of a super-polynomial dependence on ε.

Another line of research related to our work is streaming graph algorithms. In
the streaming setting, a rapidly changing graph is often modeled using certain com-
pressed data structures due to space constraints. Updates are received as a stream,
but may be accumulated into batches through a sliding window and applied to the
underlying graph. In this setting, a number of methods [McGregor 2014; Feigenbaum
et al. 2005; Pacaci et al. 2020] have been proposed to address distance queries which
operate under certain constraints, e.g., limited amount of memory and accuracy of
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graph structure. Different from these streaming graph methods, our work considers
applications which operate on batch-dynamic graphs that are explicitly stored and
can be processed in the main memory of a single machine. Nevertheless, the ideas
of our algorithm can be easily extended to deal with batch updates in the streaming
setting.

In the past years, a good number of methods [Delling et al. 2017; Ouyang et al.
2020; Geisberger et al. 2012; Batz et al. 2009; Batz et al. 2010; Kontogiannis et al.
2016; Zhang et al. 2021] have studied the distance query problem on dynamic road
networks. In real-world applications, road networks often have stable topological
structure but their edge weights are dynamically updated due to changing traffic
conditions. In [Geisberger et al. 2012], Geisberger et al. has proposed a method to
maintain the index structure of the contraction hierarchy algorithm described in Sec-
tion 3.1.2 for dynamic road networks. Their method first identifies affected vertices
in the breadth-first search manner through the shortcuts generated by the contraction
hierarchy algorithm during the pre-processing stage. After identifying all the affected
vertices, their method then updates the weight of the affected edge and applies the
vertex contraction operation on all the affected vertices following a total order of ver-
tices. The resulting shortcut index is an updated index for the changed road network.
A recent method [Ouyang et al. 2020] has been proposed as an improvement over the
method developed in [Geisberger et al. 2012]. Instead of identifying affected vertices,
the improved method aimed to identify affected shortcuts based on the observation
that the weights of only very few shortcuts need to be changed when the weight of
an edge is updated in a road network.

Previously, the shortest-path query problem, which is closely related to the dis-
tance query problem, has been studied in time-dependent road networks. In a time-
dependent road network G = (V, E, t), each edge (u, v) is assigned with a function
t : E → R+ specifying the time t to reach vertex v from vertex u. Then, the shortest-
path query problem can be modeled on time-dependent road networks as follows.
Given a time-dependent road network G, a source vertex s, and a target vertex t, a
time-dependent shortest-path query returns a shortest path from s to t with the fastest
travel time in G, and a shortest travel time profile query on G returns the departing
time at which it takes the fastest travel time from s to t along with the correspond-
ing shortest path. The method proposed in [Batz et al. 2009] pre-computes an index
named time-dependent contraction hierarchy (TCH) which is a generalization of con-
traction hierarchy originally for static road networks to support shortest travel time
profile queries in time-dependent road networks. After that, the method proposed in
[Batz et al. 2010] has attempted to further improve scalability by reducing space re-
quirements of TCH. Their method adopts an approximation based shortcut technique
which leverages the idea of selecting a small set of landmarks and then computing
the travel-time summaries from the landmarks towards all reachable vertices. Later
on, several other indexing based methods [Kontogiannis et al. 2016; Kontogiannis
et al. 2015; Kontogiannis et al. 2015] have been proposed to speed up shortest-path
queries in time-dependent road networks.
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3.2.2 Hybrid Methods

The work [Hayashi et al. 2016] discussed in Section 3.1.3 has also introduced a fully
dynamic method for addressing the distance query problem which updates a partial
distance labelling to reflect dynamic changes such as edge insertion and edge dele-
tion into a graph. Specifically, this work proposes two algorithms separately: one for
edge insertion and the other for edge deletion, which can be combined to process
both edge insertions and deletions in the fully dynamic setting. This fully dynamic
method, however, suffers from the drawbacks of: (1) scalability i.e., it fails to con-
struct partial distance labellings for billion-scale graphs, and (2) update efficiency,
i.e., it is slow to update a partial distance labelling in order to reflect changes on a
graph, particularly for changes that are edge deletions.

In this thesis, we propose a fully dynamic method that can leverage the advan-
tages of the highway cover distance labelling method proposed in Chapter 4 and
also overcome the limitations of the previous methods for distance queries on large
dynamic graphs. Our proposed fully dynamic method provides a novel, fast and
scalable solution for answering distance queries on large and dynamic graphs. We
further consider the batch-update setting for addressing the distance query prob-
lem on dynamic graphs. We propose a batch-dynamic method which is also based
on the highway cover distance labelling method proposed in Chapter 4. Designing
dynamic algorithms is usually quite complicated and difficult, as reported by the
previous methods in the single-update setting, and arguably even more so in the
batch-dynamic setting or parallel setting.
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Chapter 4

HL: Highway Cover Labelling For
Distance Queries

4.1 Overview

In this chapter, we study the problem of answering exact shortest-path distance
queries in large static networks. We develop a scalable solution which has two main
components: (i) a partial distance labelling, and (ii) a fast distance-bounded shortest-
path search on a sparsified graph. In the first component, we propose a relaxed
notion of 2-hop cover distance labelling, called the highway cover distance labelling
and develop a novel algorithm that can efficiently construct a partial highway cover
distance labelling for graphs with billions of vertices and edges. In the second com-
ponent, we formalize a querying framework for processing exact distance queries,
which combines a partial distance labelling with a distance-bounded shortest-path
search to enable fast distance computation. These two components enable us to
achieve a good trade-off between construction time, labelling size and query time.

Figure 4.1 summarizes the performance of our proposed method and the state-
of-the-art methods for answering exact distance queries [Akiba et al. 2013; Fu et al.
2013; Abraham et al. 2012; Hayashi et al. 2016; Jiang et al. 2014; Tarjan 1983; Pohl 1969;
Chang et al. 2012]. We can see in Figure 4.1(a) that offline labelling-based methods
pruned landmark labelling (PLL) [Akiba et al. 2013], hop-doubling (HDB) [Jiang
et al. 2014], and hierarchical hub labelling (HHL) [Abraham et al. 2012] can answer
distance queries efficiently. However, they have huge space requirements and very
long labelling construction time. On the contrary, traditional online search-based
methods such as Dijkstra’s [Tarjan 1983] and bidirectional breadth-first search (Bi-
BFS) [Pohl 1969] have a very high response time thus are not applicable to large-scale
networks where distances are required in the order of milliseconds. Unlike other
labelling-based and online search-based methods, the hybrid-based methods fully
dynamic (FD) [Fu et al. 2013], independent set based labelling (IS-L) [Hayashi et al.
2016] and highway labelling (HL) (our method) combine an offline distance labelling
with an online graph traversal technique to provide a good trade-off between query
response time and labelling size. Moreover, in Figure 4.1(b), we can see that only our
proposed method HL can handle networks of size 8B and is thus scalable to perform
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Figure 4.1: A high-level overview of the state-of-the-art methods and our proposed method
(HL) for answering exact distance queries. Note that, Figure (a) is based on networks of size
up to 400M edges.

exact distance queries on networks with billions of vertices and edges.
Table 4.1 presents several important properties of labelling-based methods. The

column ordering dependent refers to whether a distance labelling depends on the
ordering of landmarks when being constructed by a method. Only our method HL
and FD are not ordering-dependent. The columns 2HC-minimal and HWC-minimal

refer to whether a distance labelling constructed by a method is minimal in terms of
the 2-hop cover (2HC) and highway cover (HWC) properties (described in detail in
Section of Chapter 4), respectively. PLL is 2HC-minimal, but not HWC-minimal. Our
method HL is the only method that is HWC-minimal. The column Parallel refers to
what kind of parallelism a method can support. FD and PLL support bit-parallelism
(mentioned in Section of Chapter 4) for up to 64 neighbors of a landmark. Our
method HL supports parallel computation for multiple landmarks, depending on
the number of available processors. Other methods did not mention any parallelism.

Table 4.1: Several important properties related to labelling-based methods.

Method
Ordering- 2HC- HWC-

Parallel?
dependent? minimal? minimal?

HL (ours) no n/a yes landmarks
FD [Hayashi et al. 2016] no no no neighbors
IS-L [Fu et al. 2013] yes no no no
PLL [Akiba et al. 2013] yes yes no neighbors
HDB [Jiang et al. 2014] yes no no no
HHL [Abraham et al. 2012] yes no no no

The main contributions of this chapter are as follows,

• We introduce a new labelling property, namely highway cover labelling, which re-
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laxes the notion of 2-hop cover labelling. Based on this new labelling property,
we propose a highly scalable labelling algorithm that can scale to construct a
distance labelling for graphs with billions of vertices and edges.

• We prove that the proposed algorithm can construct HWC-minimal labelling,
which is independent of the ordering of landmarks. Then, due to this deter-
ministic nature of labelling, we further develop a parallel algorithm which can
run parallel BFSs from multiple landmarks to speed up labelling construction.

• We combine our novel labelling algorithm with an online bounded-distance
graph traversal to efficiently answer exact distance queries. This querying
framework enables us to achieve a good trade-off between construction time,
labelling size and query time.

• We experimentally verify the performance of our proposed methods on 15 large
real-world complex networks. The results show that our methods can not only
handle networks with billions of vertices, but also be up to 70 times faster in
constructing a distance labelling and save up to 90% of labelling space.

The rest of this chapter is organized as follows. Section 4.2 introduces the problem
definition. Section 4.3 formulates the highway cover labelling problem and present
a novel algorithm to efficiently compute a highway cover distance labelling over a
graph G. Section 4.4 formulates the querying framework. Section 4.6 shows that the
proposed algorithms are correct and preserve the property of minimality. Section
4.5 introduces several optimization techniques. Section 4.7 discusses the experimen-
tal results, which compare the performance of our proposed algorithms against the
baseline algorithms. Section 4.9 summarises the chapter.
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Figure 4.2: An example graph G where one shortest path between two vertices 2 and 11 is
highlighted in red.

4.2 Problem Definition

Generally speaking, given any two vertices u and v in a graph G = (V, E), a distance
query for u and v is to find the minimum length of paths between these two vertices
in the graph G.
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Example 1. In Figure 4.2, the distance (i.e., the minimum length of paths) between vertices
2 and 11 is 3 which can be obtained through the paths 〈2, 5, 1, 11〉 and 〈2, 14, 1, 11〉.

In this thesis, we aim to construct a distance labelling of a limited size, which con-
tains only distance information from all vertices in the graph to some “important”
vertices (not all) - landmarks. Such a distance labelling is considered as a partial
distance labelling. Then, we combine offline partial distance labelling with online
searching to leverage the advantages from both sides - accelerating query processing
through a small sized partial distance labelling that provides a good approximation
to bound online searches. More formally, we define the distance query problem stud-
ied in this chapter as:

Definition 2 (Distance Query Problem). Let G = (V, E) be a graph and R ⊆ V be a set
of landmarks in the graph G. Then, the distance query problem is to efficiently compute
the shortest-path distance dG(s, t) between any two vertices s and t in G, using a partial
distance labelling Γ over G and online searching over G[V\R].

4.3 Highway Cover Labelling

In this section, we formulate the highway cover labelling property and propose a
novel algorithm to efficiently construct a partial distance labelling, which is a high-
way cover distance labelling over a graph G.

4.3.1 Highway and Highway Cover

We begin with the definition of highway, and then present the definition of highway
cover.

Definition 3 (Highway). A highway H is a pair (R, δH), where R is a set of landmarks and
δH is a distance decoding f unction, i.e. δH : R× R→N+, such that for any {r1, r2} ⊆ R
we have δH(r1, r2) = dG(r1, r2).

Given a landmark r ∈ R and two vertices s, t ∈ V\R (i.e. V\R = V − R), a
r-constrained shortest-path between s and t is a path between s and t satisfying two
conditions:

(1) It goes through the landmark r;

(2) It has the minimum length among all paths between s and t that go through r.

We use Pst to denote the set of vertices in a shortest-path between s and t, and Pr
st

to denote the set of vertices in a r-constrained shortest-path between s and t.

Definition 4 (Highway Cover). Let G = (V, E) be a graph, H = (R, δH) a highway and L
a distance labelling over (G, H). Then for any two vertices s, t ∈ V\R and for any landmark
r ∈ R, there exist (ri, δL(ri, s)) ∈ L(s) and (rj, δL(rj, t)) ∈ L(t) such that ri ∈ Prs and
rj ∈ Prt, where ri and rj may equal to r.
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If the label of a vertex v contains a distance entry (r, δL(r, v)), we also say that
the vertex v is covered by the landmark r in the distance labelling. Intuitively, the
highway cover property guarantees that, given a highway H with a set of landmarks
R and r ∈ R, any r-constrained shortest-path distance between two vertices s and t
can be found using only the labels of these two vertices and the given highway. A
distance labelling is called a highway cover distance labelling if it satisfies the highway
cover property. More formally, a highway cover distance labelling is a pair Γ = (H, L)
where H is a highway and L is a distance labelling satisfying that, for any vertex
v ∈ V\R and r ∈ R, we have:

dG(r, v) = min{δL(ri, v) + δH(r, ri) | (ri, δL(ri, v)) ∈ L(v)} (4.1)

Example 2. Consider the graph G depicted in Figure 4.3(a), the highway H has three land-
marks {1, 5, 9} as highlighted in red in Figure 4.3(b). Based on the graph in Figure 4.3(a) and
the highway in Figure 4.3(b), we have 〈11, 1, 4〉 which is a shortest-path between the vertices
11 and 4 constrained by the landmark 1, i.e. 1-constrained shortest-path between 11 and 4.
In contrast, neither of the paths 〈11, 10, 9, 1, 4〉 and 〈11, 4〉 is a 1-constrained shortest-path
between 11 and 4.

In Figure 4.3(b), the outgoing arrows from each landmark point to vertices in G that are
covered by this landmark in the highway. The distance labelling in Figure 4.3(c) satisfies the
highway cover property because for any two vertices that are not landmarks and any landmark
r ∈ {1, 5, 9}, we can find the r-constrained shortest-path distance between these two vertices
using their labels and the highway.
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Figure 4.3: An illustration of highway cover distance labelling: (a) an example graph G,
(b) a highway H that connects to other vertices, and (c) a distance labelling that fulfills the
highway cover property over G.

Definition 5 (Highway Cover Labelling Problem). Given a graph G and a highway H
over G, the highway cover labelling problem is to efficiently construct a highway cover
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distance labelling Γ = (H, L).

Several choices naturally come up for how to construct a distance labelling: (1)
One is to add a distance entry for each landmark into the label of every vertex in
V\R, as the approach proposed in [Hayashi et al. 2016]; (2) Another is to use the
pruned landmark labelling approach [Akiba et al. 2013] to add distance entries w.r.t.
a landmark r into the labels of vertices in V\R if they can not be pruned during a
BFS rooted at r; (3) We can also extend the pruned landmark labelling approach to
construct highway cover labelling by replacing the 2-hop cover pruning condition
with the highway cover condition as defined in Definition 4.

In all these cases, the labelling construction process would not guarantee scala-
bility for large-scale complex networks with billions of vertices and edges. Moreover,
these approaches would potentially lead to the construction of a distance labelling
with different sizes w.r.t. different ordering of vertices. A question arising is: how to
construct a minimal highway cover distance labelling without redundant label entries? In a
nutshell, it is a challenging task to construct a highway cover distance labelling that
can scale to very large networks, ideally in linear time, but also with the minimal
labelling size.

4.3.2 Labelling Construction Algorithm

We propose a novel algorithm for solving the highway cover labelling problem, which
can construct a highway cover distance labelling in linear time.

The key idea of our algorithm is to construct a label L(v) for every vertex v ∈ V\R
such that a distance entry (ri, δL(ri, v)) of each landmark ri ∈ R is only added into
the label L(v) iff there does not exist any other landmark that appears in a shortest-
path between ri and v, i.e. Priv ∩ R = {ri}. In other words, if there exists another
landmark r ∈ R and ri is in the shortest-path between r and v, then (ri, δL(ri, v)) is
added into L(v) iff ri is the “closest” landmark from r to v. To compute such labels
efficiently, we conduct a breadth-first search from every landmark ri ∈ R and add
distance entries into labels of vertices that do not have any other landmark in their
shortest paths from ri.

Example 3. Consider vertex 7 in Figure 4.3(c), the label L(7) contains the distance entries of
landmarks {5, 9}, but no distance entry of landmark 1. This is because 5 and 9 are the closest
landmarks to vertex 7 in the shortest paths 〈5, 7〉 and 〈9, 7〉, respectively. However, for each
of the two shortest paths 〈1, 9, 7〉 and 〈1, 5, 7〉 between 1 and 7, there is another landmark (i.e.
5 or 9) that is closer to 7 compared with 1 in these shortest paths. Thus the distance entry of
landmark 1 is not added into L(7).

Our highway cover labelling approach is described in Algorithm 1. Given a graph
G and a highway H over G, we start with an empty highway cover distance labelling L,
where L(v) = ∅ for every v ∈ V\R. Then, for each landmark ri ∈ R, we compute the
corresponding distance entries as follows. We use two queues Qlabel and Qprune to
process vertices to be labeled or pruned at each level of a breadth-first search (BFS)
tree, respectively. We start by processing vertices in Qlabel . For each vertex u ∈ Qlabel
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at depth n, we examine the children of u at depth n + 1 that are unvisited. For each
unvisited child vertex v ∈ NG(u) at depth n + 1, if v ∈ R then we prune v, i.e.,
we do not add a distance entry of the current landmark ri into L(v) and we also
enqueue v to the pruned queue Qprune (Line 11). Otherwise, we add (ri, δBFS(ri, v))
to the label of v, i.e., we add it into L(v) and we also enqueue v to the labeled queue
Qlabel (Lines 13-14). Here, δBFS(ri, v) refers to BFS decoded distance from root ri to v.
Then we process the pruned vertices in Qprune. These vertices are either landmarks
or have landmarks in their shortest paths from ri, and thus do not need to be labeled.
Therefore, for each vertex v ∈ Qprune at depth n, we enqueue all unvisited children of
v at depth n + 1 to the pruned queue Qprune. We keep processing these two queues,
one after the other, until Qlabel is empty.

Algorithm 1: Constructing the highway cover labelling Γ
Input: G = (V.E), H = (R, δH)
Output: L

1 L(v)← ∅, ∀v ∈ V\R
2 foreach ri ∈ R do
3 Qlabel ← ∅
4 Qprune ← ∅
5 π ← 0
6 Enqueue ri to Qlabel and set ri as the root of BFS
7 while Qlabel is not empty do
8 foreach u ∈ Qlabel at depth π do
9 foreach unvisited child v of u at depth π + 1 do

10 if v is a landmark then
11 Enqueue v to Qprune
12 else
13 Enqueue v to Qlabel
14 Add {(ri, δBFS(ri, v))} to L(v)
15 end
16 end
17 end
18 π ← π + 1
19 foreach v ∈ Qprune at depth π do
20 Enqueue unvisited children of v at depth π + 1 to Qprune
21 end
22 end
23 end
24 return L

Example 4. We illustrate how our algorithm conducts pruned BFSs in Figure 4.4. The
pruned BFS from landmark 1 is depicted in Figure 4.4(a), which labels only four vertices
{4, 11, 13, 14} because the other vertices are either landmarks or contain other landmarks in
their shortest paths to landmark 1. Similarly, in the pruned BFS from landmark 5 depicted
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in Figure 4.4(b), only vertices {7, 2, 12, 3, 8} are labelled, and none of the vertices 4, 11, 13
and 14 is labelled because of the presence of landmark 1 in their shortest paths to landmark 5.
Indeed, we can get the distance between landmark 5 to these vertices by using the highway, i.e.
δH(5, 1), and distance entries in their labels to landmark 1. The pruned BFS from landmark
9 is depicted in Figure 4.4(c), which works in a similar fashion.

Note that, although a highway H is given as input in Algorithm 1, we can indeed
compute the distances δH for a given set of landmarks R along with Algorithm 1.
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Figure 4.4: An illustration of the highway cover labelling algorithm: (a), (b) and (c) describe
the pruned BFSs that are rooted at the landmarks 1, 5 and 9, respectively, where yellow ver-
tices denote roots, green vertices denote those being labeled, red vertices denote landmarks,
and white vertices are not labelled. LS and ET at the top right corner denote the labelling
size and the number of edges traversed during the pruned BFSs, respectively.

4.3.3 Order Independence

In previous studies [Abraham et al. 2011; Akiba et al. 2013; Abraham et al. 2012;
Cohen et al. 2002], given a graph G, a distance labelling algorithm builds a unique
canonical distance labelling subject to a labelling order i.e., the order of landmarks
used for constructing a distance labelling. It has been well known that such a la-
belling order is decisive in determining the size of the constructed distance labelling
[Qin et al. 2017]. For the same set of landmarks, when using different labelling or-
ders, the sizes of the constructed distance labelling may vary significantly.

The following example shows how different labelling orders in the pruned land-
mark labelling approach [Akiba et al. 2013] can lead to a distance labelling of different
sizes.

Example 5. In Figure 4.5, the size of the distance labelling constructed using the labelling
order 〈1, 5, 9〉 in Figure 4.5(a)-4.5(c) is different from the size of the distance labelling con-
structed using the labelling order 〈9, 5, 1〉 in Figure 4.5(d)-4.5(f). In both cases, the first BFS
adds a distance entry of the current landmark into the label of each vertex in the graph. Then,
the following BFSs check each visited vertex whether the shortest-path distance between the
current landmark and the visited vertex can be computed via the 2-hop cover property based
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Figure 4.5: An illustration of the pruned landmark labelling algorithm [Akiba et al. 2013]:
(a)-(c) show an example of constructing labels through pruned BFSs from three landmarks
in the labelling order 〈1, 5, 9〉; (d)-(f) show an example of constructing labels using the same
three landmarks but in a different labelling order 〈9, 5, 1〉. Yellow vertices denote landmarks
that are the roots of pruned BFSs, green vertices denote those being labeled, grey vertices
denote vertices being visited but pruned, and red vertices denote landmarks which have
already been visited.

on their labels added by the previous BFSs. A distance entry is only added into the label of a
vertex if the shortest-path distance cannot be computed by applying the 2-hop cover over the
existing labels. Thus, the choice of the labelling order could affect the size of labels signifi-
cantly. Take the vertex 11 for example, its label contains only one distance entry (1, 1) using
the labelling order depicted in Figure 4.5(a)-4.5(c), but contains three distance entries (1.1),
(5, 2), and (9, 2) when the labelling order depicted in Figure 4.5(d)-4.5(f) is used.

Unlike all previous approaches taken with distance labelling, our highway cover
labelling algorithm is order-invariant. That is, distance labellings constructed by our
algorithm using different labelling orders over the same set of landmarks always have
the same size. In fact, we can show that our algorithm has the following stronger
property: a distance labelling constructed using our algorithm is deterministic (i.e.,
it produces the same label for each vertex) for any given set of landmarks.

Lemma 1. Let G = (V, E) be a graph and H = (R, δH) a highway over G. For any two
different labelling orders over R, the highway cover distance labellings Γ1 = (H, L1) and
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Γ = (H, L2) over G constructed in accordance with these two different labelling orders using
Algorithm 1 satisfy L1(v) = L2(v) for every v ∈ V\R.

Proof. Let OL1 and OL2 be two different labelling orders over R. For any landmark
r in OL1 and OL2 , Algorithm 1 generates exactly the same pruned BFS tree. This
implies that, for each vertex v ∈ V\R, either the same distance entry (r, δBFS(r, v)) is
added into L1(v) and L2(v), or no distance entry is added to L1(v) and L2(v). Thus,
Algorithm 1 satisfy L1(v) = L2(v) for every v ∈ V\R.

Example 6. Figure 4.5 shows the labelling size (LS) of the pruned landmark labelling at
the top right corner, which is constructed using two different orderings. The first ordering
〈1, 5, 9〉 labels 25 vertices whereas the second ordering 〈9, 5, 1〉 labels 30 vertices. On the
other hand, the LS of the highway cover distance labelling is 13 as shown in Figure 4.4. Note
that the LS of the highway cover distance labelling does not change, irrespective of ordering.

4.3.4 Minimality

We discuss the question of minimality, i.e., whether a highway cover distance la-
belling constructed by our algorithm is always minimal in terms of the labelling size.
The proof of minimality if provided in Section 4.6.

The state-of-the-art approaches for distance labelling is primarily based on the
idea of 2-hop cover [Akiba et al. 2013; Fu et al. 2013; Abraham et al. 2011]. One
may ask the question: how is the highway cover labelling different from the 2-hop
cover labelling, such as the pruned landmark labelling [Akiba et al. 2013]? It is
easy to verify the following lemma that each pruned landmark labelling satisfies the
highway cover property for the same set of landmarks.

Lemma 2. Let L be a pruned landmark labelling over a graph G constructed using a set
of landmarks R. Then L also satisfies the highway cover property over G with a highway
H = (R, δH).

As the pruned landmark labelling algorithm [Akiba et al. 2013] prunes labels
based on the 2-hop cover property, but our highway cover labelling algorithm prunes
labels based on the property described in Definition 4. We have the following corol-
lary, stating that, for the same set of landmarks, the size of the highway cover la-
belling is no more than the size of any pruned landmark labelling.

Corollary 1. For a highway cover distance labelling Γ = (H, L1) produced by Algorithm 1
over G, where H = (R, δH), and a pruned landmark labelling L2 over G using any labelling
order over R, we always have |L1| ≤ |L2|.

Example 7. In Figure 4.4, we can see that the highway cover distance labelling constructed
by our algorithm is always minimal. The LS of the highway cover distance labelling in Figure
4.4 is much smaller than the LS of either of a pruned landmark labelling constructed using
two different orderings in Figure 4.5.
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4.4 Bounded Distance Querying Framework

In this section, we formulate a bounded distance querying framework that allows us
to efficiently compute the exact shortest-path distance between two arbitrary vertices
in a massive network.

Given a graph G and a highway H = (R, δH) over G, we can precompute a
highway cover distance labelling Γ using the landmarks in R, which enables us to
efficiently compute the length of any r-constrained shortest-path between any two
vertices in V\R. The length of such a r-constrained shortest-path must be greater
than or equal to the exact shortest-path distance between these two vertices and
can thus serve as an upper bound. On the other hand, since the length of such a
r-constrained shortest-path between two vertices in V\R can always be efficiently
computed by the highway cover distance labelling Γ, the distance-bounded shortest-
path search only needs to be conducted over a sparsified graph by removing all
landmarks in R from G, i.e. G[V\R].

To compute the shortest-path distance between two vertices s and t in graph G,
our querying framework proceeds in two steps:

(1) an upper bound of the shortest-path distance between s and t is computed
using the highway cover distance labelling

(2) the exact shortest-path distance between s and t is computed using a distance-
bounded shortest-path search over a sparsified graph.

More precisely, we define the bounded distance querying problem as follows.

Definition 6 (Bounded Distance Querying Problem). Given a sparsified graph G[V\R],
a pair of vertices {s, t} ∈ V, and an upper (distance) bound d>st , the bounded distance
querying problem is to efficiently compute the exact shortest-path distance Q(s, t, Γ) be-
tween s and t over G[V\R] under the upper bound d>st such that,

Q(s, t, Γ) =

{
dG[V\R](s, t), if dG[V\R](s, t) ≤ d>st

d>st , otherwise

In the following, we discuss the two steps of this framework in detail.

4.4.1 Computing Upper Bounds

Given any two vertices s and t, we use a highway cover distance labelling Γ to compute
an upper bound d>st for the shortest-path distance between s and t as follows,

d>st = min{δL(ri, s) + δH(ri, rj) + δL(rj, t) |
(ri, δL(ri, s)) ∈ L(s),

(rj, δL(rj, t)) ∈ L(t)} (4.2)
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This corresponds to the length of a shortest-path from s to t passing through
landmarks ri and rj, where δL(ri, s) is the shortest-path distance from ri to s in L(s),
δH(ri, rj) is the shortest-path distance from ri to rj through highway H, and δL(rj, t)
is the shortest-path distance from rj to t in L(t).

Example 8. Consider the graph in Figure 4.3(a), we may use the labels L(2) and L(11) to
compute the upper bound for the shortest-path distance between two vertices 2 and 11. There
are two cases: (1) for the path 〈2, 5, 1, 11〉 that goes through landmarks 5 and 1, we have
δL(5, 2) + δH(5, 1) + δL(1, 11) = 1 + 1 + 1 = 3, and (2) for the path 〈2, 9, 1, 11〉 that goes
through landmarks 9 and 1, we have δL(9, 2) + δH(9, 1) + δL(1, 11) = 2+ 1+ 1 = 4. Thus,
we take the minimum of these two distances as the upper bound, which is 3 in this case.

4.4.2 Distance-Bounded Bi-Directional Search

We conduct a bidirectional search on the sparsified graph G[V\R] which is bounded
by the upper bound d>st obtained from the highway cover distance labelling Γ. For
a pair of vertices {s, t} ⊆ V\R, we run the breadth-first search algorithm from s
and t, alternatively [Hayashi et al. 2016]. Algorithm 2 shows the pseudo-code of our
distance-bounded bi-directional search algorithm. We use two sets of vertices Ps and
Pt to keep track of visited vertices from s and t. We use two queues Qs and Qt to
conduct both a forward search from s and a reverse search from t. Furthermore, we
use two integers ds and dt to maintain the current distances from s and t, respectively.

During initialization, we set Ps and Pt to {s} and {t}, and enqueue s and t into
Qs and Qt, respectively. In each iteration, we increment ds or dt and expand Ps or Pt

by running either a forward search (FS) or a reverse search (RS) as long as Ps and Pt

have no any common vertex or ds + dt is equal to the upper bound d>st , and Qs and
Qt are not empty. In the forward search from s, we examine the neighbors NG[V\R](v)
of each vertex v ∈ Qs. Suppose that we are visiting a vertex w ∈ NG[V\R](v), if w is
included in the vertex set Pt, then it means that we find a shortest-path to vertex t
of length ds + 1 + dt, because the reverse search from t had already visited w with
distance dt. At this stage, we return ds + 1 + dt as the answer since we already know
ds + dt + 1 ≤ dG(s, t) ≤ d>st . Otherwise, we add vertex w to Ps and enqueue w into
a new queue Qnew. When we can not find the shortest distance in the this iteration,
we replace Qs with Qnew and increase ds by 1, and check if ds + dt = d>st . If it holds,
then we return d>st since d>st ≤ dG(s, t) ≤ ds + dt + 1.

Example 9. In Figure 4.3(a), the upper distance bound between vertices 2 and 11 is 3, as
computed in Example 8. In Figure 4.6(a), we run BFSs from vertices 2 and 11 respectively.
First, a forward search from 2 enqueues its neighbors 7, 12 and 14 into Q2 and increases d2

by 1. Then a reverse search from 11 enqueues 4 and 10 into Q11 and also sets d11 to 1. At
this stage, although we have not found any common vertex between Q2 and Q11, however
d2 + d11 + 1 = 3 which is equal to the upper bound 3. Thus, we terminate our search and
return the upper bound as the query distance.
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Algorithm 2: Distance-Bounded Bi-Directional Search

Input: G[V\R], s, t, d>st
Output: dG[V\R](s, t)

1 Ps ← {s}, Pt ← {t}, ds ← 0, dt ← 0
2 Enqueue s to Qs, t to Qt
3 while Qs and Qt are not empty do
4 if |Ps| ≤ |Pt| then
5 f ound← FS(Qs)
6 else
7 f ound← RS(Qt)
8 end
9 if found = true then

10 return ds + 1 + dt

11 else if ds + dt = d>st then
12 return d>st
13 end
14 end
15 return ∞

4.5 Optimization Techniques

In this section, we present optimization techniques for label construction, label com-
pression, and query processing.

4.5.1 Label Construction

A technique called Bit-Parallelism (BP) has been previously used in several methods
[Akiba et al. 2013; Hayashi et al. 2016] to speed up the label construction process.
The key idea of BP is to perform BFSs from a given landmark r and up to 64 of
its neighbors simultaneously, and encode the relative distances (-1, 0 or 1) of these
neighbors w.r.t. the shortest paths between r and each vertex v into a 64-bit unsigned
integer. In the work [Akiba et al. 2013], BP was applied to construct bit-parallel
labels from initial vertices without pruning, which aimed to leverage the information
from these bit-parallel labels to cover more shortest paths between vertices. Then,
both bit-parallel labels and normal labels were constructed in the pruned BFSs. The
work in [Hayashi et al. 2016] also used BP to construct thousands of bit-parallel
shortest-path trees (SPTs) because it is very costly to construct thousands of normal
SPTs in memory owing to their prohibitively large space requirements and very long
construction time.

In our work, we develop a simple yet rigorous parallel algorithm (HL-P) which
can run parallel BFSs from multiple landmarks (depending on the number of proces-
sors) to construct labelling in an extremely efficient way for massive networks, with
much less time as will be demonstrated in our experiments in Section 4.7.
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Figure 4.6: An illustration of the distance-bounded shortest-path search algorithm [Hayashi
et al. 2016]: (a) shows the sparsified graph after removing three landmarks {1, 5, 9} from the
graph in Figure 4.3(a); (b) shows an example of computing the bounded distance between
vertices 2 and 11 as highlighted in yellow, and green vertices denote the visited vertices in
the forward and reverse searches.

4.5.2 Label Compression

The choice of the data structure for labels may significantly affect the performance of
labelling size and memory usage. As noted in [Li et al. 2017], some works [Abraham
et al. 2012; Delling et al. 2014] did not elaborate on what data structure they have
used for representing labels. Nonetheless, for the works that are most relevant to
ours, such as FD [Hayashi et al. 2016] and PLL [Akiba et al. 2013], they used 32-
bit integers to represent vertices and 8-bit integers to represent distances for normal
labels. In addition to this, they also used 64-bits to encode the distances from a
landmark to up to 64 of its neighbors in their shortest paths to other vertices. Since
our approach only selects a very small number of landmarks to construct the highway
cover labelling (usually no more than 100 landmarks), we may use 8 bits to represent
landmarks and another 8 bits to store distances for labels. In order to fairly compare
methods from different aspects, we have implemented our methods using both 32
bits and 8 bits for representing vertices in labels. However, different from the BP
technique that uses 64-bits to encode the distance information of up to 64 neighbors
of a landmark, our parallel algorithm (HL-P) does not use a different data structure
for labels constructed in parallel BFSs.

4.5.3 Query Processing

We show that computing the upper bound d>st can be optimized based on the obser-
vation, captured by the following lemma.

Lemma 3. For a highway cover distance labelling Γ = (H, L) over G, and any {s, t} ⊆ V, if
a landmark r appears in both L(s) and L(t), then δL(r, s) + δL(r, t) ≤ δL(r, s) + δH(r, r′) +
δL(r′, t) holds for any other r′ ∈ R.

Proof. By the definition of the highway cover property, we know that r is not in any
shortest-path between r′ and t. Then by the triangle inequality in Equation 2.1, this
lemma can be proven.
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Thus, in order to efficiently compute the upper bound d>st , for any landmarks that
appear in both L(s) and L(t), we compute the r-constrained shortest-path distance
between s and t using Equation 2.3, while for a landmark r′ that only appear in one
of L(s) and L(t), we use Equation 4.2 to calculate the r′-constrained shortest-path
distance between s and t. This would lead to more efficient computations for queries
when the landmarks appear in both labels of two vertices.

4.6 Theoretical Results

In this section, we prove the correctness of our labelling construction algorithm, i.e.,
it constructs a distance labelling that satisfies the highway cover property. We also
prove the minimality property of our labelling construction algorithm, i.e., it con-
structs a minimal highway cover labelling, a desirable property that has a direct
impact on both query time and space efficiency. Then, we prove the correctness of
our querying framework. Finally, we briefly analyse the complexity of our proposed
algorithms.

4.6.1 Proof of Correctness

First, we prove the correctness of our labelling construction algorithm which is de-
scried in Algorithm 1.

Lemma 4. In Algorithm 1, for each pruned BFS rooted at ri ∈ R, (ri, δL(ri, v)) is added into
the label of a vertex v ∈ V\R iff there is no any other landmark appearing in the shortest-path
between ri and v, i.e., Priv ∩ R = {ri}.

Proof. Suppose that Algorithm 1 is conducting a pruned BFS rooted at ri and v is an
unvisited child of another vertex u in Qlabel (start from Qlabel = {ri}) (Lines 6-9). If
v ∈ R (Line 10), then we have (Priw ∩ R) ⊇ {ri, v} (Lines 11, 19-21),and (ri, δL(ri, w))
can not be added into the label of any child w of v, i.e., put w into Qprune. Otherwise,
by v /∈ R and v is an unvisited child of a vertex u in Qlabel (Lines 8-9), we know that
Priv ∩ R = {ri} and thus (ri, δL(ri, v)) is added into L(v) (lines 12-14).

Then, by Lemma 4, we have the following corollary.

Corollary 2. Let r ∈ R be a landmark, v ∈ V\R a vertex, and Γ = (H, L) a distance la-
belling constructed by Algorithm 1. If (r, δL(r, v)) /∈ L(v), then there must exist a landmark
rj such that (rj, δL(rj, v)) ∈ L(v) and dG(r, v) = δL(rj, v) + δH(r, rj).

Theorem 1. The highway cover distance labelling Γ = (H, L) over G constructed using
Algorithm 1 satisfies the highway cover property.

Proof. To prove that, for any two vertices s, t ∈ V\R and for any r ∈ R, there exist
(ri, δL(ri, s)) ∈ L(s) and (rj, δL(rj, t)) ∈ L(t) such that ri ∈ Prs and rj ∈ Prt, we
consider the following four cases: (1) If (r, δL(r, s)) ∈ L(s) and (r, δL(r, t)) ∈ L(t), then
r = ri = rj. (2) If (r, δL(r, s)) ∈ L(s) and (r, δL(r, t)) /∈ L(t), then ri = r and by Lemma
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2, there exists another landmark rj such that rj is in the shortest-path between t and r
and (rj, δL(rj, t)) ∈ L(t). (3) If (r, δL(r, s)) /∈ L(s) and (r, δL(r, t)) ∈ L(t), then similarly
we have rj = r, and by Lemma 2, there exists another landmark ri such that ri is in
the shortest-path between s and r and (ri, δL(ri, s)) ∈ L(s). (4) If (r, δL(r, s)) /∈ L(s)
and (r, δL(r, t)) /∈ L(t), then by Lemma 2 there exist another two landmarks ri and rj
such that ri is in a shortest-path between s and r and (ri, δL(ri, s)) ∈ L(s), and rj is in
a shortest-path between t and r and (rj, δL(rj, t)) ∈ L(t). The proof is done.

Now, we prove the correctness of our querying framework based on the follow-
ing two lemmas. More specifically, Lemma 5 can be derived from the highway
cover property and the definition of d>st . Lemma 6 can be proven by the property
of shortest-path and the definition of the sparsified graph G[V\R].

Lemma 5. For a highway cover distance labelling Γ = (H, L) over G), we have d>st ≥
dG(s, t) for any two vertices s and t of G, where d>st is computed using L and H.

Lemma 6. For any two vertices {s, t} ⊆ V\R, if there is a shortest-path between s and t in
G that does not include any vertex in R, then dG(s, t) = dG[V\R](s, t) holds.

Thus, the following theorem holds:

Theorem 2. Let G = (V, E) be a graph and Γ = (H, L) a highway cover distance la-
belling over G. Then, for any two vertices {s, t} ⊆ V, the querying framework yields
Query(s, t, Γ) = dG(s, t).

Proof. We consider two cases: (1) Pst contains at least one landmark. In this case, By
Lemma 5 and the definition of the highway cover property, we have d>st = dG(s, t). (2)
Pst does not contain any landmark. By Lemma 6, we have dG[V\R](s, t) = dG(s, t).

4.6.2 Preservation of Minimality

We prove the following theorem to show that the highway cover labelling constructed
by Algorithm 1 is minimal.

Theorem 3. The highway cover distance labelling Γ = (H, L) over G constructed using
Algorithm 1 is minimal, i.e., for any highway cover distance labelling Γ′ = (L′, H′) over G,
size(Γ′) ≥ size(Γ) must hold.

Proof. We prove this by contradiction. Let us assume that there is a highway cover
distance labelling L′ with size(L′) < size(L). Then, this would imply that there must
exist a vertex v ∈ V\R and a landmark r ∈ R such that (r, δL(r, v)) ∈ L(v) and
(r, δL(r, v)) /∈ L′(v). By Lemma 4 and (r, δL(r, v)) ∈ L(v), we know that there is no
any other landmark in R that is in any shortest-path between r and v. However, by
the definition of the highway cover property (i.e. Definition 4) and (r, δL(r, v)) /∈
L′(v), we also know that there must exist another landmark (ri, δL(ri, v)) ∈ L(v) and
ri ∈ Prv, which contradicts with the previous conclusion that there is no any other
landmark in any shortest-path between r and v. Thus, size(L′) ≥ size(L) must hold
for any highway cover distance labelling L′.
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4.6.3 Complexity Analysis

Let l be the maximum size of labels (i.e., l = |R|) and d be the maximum degree.
We visit O(n · l) vertices in total, where we traverse O(d) edges. Therefore, the time
complexity of Algorithm 1 is roughly estimated as O(n · l · d).

4.7 Experimental Setup

In our experiments, all algorithms are implemented in C++11 using STL libraries and
compiled with g++ 5.5.0 using the -O3 option. All the experiments are performed on
a Linux server Intel Xeon W-2175 (2.50GHz CPU) with 28 cores and 512GB of main
memory.

In the following, we first present datasets and the baseline methods and then
discuss test data generation.

4.7.1 Datasets

We use 15 real-world large complex networks from a variety of domains in our ex-
periments, in order to empirically verify the efficiency, scalability and robustness of
our algorithms. Among them, the largest two networks are Clueweb09 [Rossi and
Ahmed 2015] and Clueweb12 [Boldi and Vigna 2004; Boldi et al. 2011] which have
2 billions and 1 billion of vertices, and 8 billions and 43 billions of edges, respec-
tively. We include these networks in our experiments for the purpose of evaluating
the robustness and scalability of the proposed methods. In previous works [Hayashi
et al. 2016; Li et al. 2019], the largest dataset that has been reported is UK which has
only around 100 millions of vertices and 3.7 billions of edges. These networks are
accessible at Stanford Network Analysis Project [Leskovec and Sosič 2016], Labora-
tory for web Algorithmics [Boldi and Vigna 2004; Boldi et al. 2011], and Network
Repository [Rossi and Ahmed 2015]. We treat these networks as undirected and
unweighted graphs. The types of networks, number of vertices and edges, and sta-
tistical information of these network datasets are summarized in Table 4.2, while a
brief description of each dataset is given below:

– Youtube: This is a social network among users of YouTube (www.youtube.com),
in which nodes are users that form friendships (edges) with each other [Akiba
et al. 2014].

– Skitter: This is an internet topology network, obtained by running daily tracer-
oute in 2005 [Leskovec et al. 2005], in which nodes represent routers and edges
represent communication links.

– Flickr: This is a social network of users and their connections in a photo sharing
website Flickr (www.flickr.com) [Mislove et al. 2007].

– Wikitalk: This is a social network containing information about communica-
tion among editors of Wikipedia (www.wikipedia.org) on editing on-talk pages

www.youtube.com
www.flickr.com
www.wikipedia.org
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till January 2008 [Akiba et al. 2013], where nodes represent Wikipedia editors
and a directed edge from node i to node j represents that user i at least once
edited an on-talk page of user j.

– Hollywood: This is a social network of movie actors, where vertices represent
actors and two actors are joined by an edge whenever they appeared in a movie
together in 2009 [Boldi and Vigna 2004; Boldi et al. 2011].

– Orkut: This is a social network of users and their connections in a social net-
working website, Orkut (www.orkut.com) [Mislove et al. 2007].

– Enwiki: This is a network of hyperlinks from a snapshot of English Wikipedia,
obtained in 2013, where vertices represent pages and edges indicate hyperlinks
between pages [Boldi and Vigna 2004; Boldi et al. 2011].

– Livejournal: This is a social network which allows its members to manage their
journals and blogs, and to declare which other members and their friends they
belong to, in an online social website (www.livejournal.com) [Backstrom et al.
2006; Leskovec et al. 2009].

– Indochina: This is a web graph of web pages, obtained by performing a large
crawl of the country domains of Indochina in 2004 for the Nagaoka University
of Technology [Boldi and Vigna 2004; Boldi et al. 2011].

– IT: This is a web graph, obtained by performing a fairly large crawl of the .it
domain in 2004 [Boldi and Vigna 2004; Boldi et al. 2011].

– Twitter: This is a social network with information about who follows whom on
Twitter, where vertices represent users and edges represent follow relationships
between users, in an online social website (www.twitter.com) [Boldi and Vigna
2004; Boldi et al. 2011].

– Friendster: This is a social gaming network, where users are connected with
friendship relationships, in an online website (www.friendster.com) [Yang and
Leskovec 2015].

– UK: This is a web graph which is part of a time-aware network, obtained by
collecting monthly snapshots of the .uk domain for twelve months in 2006 and
2007 [Boldi et al. 2008].

– Clueweb09: This is a web graph of web pages in ten languages collected in
January and February 2009, where nodes represent unique URLs (pages) and
edges represent links between pages [Rossi and Ahmed 2015].

– Clueweb12: This dataset is a successor to the Clueweb09 dataset. It was ob-
tained by crawling the web for about 1 billion English web pages between
February 10, 2012 and May 10, 2012 [Boldi and Vigna 2004; Boldi et al. 2011].

www.orkut.com
www.livejournal.com
www.twitter.com
www.friendster.com
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Table 4.2: Datasets, where size(G) denotes the size of a graph G with each edge appearing
in the forward and reverse adjacency lists and being represented by 8 bytes.

Dataset Network n m m/n avg. deg. max. deg. avg. dist. size(G)

Youtube social (u) 1.1M 3M 2.63 5.265 28754 5.3 23 MB
Skitter comp (u) 1.7M 11M 6.54 13.08 35455 5.0 85 MB
Flickr social (u) 1.7M 16M 9.07 18.13 27224 5.3 119 MB
Wikitalk comm (d) 2.4M 5M 1.95 3.890 100029 3.9 36 MB
Hollywood social (u) 1.1M 114M 49.5 98.91 11467 3.9 430 MB
Orkut social (u) 3.1M 117M 38.1 76.28 33313 4.2 894 MB
Enwiki social (d) 4.2M 101M 21.9 43.75 432260 3.4 701 MB
Livejournal social (d) 4.8M 69M 8.84 17.68 20333 5.6 327 MB
Indochina web (d) 7.4M 194M 20.4 40.73 256425 7.7 1.1 GB
IT web (d) 41M 1.2B 24.9 49.77 1326744 7.0 7.7 GB
Twitter social (d) 42M 1.5B 28.9 57.74 2997487 3.6 9.0 GB
Friendster social (u) 66M 1.8B 27.4 55.06 5214 5.0 13 GB
UK web (d) 106M 3.7B 31.4 62.77 979738 6.9 25 GB
Clueweb09 web (d) 1.7B 7.8B 4.64 9.27 6444720 7.4 58.2 GB
Clueweb12 web (d) ∼1B 43B 39.1 78.25 75611696 5.2 279 GB

4.7.2 Baseline Methods

We compared our proposed method with the following baseline methods:

(1) A fully dynamic (FD) method [Hayashi et al. 2016] that combines a distance
labelling with a graph traversal algorithm to answer distance queries.

(2) An independent set based labelling (IS-L) method [Fu et al. 2013] that combines
a distance labelling with a graph traversal algorithm to answer distance queries.

(3) The pruned landmark labelling (PLL) method [Akiba et al. 2013] which is com-
pletely based on a distance labelling to answer distance queries.

(4) The optimized online bidirectional BFS method which expands search from the
direction with less vertices alternatively to answer distance queries [Hayashi
et al. 2016], and we name this algorithm as BiBFS in our experiments.

Besides these, there are a number of other methods for answering distance queries,
such as HDB [Jiang et al. 2014], RXL and CRXL [Delling et al. 2014], HCL [Jin et al.
2012], HHL [Abraham et al. 2012] and TEDI [Wei 2010]. However, since the exper-
imental results of the previous works [Hayashi et al. 2016; Akiba et al. 2013] have
shown that FD outperforms HDB, RXL and CRXL, and PLL outperforms HCL, HHL
and TEDI, we omit the comparison with these methods.

In our experiments, the implementations of the baseline methods FD, IS-L and
PLL were provided by their authors, which were all implemented in C++. We used
the same parametric settings for running these methods as suggested by their au-
thors. For instance, the number of landmarks is chosen to 20 for FD [Hayashi et al.
2016], the number of bit-parallel BFSs is set to 50 for PLL [Akiba et al. 2013], and
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Figure 4.7: Distance distribution of 100,000 random pairs of vertices on all the datasets.

k is 6 for graphs larger than 1 million vertices for IS-L [Fu et al. 2013]. To make a
consistent comparison with the baseline methods [Hayashi et al. 2016; Akiba et al.
2013; Fu et al. 2013], we chose top 20 vertices as landmarks except for the largest two
datasets i.e., Clueweb09 and Clueweb12 after sorting based on decreasing order of
their degrees. We set the number of landmarks to 150 for Clueweb09 and Clueweb12
because a small number of landmarks on such large networks do not help much in
pruning the search space. We also used 32-bit integers to represent vertices and 8-bit
integers to represent distances.

4.7.3 Test Data Generation

We randomly sampled 100,000 pairs of vertices from all pairs of vertices in each
network, i.e., V × V, to evaluate the query performance. The distance distribution
of these 100,000 randomly sampled pairs of vertices is shown in Figure 5.4(a)-5.4(b),
from which we can confirm that most of pairs of vertices in these networks have a
small distance ranging from 2 to 8. Table 4.2 also lists the average distance in each
network using these 100,000 randomly sampled pairs of vertices. We can see that
most of these networks have a small average distance between 3 to 8.

4.8 Results and Discussion

In this section, we discuss the experimental results of our proposed algorithms, and
compare the performance of our algorithms with the baseline algorithms.
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Table 4.3: Comparison between the construction time (CT) and query time (QT) of our meth-
ods, i.e., HL-P and HL, and the state-of-the-art methods, where CT is the CPU clock time in
seconds, and QT is the average query time in milliseconds. HL-P refers a parallel version
of HL and DNF denotes that a method did not finish in one day (24 hours) or ran out of
memory (512 GB).

Dataset
Construction Time (CT) [s] Query Time (QT) [ms]

HL-P HL FD PLL IS-L HL FD PLL IS-L BiBFS
Youtube 0.15 1.46 3.56 83.8 351 0.005 0.007 0.001 1.913 56.76
Skitter 0.28 2.68 8.31 389 1,042 0.027 0.018 0.003 3.556 129.2
Flickr 0.30 3.17 10.8 756 8,359 0.007 0.011 0.003 33.76 162.6
Wikitalk 0.22 1.93 4.68 39.5 225 0.005 0.006 0.001 1.301 48.63
Hollywood 0.56 6.32 24.7 12,679 DNF 0.025 0.033 0.015 – 328.9
Orkut 2.55 24.6 90.3 DNF DNF 0.102 0.097 – – 1,139
Enwiki 2.79 24.4 91.1 11,530 DNF 0.052 0.031 0.005 – 1,042
Livejournal 1.94 20.3 48.3 DNF 20,583 0.043 0.043 – 56.85 900.1
Indochina 0.92 9.06 30.1 4,183 DNF 0.712 0.741 0.003 – 405.2
IT 7.41 76.4 231 DNF DNF 1.069 0.919 – – 3,245
Twitter 57.1 540 2,010 DNF DNF 0.863 0.168 – – 27,148
Friendster 113 1,202 3,476 DNF DNF 0.816 0.814 – – 53,979
UK 22.6 176 625 DNF DNF 3.443 5.234 – – 8,189
Clueweb09 DNF 46,366 DNF DNF DNF 16.94 – – – –
Clueweb12 DNF 22,370 DNF DNF DNF 9.375 – – – –

4.8.1 Performance Comparison

To evaluate the performance of our proposed methods, we compared our approach
with the baseline methods in terms of the construction time of labelling (CT), the
size of labelling (LS), and querying time to perform distance queries (QT). The ex-
perimental results are presented in Tables 4.3 and 4.4, where DNF denotes that a
method did not finish in one day or ran out of memory.

Construction Time

As shown in Table 4.3, our proposed method (HL) has successfully constructed the
distance labelling on all the datasets for a significantly less amount of time than
the state-of-the-art methods. As compared to FD, our method is on average 5 times
faster and have results on all the datasets. In contrast to this, FD fails to construct
labelling for the largest two dataset Clueweb09 and Clueweb12. PLL fails for 7 out of
12 datasets, including the datasets Orkut and Livejournal which have less than 120
millions of edges, due to its prohibitively high preprocessing time and memory re-
quirements for building labelling. IS-L fails to construct labelling for all the datasets
that have edges more than 100 million due to its very high cost for computing in-
dependent sets on massive networks, i.e. it fails for 9 out of 12 datasets. We can
also see from Table 4.3 that the parallel version of our method (HL-P) is much faster
than the sequential version (HL). Compared with FD, HL-P is more than 50-70 times
faster for the two large datasets Friendster and UK. This confirms that our method
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Table 4.4: Comparison between the labelling size (LS) of our methods, i.e., HL(8) and HL,
and the state-of-the-art methods. HL(8) refers to the compressed version of HL that uses
8-bits representation of vertices and ALS is the average number of entries per label.

Dataset
Labelling Size (LS) Average Label Size (ALS)

HL(8) HL FD PLL IS-L HL FD PLL IS-L
Youtube 20 MB 48 MB 83 MB 1.25 GB 289 MB 9 20+64 65+50 24
Skitter 42 MB 102 MB 153 MB 2.45 GB 507 MB 12 20+64 138+50 51
Flickr 34 MB 81 MB 152 MB 3.69 GB 679 MB 10 20+64 290+50 50
Wikitalk 41 MB 100 MB 74 MB 2.05 GB 201 MB 9 20+64 12+50 21
Hollywood 27 MB 67 MB 263 MB 12.6 GB – 12 20+64 2206+50 –
Orkut 70 MB 170 MB 711 MB – – 11 20+64 – –
Enwiki 82 MB 200 MB 608 MB 12.6 GB - 10 20+64 471+50 –
Livejournal 122 MB 299 MB 663 MB – 3.8 GB 13 20+64 – 69
Indochina 81 MB 191 MB 840 MB 18.7 GB – 5 20+64 441+50 –
IT 855 MB 2.03 GB 4.73 GB – – 10 20+64 – –
Twitter 1.14 GB 2.78 GB 3.83 GB – – 14 20+64 – –
Friendster 2.43 GB 5.97 GB 9.14 GB – – 19 20+64 – –
UK 1.78 GB 4.29 GB 11.8 GB – – 8 20+64 – –
Clueweb09 163 GB 404 GB – – – 51 – – –
Clueweb12 48.9 GB 121 GB – – – 27 – – –

can construct labelling very efficiently and is scalable on large networks with billions
of vertices and edges.

Labelling Size

As we can see from Table 4.4 that the labelling sizes of all the datasets constructed
by the proposed method are significantly smaller than the labelling sizes of FD and
much smaller than PLL and IS-Label. Specifically, our labelling sizes using 32-bits
representation of vertices (HL) are 2-5 times smaller than FD except for Clueweb09
and Clueweb12 (as discussed before, FD fails to construct labelling for these two
datasets), 7 times smaller than IS-Label on Skitter, Flickr and Livejournal and more
than 60 times smaller than PLL for Skitter, Flickr, Hollywood, Enwiki and Indochina.
The compressed version of our method that uses 8-bits representation of vertices (i.e.
HL(8)) produces further smaller labelling size as compared to uncompressed version
(HL). Here, It is important to note that the labelling sizes of almost all the datasets
are also significantly smaller than the original sizes of the datasets shown in Table
4.2. This also shows that our method is highly scalable on large networks in terms of
the labellng sizes.

Query Time

The average query time of our method (HL) is comparable with FD and PLL and
faster than IS-L. Particularly, the average query time of our method on Flickr and
Hollywood is is very close to PLL and faster than FD. This is due to a very small av-
erage labelling size (i.e., 12) as compared with FD and PLL (i.e., 20+64 and 2206+50,
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Figure 4.8: Construction time using our method HL under 10-50 landmarks on all the
datasets.

respectively) and a very small average distance. The average query time of HL on
Twitter is 3 times slower than FD. This may be due to a large portion of covered
pairs by FD as shown in Figure 4.11 which contributes towards an effective bounded
traversal on the sparsified network since the landmarks of Twitter have very high de-
grees and the average distance is also very small. Moreover, the average query times
of HL and FD on Indochina, IT, Friendster and UK are more than 1ms due to com-
paratively large average distances than other datasets as shown in Figure 4.7(b). Note
that all the baseline methods are not scalable enough to have results for Clueweb09
and Clueweb12, and the average query time of our method HL on these two largest
datasets is small because of a very large portion of covered pairs and a small aver-
age label size. We also report the average query time for online bidirectional BFS
algorithm (BiBFS) using randomly selected 1000 pairs of vertices in Table 4.3. As we
can see that BiBFS has considerably long query times, which are not practicable in
applications for performing distance queries in real time.

4.8.2 Performance under Varying Landmarks

We have also evaluated the performance of our method (HL) by varying the number
of landmarks between 10 and 50, which are again selected based on highest degrees.

Construction Time

The construction time of our method HL against different numbers of landmarks
(from 10 to 50) are shown in Figure 4.8. We can see that the construction time is linear
in terms of the number of landmarks, which confirms the scalability of our method.
In Figure 4.8(a)-4.8(b), our method is able to construct labelling for 7 datasets under
50 landmarks from 20 seconds to 2 minutes, which is not possible with any state-
of-the-art methods. In Figure 4.8(c), the construction time using 50 landmarks of
Friendster is 3 times faster and the construction time of UK is 4 times faster than FD
using only 20 landmarks as shown in Table 4.3. Figure 4.8(d) shows the construction
time for Clueweb09 and Clueweb12 which has billions of vertices and edges. The
significant improvement in construction time allows us to compute labelling for a
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Figure 4.9: Labelling size produced by our method HL under 10-50 landmarks and FD under
20 landmarks on all the datasets.
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Figure 4.10: Query time using our method HL under 10-50 landmarks on all the datasets.

large number of landmarks, leading to better pair coverage ratios to tighten upper
distance bounds (will be further discussed in Section 4.8.2).

Labelling Size

Figure 4.9 shows the labelling sizes of HL using 10, 20, 30, 40 and 50 landmarks
on all the dataset, and of FD using only 20 landmarks on all the datasets except
for Clueweb09 and Clueweb12 (as discussed before, FD fails to construct labelling
for these two largest datasets). It can be seen that the labelling size of HL increase
linearly with the increased number of landmarks, and even the labelling sizes of HL
using 50 landmarks are almost always smaller than the labelling sizes constructed
by FD using only 20 landmarks. This reduction in labelling sizes enables us to save
space and memory, thus makes our method scalable on large networks.
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Figure 4.11: Pair coverage ratios using our method HL under 10-50 landmarks and using FD
on all the dataset.

Query Time

Figure 4.10 shows the impact of using different numbers of landmarks between 10
and 50 on average query time of our method. The average query time either decrease
or remain the same when the number of landmarks increases, except for Orkut when
using 30 landmarks and for Friendster when using landmarks greater than 20. In
particular, on Friendster, labelling sizes are very large as shown in Figure 4.9 and the
fraction of covered pairs (i.e., pair coverage ratio) is very small as shown in Figure
4.11, which may have slowed down our query processing due to a longer time for
computing upper distance bounds and ineffective use of bounded-distance traversal.

Pair Coverage

Figure 4.11 presents the ratios of pairs of vertices covered by at least one landmark
(i.e., pair coverage ratios) in HL using 10-50 landmarks and in FD using 20 land-
marks. As we can observe that the pair coverage ratios for HL increase when the
number of landmarks increases and 40 turns out to be the better choice on the num-
ber of landmarks for most of the datasets. Specifically, pair coverage ratios on Orkut,
Enwiki, Indochina and UK with 40 landmarks are good, resulting in better query
times than using 20 landmarks, as shown in Figure 4.10. On datasets such as Holly-
wood and it2004, 30 landmarks are a better option than 40 landmarks because they
only slightly differ in the pair coverage ratios and query times w.r.t. using 40 land-
marks, but with reduced labelling sizes. The pair coverage ratios by FD are greater
than HL on all the datasets except for Clueweb09 and Clueweb12, which may be the
reason behind its better query times for some datasets as shown in Table 4.3.
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4.9 Summary

In this chapter, we have studied the distance query problem on static graphs. To
address this problem, we developed a method that can scale to answer exact shortest-
path distance queries over billion-scale networks. The key ideas of this method are a
highway cover distance labelling and a bounded distance querying framework.

More specifically, we formulated a novel distance labelling property called high-
way cover distance labelling and proposed an efficient labelling construction algo-
rithm that can efficiently construct a highway cover distance labelling. Then, we
formulated a bounded distance querying framework that combines a highway cover
distance labelling with distance-bounded shortest-path search to enable fast distance
computation. We proved that our proposed labelling construction algorithm can
construct a unique highway cover distance labelling that is independent of the order
of landmarks and is also highway cover minimal. We further developed a parallel
algorithm to speed up the labelling construction process by conducting BFSs simulta-
neously w.r.t. multiple landmarks. We showed in our experiments that our proposed
method significantly outperforms the existing state-of-the-art methods.



Chapter 5

FulHL: Fully Dynamic Labelling
For Distance Queries

5.1 Overview

In this chapter, we study the problem of answering exact shortest-path distance
queries in large dynamic networks whose topological structure evolves over time in
the single-update setting. We propose a fully dynamic method to efficiently answer
distance queries over large graphs that are changed by edge insertion and deletion.
At its core, our proposed method incorporates two building blocks: (i) incremental
algorithm for handling incremental update operations, i.e. edge insertion, and (ii)
decremental algorithm for handling decremental update operations, i.e. edge deletion.
These two building blocks are built in a highly scalable framework of distance query
answering proposed in Chapter 4. Our fully dynamic method enables fast processing
of graph changes and can scale to graphs with billions of vertices and edges, without
compromising performance on query time and labelling size.

Table 5.1 summarizes the performance of our fully dynamic method FulHL
against with the two state-of-the-art methods FulPLL [Akiba et al. 2014; D’angelo
et al. 2019] and FulFD [Hayashi et al. 2016]. We present the results for the largest
network that was previously evaluated by each of these methods. We can see that
FulHL significantly outperforms FulPLL and FulFD in all three dimensions, i.e., up-
date time, query time and labelling size, and can scale to billion-scale networks. On
the other hand, FulPLL and FulFD fail to scale to networks of size over 16 millions
and 3.7 billions of edges, respectively.

The main contributions of this chapter are as follows,

• Our incremental algorithm overcomes the challenge of eliminating outdated
and redundant distance entries in order to preserve the minimality of labelling.
None of the previous studies have addressed this challenge because detecting
outdated and redundant distance entries is computationally expensive [Akiba
et al. 2014]. When an edge is inserted, the previous studies only add new
distance entries or modify existing distance entries without removing outdated
and redundant ones. This however leads to an ever increasing size of labelling.
Then, both query performance and space efficiency deteriorate over time.

51
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Table 5.1: Flickr, UK and Clueweb12 are the largest networks evaluated by the methods
FulPLL [Akiba et al. 2014; D’angelo et al. 2019], FulFD [Hayashi et al. 2016] and FulHL (this
work), respectively, where “− ” indicates no result due to scalability issues.

Network
Network Size Update Time Query Time Labelling Size
|V| |E| FulPLL FulFD FulHL FulPLL FulFD FulHL FulPLL FulFD FulHL

Flickr 1.7M 16M 6810 ms 7.655 ms 0.053 ms 0.009 ms 0.012 ms 0.007 ms 12.7 GB 152 MB 34 MB
UK 106M 3.7B – 337.6 ms 1.075 ms – 5.858 ms 3.488 ms – 11.8 GB 1.78 GB
Clueweb12 ∼1B 43B – – 1796 ms – – 9.375 ms – – 49.1 GB

• Our decremental algorithm can efficiently identify affected vertices and up-
date their labels without compromising on query time and labelling size. We
achieve this based on two observations. The first is to characterize a special
kind of vertices, called anchor vertices, which are critical for updating labelling.
The second is to prune unnecessary searches by characterizing prunable vertices,
thereby improving update efficiency. Previous work [D’angelo et al. 2019] has
reported that edge deletion requires much longer update time than edge inser-
tion, but no interpretation was provided. We fill in this gap by analyzing the
fundamental differences between edge insertion and edge deletion on dynamic
graphs.

• We theoretically prove the correctness of our fully dynamic method and show
that it preserves the minimality of labelling under update operations, including
edge insertion and edge deletion. Note that, by leveraging the property of
highway cover [Farhan et al. 2019], the minimal size of a distance labelling in
this work is much smaller than the size of a 2-hop cover labelling in the previous
work [Akiba et al. 2013; Hayashi et al. 2016]. We also provide a complexity
analysis for our fully dynamic method.

• To empirically verify the efficiency and scalability of our fully dynamic method,
we conduct experiments using 15 real-world large networks across different do-
mains. In particular, our methods can perform updates within a couple of sec-
onds even on networks with billions of vertices and edges, while still answering
distance queries efficiently in the order of milliseconds and maintaining very
small labelling sizes.

The rest of this chapter is organized as follows. Section 5.2 introduces the prob-
lem definition. Section 5.3 formulates the fully dynamic framework and presents
two novel algorithms for reflecting incremental and decremental changes on graphs.
Section 5.4 shows that the proposed algorithms are correct and preserve the prop-
erty of minimality. Section 5.5 discusses the experimental results, which compare the
performance of our proposed algorithms against the baseline algorithms. Section 5.7
summarises the chapter.
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5.2 Problem Definition

We define the distance query problem on dynamic graphs as the fully dynamic la-
belling problem. Given a graph that is dynamically changed by edge insertions or
deletions over time, the fully dynamic labelling problem is concerned about effi-
ciently updating a distance labelling to ensure that distance queries can be correctly
answered on the changed graph. Below, we first define the incremental and decre-
mental update problems in terms of edge insertions and edge deletions on a graph,
respectively. Then, we define the fully dynamic labelling problem for addressing the
distance query problem on dynamic graphs.

Definition 7 (Incremental Update Problem). Let G = (V, E) and G′ = (V, E′) be two
graphs, and G be changed to G′ by edge insertions. The incremental update problem is,
given a highway cover distance labelling Γ over G such that Q(u, v, Γ) = dG(u, v) for any
two vertices u and v in G, to compute a distance labelling Γ′ over G′ such that Q(u, v, Γ′) =
dG′(u, v) for any two vertices u and v in G′.

Definition 8 (Decremental Update Problem). Let G = (V, E) and G′ = (V, E′) be two
graphs, and G be changed to G′ by edge deletions. The decremental update problem is,
given a highway cover distance labelling Γ over G such that Q(u, v, Γ) = dG(u, v) for any
two vertices u and v in G, to compute a distance labelling Γ′ over G′ such that Q(u, v, Γ′) =
dG′(u, v) for any two vertices u and v in G′.

Definition 9 (Fully Dynamic Labelling Problem). Let G = (V, E) and G′ = (V, E′)
be two graphs, and G be changed to G′ by edge insertions or deletions. The fully dy-
namic labelling problem is, given a highway cover distance labelling Γ over G such that
Q(u, v, Γ) = dG(u, v) for any two vertices u and v in G, to compute a distance labelling Γ′

over G′ such that Q(u, v, Γ′) = dG′(u, v) for any two vertices u and v in G′.

5.3 Fully Dynamic Labelling Framework

In this section, we formulate a fully dynamic framework for distance queries on large
graphs. This framework consists of two novel dynamic algorithms: incremental algo-
rithm and decremental algorithm, which efficiently update a highway cover labelling
after edge insertions or edge deletions, respectively. We first introduce a key search
strategy, i.e., jumped-and-pruned search, used by both incremental algorithm and decre-
mental algorithm. Then, we present the algorithmic details of these two algorithms.

5.3.1 Jumped-and-Pruned Search

To efficiently reflect changes on graphs, we develop a jumped-and-pruned search
strategy for updating highway cover distance labelling. This strategy requires us to
identify two special types of vertices in a fully dynamic graph: affected vertices and
anchor vertices.
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Affected Vertices

When an update operation occurs on a graph G = (V, E), no matter whether it is an
edge insertion or an edge deletion, there always exists a subset of “affected” vertices
in V whose labels need to be updated as a consequence of this update operation on
the graph. But, can we identify such vertices efficiently? To answer this question, we
define the notion of affected vertices and analyse their properties.

Definition 10 (Affected Vertex). Let G = (V, E) and R ⊆ V be a set of landmarks on G.
A vertex v ∈ V is affected by G ↪→ G′ if PG(v, r) 6= PG′(v, r) holds for at least one r ∈ R,
and unaffected otherwise.

For simplicity, we use Λr = {v ∈ V | PG(v, r) 6= PG′(v, r)} to denote the set of all
affected vertices w.r.t. a landmark r and Λ =

⋃
r∈R Λr refers to the set of all affected

vertices. Note that, vertices affected by G ↪→ G′ are the same as vertices affected by
G′ ↪→ G, i.e., the same set of vertices is affected when inserting an edge (a, b) into a
graph G or deleting an edge (a, b) from a graph G′.

Example 10. Consider Figure 5.1(a) in which 0, 10 and 4 are three landmarks. After in-
serting an edge (2, 5) in Figure 5.1(b)-(d), we have Λ = {0, 1, 2, 5, 8, 9, 10, 13, 14} because
Λ0 = {5, 8, 9, 10, 13, 14}, Λ10 = {0, 1, 2} and Λ4 = {2}.
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Figure 5.1: An illustration of affected vertices by an edge insertion (2, 5) occurring on the
graph in (a), where three landmarks 0, 10 and 4 are highlighted in yellow. In (b)-(d), the
affected vertices w.r.t. the landmarks 0, 10 and 4 are highlighted in green, respectively. Note
that the affected vertices w.r.t. the landmarks 0, 10 and 4 would remain the same if an edge
deletion (2, 5) occurs on the graph in (b).

The following lemma states how affected vertices relate to an edge being inserted
or deleted.

Lemma 7. When G ↪→ G′ for an edge insertion (a, b), a vertex v ∈ Λr iff there exists a
shortest-path between v and r in G′ passing through (a, b). Similarly, when G ↪→ G′ for
an edge deletion (a, b), a vertex v ∈ Λr iff there exists a shortest-path between v and r in G
passing through (a, b).

Proof. For any vertex v ∈ V, if dG′(r, v) = dG′(r, a) + dG′(a, b) + dG′(b, v) after insert-
ing an edge (a, b) and dG(r, v) = dG(r, a) + dG(a, b) + dG(b, v) after deleting an edge
(a, b), then by Definition 10, PG(v, r) 6= PG′(v, r). Thus, v is an affected vertex.
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A naive way of finding affected vertices would be to apply Definition 10 directly,
by computing the set of all shortest paths from a landmark to each vertex on G and
G′, respectively, and comparing them. However, the computational cost of this would
be prohibitive, even for small graphs. The more practical approach is to explore only
affected shortest paths rather than all to efficiently reflect changes in a graph.

Following Lemma 7, we have the following corollary.

Corollary 3. When G ↪→ G′ with an inserted or deleted edge (a, b), if dG(r, a) = dG(r, b)
holds for a landmark r ∈ R, then we have Λr = ∅.

This corollary allows us to reduce the search space of affected vertices by elimi-
nating landmarks r with dG(r, a) = dG(r, b). Without loss of generality, we assume
that dG(r, b) > dG(r, a) w.r.t. a landmark r in the rest of this section.

The following lemma enables us to further reduce the search space of affected
vertices by “jumping” from the root of a BFS to the vertex b.

Lemma 8. When G ↪→ G′ with an inserted or deleted edge (a, b), dG(r, v) ≥ dG(r, a) + 1
hold for any affected vertex v ∈ Λr.

Proof. By Lemma 7, there exists a shortest-path from any affected vertex v to r going
through inserted or deleted edge (a, b) and thus through a. Since a is unaffected and
the distance from a to v is equal to or greater than 1, dG(r, v) ≥ dG(r, a) + 1 must
hold.

Anchor Vertices

Although efficiently identifying affected vertices is critical for dynamic algorithms,
it is equally important to efficiently update the labels of affected vertices against
changes on a graph. A naive approach is to run a full BFS from each landmark r on
the changed graph in order to decide the new distances of affected vertices w.r.t. a
landmark r. However, this is inefficient, particularly if only a very small portion of
vertices in a graph is affected by an update operation. Can we pinpoint the differences
between the old labels of affected vertices in an original graph and their new labels in the
changed graph, so as to change a distance labelling in an efficient way? To answer this
question, we need to identify a special kind of affected vertices, called anchor vertices,
which have the smallest distance to a landmark r on the changed graph.

Definition 11 (Anchor Vertex). When G ↪→ G′, a vertex v ∈ V is an anchor vertex w.r.t.
a landmark r in G′ if v ∈ Λr and dG′(r, v) ≤ dG′(r, u) for any vertex u ∈ Λr.

The following lemma states that the exact distances of anchor vertices can be
inferred from their unaffected neighbors. Note that this does not generally hold for
every affected vertex. Let d∗G′(r, v) refer to a contingent distance between a landmark
r and a vertex v ∈ Λr in G′, which is the minimum length of paths between v and
r going through only unaffected vertices in G′. If a vertex v ∈ Λr in G′ has no any
unaffected neighbors, we consider d∗G′(r, v) = ∞.
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Lemma 9. When G ↪→ G′, if a vertex v ∈ Λr has the smallest contingent distance to
a landmark r among all vertices in Λr, then v is an anchor vertex w.r.t. landmark r and
dG′(r, v) = d∗G′(r, v) holds.

Proof. We prove this by contradiction. Assume that dG′(r, v) 6= d∗G′(r, v) for such a
vertex v. Then dG′(r, v) < d∗G′(r, v) must hold because dG′(r, v) is the shortest-path
distance. Since d∗G′(v, r) is the minimum length of all paths between v and r that
go through only unaffected vertices, one shortest-path between v and r must go
through at least one affected vertex v′ ∈ Λr and d∗G′(v, r) > d∗G′(v

′, r) must hold. This
contradicts with the assumption that v has the minimum contingent distance to r in
Λr. Hence, dG′(r, v) = d∗G′(r, v). Accordingly, v must be an anchor vertex w.r.t. r.

The observation here is that, once anchor vertices are identified, we can locally
infer their new distances from their unaffected neighbors. Then, new distances of
other affected vertices can be inferred inductively by a level-by-level propagation in
a BFS tree from r through unaffected neighbors and affected neighbors whose new
distances have already been inferred.

Example 11. Firstly, we consider Figure 5.2(a) in which the edge (2, 5) is inserted. This
causes the vertices {5, 8, 9, 10, 13, 14} to be affected w.r.t. the landmark 0. Among these
vertices, the vertex 5 has the smallest contingent distance (i.e., the distance through unaffected
vertices) and thus is an anchor vertex. Now we consider Figure 5.3(a) in which the edge (2, 5)
is deleted. This causes the same set of vertices to be affected w.r.t. the landmark 0. However, in
this case, the vertex 5 has the contingent distance ∞ because there is no path between vertex
5 and landmark 0 passing through only unaffected vertices. Instead, the vertices {8, 10} have
the smallest contingent distances and thus are anchor vertices in this case.

Jumped-and-Pruned BFS

Our dynamic algorithms, including both incremental and decremental algorithms,
use a jumped-and-pruned search strategy to efficiently update a distance labelling. The
key idea is that, instead of conducting a full BFS from a landmark to all vertices, we
conduct a partial BFS (named as JP-BFS) that jumps from the root of a BFS directly
to affected vertices, thereby skipping unaffected vertices. Further, a JP-BFS exploits
the property of highway cover labelling (i.e., an distance entry of a vertex v w.r.t.
a landmark r can be pruned if there is another landmark lying in a shortest-path
between v and r) to prune affected vertices as many as possible after its jump.

Definition 12 (Prunable Vertex). When G ↪→ G′, a vertex v is prunable w.r.t. a landmark
r iff there exists a landmark r′ ∈ R− {r} such that all of the following conditions hold:

(1) dG(r, v) = dG(r, r′) + dG(r′, v);

(2) dG′(r, v) = dG′(r, r′) + dG′(r′, v);

(3) dG(r′, v) = dG′(r′, v).

A vertex v is weakly prunable iff it only satisfies the conditions (2) and (3).
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Intuitively, the conditions in the above definition state that we can prune a vertex
v only if there is another landmark r′ lying in a shortest-path between this vertex and
the landmark r in both G and G′, i.e. (1) and (2), and the distance from this vertex
to r′ also remains the same in both G and G′, i.e. (3). A vertex v satisfying these
three conditions implies that its label w.r.t. landmark r remains the same in G and
G′, and a JP-BFS can thus prune v as well as the children of v from search. When
a vertex v is weakly prunable, it means that the label of v may contain outdated or
redundant entries w.r.t. landmark r, which would affect the correctness of a highway
cover distance labelling in the case of edge deletion but not edge insertion. In fact,
the case of weakly prunable vertices can only occur during edge insertion due to
newly added shortest path(s).

The following example illustrates the notions of prunable vertex and weakly
prunable vertex. We will discuss further how vertices are pruned during a JP-BFS in
our incremental and decremental algorithms in Sections 5.3.2, 5.3.3 and 5.3.4, respec-
tively.

Example 12. Let us consider the vertex 8 in Figure 5.2(a) which is pruned because it satisfies
all three conditions in Definition 12. We can see that the path 〈0, 1, 4, 8〉 exists before and
after adding the edge (2, 5) and passes through the landmark 4 satisfying all the conditions
(1), (2) and (3). For the vertex 14 in Figure 5.2(a), it is weakly pruned due to the newly added
path 〈0, 2, 5, 10, 14〉 through landmark 10 that did not exist before adding the edge (2, 5) thus
satisfying only the conditions (2) and (3). Now we consider the pruned vertices highlighted
in Figure 5.3(a). All of these vertices satisfy the three conditions in Definition 12, e.g., we
prune from 10 because a path 〈0, 3, 6, 10〉 exists between 0 and 10 before and after deleting
the edge (2, 5).

In a nutshell, a JP-BFS has the following two features: (1) Jumping from the root
(i.e., a landmark) to affected vertices so as to traverse locally, rather than globally; (2)
Pruning affected vertices that are prunable or weakly prunable whenever possible.

Algorithmic Design

Before introducing our incremental and decremental algorithms in detail (as will be
shown in Sections 5.3.2, 5.3.3 and 5.3.4), we briefly discuss how this jumped-and-
pruned search strategy is applied in these algorithms.

In the most general case, two kinds of JP-BFS are needed. One kind of JP-BFS
is to identify affected vertices w.r.t. a landmark r. By Lemmata 7 and 8, such a JP-
BFS jumps from the root r to the vertex b, and starts to identify affected vertices
iteratively through checking neighbors and their old distances. The other kind of
JP-BFS is to update affected vertices w.r.t. a landmark r. By Lemma 9, such a JP-BFS
jumps from the root r to anchor vertices, and starts to update the labels of affected
vertices through a level-by-level propagation in order to infer the new distances of
these affected vertices.

Nonetheless, we notice the following:
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• In the case of edge insertion, there exists exactly one anchor vertex for an in-
serted edge; further, such an anchor vertex can be easily identified according
to the inserted edge. This enables an efficient design for our incremental al-
gorithm which can not only identify affected vertices, but also simultaneously
update the labels of affected vertices through a carefully designed propagation
on new distances. Hence, instead of conducting two separate JP-BFSs, our in-
cremental algorithm merges these two JP-BFSs into one JP-BFS for improving
efficiency. In Section 5.3.2, we will first present an incremental algorithm which
uses two JP-BFSs to perform incremental updates (edge insertions), i.e., first to
find affected vertices and then to update their labels. Then, we will discuss
in Section 5.3.3 how a merged JP-BFS is designed by combining these two JP-
BFSs in our improved incremental algorithm to efficiently perform incremental
updates (i.e. Algorithm 6).

• In the case of edge deletion, finding anchor vertices turns out to be challenging.
For a deleted edge, there may exist multiple anchor vertices; further, these
anchor vertices can be far away from the deleted edge and cannot be identified
without knowing a full picture on how vertices are affected by the deleted
edge. Hence, our decremental algorithm must first find affected vertices in the
first JP-BFS, which leads to identifying anchor vertices, and then update the
labels of affected vertices in the second JP-BFS based on the information about
anchor vertices and affected vertices obtained from the first JP-BFS. Section
5.3.4 will discuss further on how these two separate JP-BFS are designed in our
decremental algorithm (i.e. Algorithm 8).

5.3.2 Incremental Algorithm

In this section, we propose an incremental algorithm, called IncHLb, which performs
incremental updates (edge insertions) in two separate stages i.e., first find affected
vertices and then update their labels. More specifically, this algorithm performs two
JP-BFSs, one for identifying affected vertices and the other for repairing the labels
of affected vertices in order to reflect graph changes into a highway cover labelling.
Algorithm 3 describes the main steps of IncHLb. Below, we discuss them in detail.

Finding Affected Vertices

In the first step, we perform a JP-BFS which starts from the first affected vertex
b and identifies the other affected vertices through local neighborhoods iteratively.
Algorithm 4 describes the process for finding affected vertices. Given a graph G with
an inserted edge (a, b) and a highway cover labelling Γ = (H, L) over G, we conduct
a jumped BFS w.r.t. a landmark r starting from the vertex b with its new depth
π = Q(r, a, Γ) + 1 (Lines 3-4). For every (v, π) ∈ Q, we enqueue all the neighbors of
v that are affected into Q with new distances π + 1 (Lines 7-8) and add v to Λr as
affected vertex (Line 9). This process continues until Q is empty.
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Algorithm 3: Incremental algorithm (IncHLb).
Input: G = (V, E), G′ = (V, E ∪ {(a, b)}), (a, b) /∈ E, Γ = (H, L) over G
Output: Γ′ = (H′, L′) over G

1 foreach r ∈ R do
2 Λr ← FindAffected(G, (a, b), r, Γ)
3 RepairAffected(G′, (a, b), Λr, r, Γ)

Algorithm 4: Finding affected vertices for IncHLb.

1 Function FindAffected(G, (a, b), r, Γ)
2 Q ← ∅, Λr ← ∅
3 π ← Q(r, a, Γ) + 1
4 Enqueue (b, π) to Q
5 while Q is not empty do
6 Dequeue (v, π) from Q
7 foreach w ∈ N(v) s.t. Q(r, w, Γ) ≥ π + 1 do
8 Enqueue (w, π + 1) to Q
9 Λr = Λr ∪ {v}

10 return Λr

Example 13. Figure 5.1 illustrates how our algorithm finds affected vertices as a result of
inserting an edge (2, 5). The BFS rooted at landmark 0 is depicted in Figure 5.2(b), which
jumps to vertex 5 and finds six affected vertices {5, 8, 9, 10, 13, 14}. The BFS rooted at
landmark 10 is depicted in Figure 5.2(c), which jumps to vertex 2 and finds three affected
vertices {0, 1, 2}. Similary, the BFS rooted at landmark 4 is depicted in Figure 5.2(d), which
jumps to vertex 2 and finds only one affected vertex {2}.

Repairing Affected Vertices

Now, to repair the labels of all affected vertices, we perform the second JP-BFS which
again starts from the first affected vertex b and is performed only on affected vertices.
Further, to avoid unnecessary computations, we distinguish two kinds of affected
vertices: (1) affected vertices that are prunable (Definition 12) and can thus be easily
repaired by removing an entry from their labels; (2) affected vertices whose labels
need to be repaired with accurately calculated distances on a changed graph.

Algorithm 12 describes our algorithm for repairing affected vertices. Given a
graph G with an inserted edge (a, b) and a set of affected vertices Λr, we conduct
a JP-BFS w.r.t. a landmark r starting from the vertex b with its new distance π =
dG(r, a) + 1 (Lines 3-4). We use two queues Qlabel and Qprune to process vertices to
be labeled or pruned, respectively. If b is pruned, we enqueue (b, π) to Qprune and
remove the entry of r from the labels of affected vertices (Line 25). Otherwise, we
enqueue (b, π) to Qlabel and start processing vertices in Qlabel (Line 5). For each
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Algorithm 5: Repairing affected vertices for IncHLb.

1 Function RepairAffected(G′, (a, b), Λr, r, Γ)
2 Qlabel ← ∅, Qprune ← ∅
3 π ← dG(r, a) + 1
4 Enqueue (b, π) to Qprune if prunable; otherwise to Qlabel
5 while Qlabel is not empty do
6 while (v, π) ∈ Qlabel at depth π do
7 forall w ∈ N(v) s.t. w ∈ Λr at depth π + 1 do
8 if w is prunable then
9 if w is a landmark then

10 δH(r, w)← π + 1
11 else
12 Remove r from L(w)

13 Enqueue (w, π + 1) to Qprune

14 else
15 Add/Modify {(r, π + 1)} in L(w)
16 Enqueue (w, π + 1) to Qlabel

17 Remove w from Λr

18 Dequeue (v, π) from Qlabel

19 while (v, π) ∈ Qprune at depth π do
20 forall w ∈ N(v) s.t. w ∈ Λr at depth π + 1 do
21 Remove r from L(w)
22 Remove w from Λr
23 Enqueue (w, π + 1) to Qprune

24 Dequeue (v, π) from Qprune

25 Remove entry r from remaining vertices in Qprune

vertex v ∈ Qlabel at depth π, we examine its affected neighbors w at depth π + 1. If
w is pruned, then if w is a landmark, we update the highway (Line 10); otherwise we
remove the entry of r from L(w) (Line 12) because there must exist another landmark
in the shortest path from w to r and add (w, π + 1) to Qprune (Line 13). Otherwise,
we add/modify the entry of r with the new distance π + 1 in L(w) and enqueue w
to Qlabel (Lines 15-16). After that, we remove w from Λr (line 17). Then, for each
(v, π) ∈ Qprune, we remove r from the labels of affected neighbors of v, remove these
affected vertices from Λr and enqueue them to Qprune (Lines 19-24). We process these
two queues, one after the other, until Qlabel is empty. Finally, we remove the entry of
r from the labels of the remaining vertices in Qprune (Line 25).

Example 14. Figure 5.2 illustrates how our algorithm repairs labels as a result of inserting
an edge (2, 5). The JP-BFS for landmark 0 is depicted in Figure 5.2(a), which jumps to
vertex 5 and repairs three affected vertices {5, 9, 10}. The vertices {8, 13, 14} are pruned
by landmarks 4 and 10. The JP-BFS for landmark 10 is depicted in Figure 5.2(b), in which
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vertices {0, 2} are repaired and vertex 1 is pruned by landmarks 0 and 4. Similarly, the
JP-BFS for landmark 4 is depicted in Figure 5.2(c), in which none of the vertices is repaired
and vertex 2 is pruned by landmarks 0.

5.3.3 Improved Incremental Algorithm

Now we present our improved incremental algorithm, called IncHL. Unlike the pre-
vious incremental algorithm IncHLb, this algorithm unifies two separate processes
into a single process, i.e., find affected vertices and update their labels simultaneously.
More specifically, this algorithm combines two JP-BFSs into one JP-BFS in order to
efficiently update a highway cover labelling to reflect graph changes (i.e., edge inser-
tions).

Algorithm 6: Improved incremental algorithm IncHL.
Input: G = (V, E), G′ = (V, E ∪ {(a, b)}), (a, b) /∈ E, Γ = (H, L) over G
Output: Γ′ = (H′, L′) over G′

1 foreach r ∈ R with dG(r, b) > dG(r, a) do
2 Q ← ∅, Vin f er

r ← ∅, π ← dG(r, a) + 1
3 Enqueue (b, π) to Q
4 while Q is not empty do
5 Dequeue (v, π) from Q
6 if v is prunable then
7 if v is a landmark then
8 δH(r, v)← π (Updating H)
9 end

10 else
11 Update(r, v, π, Vin f er

r , ∅ )
12 foreach w ∈ N(v) and dG(r, w) > π do
13 Enqueue (w, π + 1) to Q
14 end
15 end
16 Add (v, π) to Vin f er

r

17 end
18 end

We start with the following lemma that characterises anchor vertices in the case
of edge insertion.

Lemma 10. For G ↪→ G′ with an edge insertion (a, b), if dG(r, a) < dG(r, b) holds for a
landmark r ∈ R, then b must be the only anchor vertex w.r.t. the landmark r.

By the above lemma, since b is the only anchor vertex in the case of edge inser-
tion, our incremental algorithm IncHL is carefully designed to merge two JP-BFSs
(i.e., one for identifying affected vertices and the other for updating the labels of
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Algorithm 7: Updating the label L(v).

1 Function Update(r, v, π, Vin f er
r , Vunin f er

r )

2 Vparent(v) = {w | w ∈ N(v) and ((w, π) ∈ Vin f er
r or ((w, π′) /∈ Vunin f er

r and
Q(r, w, Γ) = π − 1))}

3 if ∀w ∈ Vparent(v) s.t. r appears in L(w) then
4 Add/Modify (r, π) to L(v)
5 else
6 Remove r from L(v) (if exists)
7 end
8 end

affected vertices) into one JP-BFS to identify affected vertices and updates their la-
bels simultaneously. This significantly improves update efficiency for edge insertion.
Another insight we obtain is that a large amount of weakly prunable vertices can
be pruned away during this merged JP-BFS to further considerably improve update
efficiency.

Algorithm 6 describes the detailed steps of our incremental algorithm. Given
a graph G with an inserted edge (a, b) and a highway cover labelling Γ = (H, L)
over G, we conduct one JP-BFS for each landmark r ∈ R starting from the vertex
b with its new distance π = Q(r, a, Γ) + 1, and enqueue (b, π) into Q (Lines 1-3,
Algorithm 6). To identify all affected vertices and update their labels, this JP-BFS
works as follows. For every (v, π) ∈ Q, if v is prunable, then we stop the search from
v by simply updating the highway H (Lines 6-9, Algorithm 6). This also eliminates
weakly prunable vertices and we will prove this in Section 5.4. Otherwise, we update
the label of v in Function Update using the neighbors of v that appear in at least
one shortest-path between v and r in the changed graph G′, i.e., Vparent(v) (Line 2,
Update). Based on Vparent(v), we update L(v) as follows. If there exists at least one
vertex w ∈ Vparent(v) that does not contain r in its label, then there must exist another
landmark in a shortest-path between v and r, and we thus remove r from L(v) if exists
(Line 6, Update); otherwise we add/modify (r, π) in the label of v (Line 4, Update).
After updating the label of v, we enqueue all affected neighbors of v into Q with
new distances π + 1 (Lines 12-14, Algorithm 6) and add (v, π) to Vin f er

r , where Vin f er
r

contains the set of affected vertices w.r.t. the landmark r whose new distances have
been inferred (Line 16, Algorithm 6). This process of identifying affected vertices and
updating their labels continues until Q is empty.

Example 15. Figure 5.2 illustrates how our incremental algorithm updates affected labels
as a result of inserting an edge (2, 5). The JP-BFS starting from the anchor vertex 5 w.r.t.
the landmark 0 is depicted in Figure 5.2(a). The labels of vertices 5 and 9 are updated using
the information in the labels of their parents i.e., Vparent(5) = {2} and Vparent(9) = {5}.
This JP-BFS is pruned from vertices 8 and 10 because the landmark 4 lies in the shortest-path
from vertex 8 to landmark 0, and vertex 10 is a landmark itself. Accordingly, the highway
is updated. Similarly, the JP-BFS w.r.t. the landmark 10 is depicted in Figure 5.2(b). This
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Figure 5.2: An illustration of our incremental algorithm IncHL for an edge insertion (2,5):
(a), (b) and (c) describe the JP-BFSs that are rooted at the landmarks 0, 10 and 4, respectively,
where yellow vertices denote the landmarks (i.e., the roots), green color denotes affected
vertices whose labels are updated and red color denotes affected vertices that are pruned
during the JP-BFSs.

JP-BFS starts from vertex 2 which updates the label of 2 with Vparent(2) = {5} and prunes
from the landmark 0 after updating the highway. The JP-BFS w.r.t. the landmark 4 is depicted
in Figure 5.2(c), which works in a similar fashion.

Unlike IncHLb, this algorithm allows outdated and redundant entries in a dis-
tance labelling due to weakly pruned vertices in the case of edge insertion. For
clarity, we formally define the notions of outdated and redundant entries for the
caser of edge insertion below.

Definition 13 (Outdated Entry). An entry (r, δL(r, v)) ∈ L(v) is outdated on a graph G
iff δL(r, v) 6= dG(r, v).

Definition 14 (Redundant Entry). An entry (r, δL(r, v)) ∈ L(v) is redundant on a graph
G iff δL(r, v) = dG(r, v) and Q(u, v, Γ) = Q(u, v, Γ′) hold for any vertex u in G, where Γ′

is obtained from Γ by only removing (r, δL(r, v)) from L(v).

These entries do not affect the correctness of answering distance queries when
a graph is changed only by edge insertions [D’angelo et al. 2019]. However, they
may deteriorate query and update performance over time. Thus, to ensure that
neither outdated nor redundant entries exist, we can revise the design of a merged
JP-BFS in IncHL by removing its pruning step (Line 6, Algorithm 6), which leads
to a distance labelling without any outdated and redundant entries. This variant of
IncHL is called IncHL-m. The proof for the preservation of minimality by IncHL-m
is provided in Section 5.4.

5.3.4 Decremental Algorithm

We also propose a decremental algorithm, called DecHL, which can efficiently up-
date a highway cover labelling to reflect changes caused by an edge deletion.

Different from edge insertion, by Fact 3, distances between vertices may increase
in the case of edge deletion. This thus poses the following new challenges. First, out-
dated and redundant entries do affect the correctness of answering distance queries
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Algorithm 8: Decremental algorithm DecHL.
Input: G = (V, E), G′ = (V, E\{(a, b)}), (a, b) ∈ E, Γ = (H, L) over G
Output: Γ′ = (H′, L′) over G′

1 foreach r ∈ R with dG(r, b) > dG(r, a) do
2 Vin f er

r ← ∅, Vunin f er
r ← FindAffected(r, b)

3 foreach (v, π) ∈ Vunin f er
r with min. π do

4 if v is already pruned then
5 if v is a landmark then
6 δH(r, v)← π (Updating H)
7 end
8 else
9 Update(r, v, π, Vin f er

r , Vunin f er
r )

10 end
11 foreach w ∈ N(v) and (w, π′) ∈ Vunin f er

r and π′ < π + 1 do
12 Modify (w, π′) with (w, π + 1) in Vunin f er

r
13 end
14 Remove (v, π) from Vunin f er

r to Vin f er
r

15 end
16 end

Algorithm 9: Finding affected vertices for DecHL.

1 Function FindAffected(r, b)
2 Q ← ∅, Va f f ← ∅, π′ ← Q(r, b, Γ)
3 Enqueue (b, π′) to Q
4 while Q is not empty do
5 Dequeue (v, π′) from Q
6 π ← ∞
7 if ∃w s.t. w ∈ N(v) and dG(r, w) ≤ π′ and w /∈ Va f f then
8 π ← min

w
{Q(r, w, Γ)}+ 1

9 end
10 Add (v, π) to Va f f

11 if v is prunable then
12 continue
13 else
14 foreach w ∈ N(v) and dG(r, w) > π′ do
15 Enqueue (w, π′ + 1) to Q
16 end
17 end
18 end
19 return Va f f

20 end
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Figure 5.3: An illustration of our decremental algorithm DecHL for an edge deletion (2, 5):
(a)-(b), (c)-(d) and (e) describe the JP-BFSs that are rooted at the landmarks 0, 10 and 4,
respectively, where yellow vertices denote the landmarks (i.e., the roots), green color denotes
affected vertices whose labels need to be updated, and red color denotes affected vertices
being pruned.

in the case of edge deletion. Second, identifying anchor vertices becomes much
harder for edge deletion due to two reasons:

(1) More than one anchor vertex may exist w.r.t. a landmark for edge deletion, in
contrast to edge insertion which has exactly one anchor vertex w.r.t. a land-
mark;

(2) Anchor vertices can be far away from a deleted edge and are thus difficult to
identify, whereas for an inserted edge there exists exactly one anchor vertex
that must be incident to the inserted edge, as stated in Lemma 10.

Example 16. Consider Figure 5.3(a), after deleting the edge (2, 5), the set of affected vertices
w.r.t. the landmark 0 is {5, 8, 9, 10, 13, 14}. Among these vertices, the vertices {8, 10, 13, 14}
are pruned. In Figure 5.3(b), there are two anchor vertices {8, 10} w.r.t. the landmark 0.
None of these vertices 8 and 10 are incident to the deleted edge (2, 5).

Since anchor vertices for a deleted edge (a, b) may be different from the ver-
tex b (recall that dG(r, b) > dG(r, a) is assumed), we need to conduct two JP-BFSs
w.r.t. a landmark r in the case of edge deletion. The first JP-BFS starts from b to
identify affected vertices and their contingent distances through local neighborhoods
iteratively. The second JP-BFS starts from anchor vertices to infer new distances of
affected vertices and update their labels via a level-by-level propagation. Prunable
vertices are identified and pruned away in the first JP-BFS, which helps improve
update efficiency in the second JP-BFS significantly.

Algorithm 8 describes the detailed steps of our decremental algorithm. Given a
graph G with a deleted edge (a, b) and a highway cover labelling Γ = (H, L) over G.
For each landmark r ∈ R, the first JP-BFS occurs in Function FindAffected starting
from vertex b with π′ = Q(r, b, Γ), and enqueues (b, π′) to Q (Line 3, FindAffected).
Then, for every (v, π′) ∈ Q, if a neighbor w of v is unaffected and has a depth less
than or equal to π′, we compute the contingent distance π of v w.r.t. r based on
the distance between w and r (Lines 7-9, FindAffected), and add (v, π) into Va f f
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(Line 10, FindAffected). If v is prunable, we stop the search from v; otherwise,
we continue to traverse all the children of v and enqueue them to Q as affected
vertices (Lines 11-16, FindAffected). This process continues iteratively until Q is
empty. Thus, the first JP-BFS identifies affected vertices to be updated, as well as
their contingent distances to r in Va f f . If contingent distances of all vertices in Va f f
are ∞, we remove the distance entry of r from the labels of these vertices because the
deleted edge must cut all these vertices off from other vertices as being disconnected.
Otherwise, we return Va f f and perform the second JP-BFS.

The second JP-BFS starts from the anchor vertices which are the vertices in Va f f
with the minimum contingent distance (Line 3, Algorithm 8) and infers new distances
of affected vertices iteratively. At each iteration, for each (v, π) ∈ Vunin f er

r with the
minimum contingent distance π, if v is already pruned, then if it is a landmark, we
update the highway H; otherwise we update the label of v using Function Update

(Lines 4-10, Algorithm 8). After that, we update the contingent distances of the
affected neighbors of v (Lines 11-13, Algorithm 8). Next, we remove v from Vunin f er

r

to Vin f er
r meaning that the new distance of v w.r.t. r has been inferred so that Vunin f er

r
contains only affected vertices whose new distances have not been inferred. This
process continues until the new distances of all affected vertices in Va f f are inferred
and updated.

Example 17. Figure 5.3 illustrates how our decremental algorithm updates affected labels as
a result of deleting an edge (2, 5). Figure 5.3(a) depicts the first JP-BFS w.r.t. the landmark
0 for finding affected vertices. This JP-BFS identifies affected vertices {5, 8, 9, 10, 13, 14},
among which vertices {8, 10, 13, 14} are pruned. Then, the second JP-BFS w.r.t. the land-
mark 0 for updating the labels is depicted in Figure 5.3(b). This JP-BFS starts from anchor
vertices {8, 10} with the minimum contingent distances. Then it moves to the affected neigh-
bors {5, 9} and updates their labels using the information in the labels of their parents i.e.,
Vparent(5) = {8, 10} and Vparent(9) = {8, 10}. Similarly, the first JP-BFS w.r.t. the land-
mark 10 is depicted in Figure 5.3(c) which identifies affected vertices {0, 1, 2}, among which
{0, 1} are pruned. The second JP-BFS w.r.t. the landmark 10 is depicted in Figure 5.3(d)
which starts from anchor vertex {0} with the minimum contingent distance and moves to the
affected neighbor {2} and update its label using the information in Vparent(2) = {0}. Next,
the JP-BFSs w.r.t. the landmarks 4 are depicted in Figure 5.2(e), respectively, which work in
the same manner.

5.4 Theoretical Results

In this section, we prove the proposed fully dynamic method is correct, i.e., after
each update operation, queries on the updated labelling return exact distances; and
can preserve minimality of the labelling, a desirable property that has an impact on
both query time and space efficiency. Then, we briefly analyse the complexity of the
proposed algorithms.
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5.4.1 Proof of Correctness

Let G1 ↪→ G2 . . . , ↪→ Gn by a sequence of update operations including both edge
insertions or edge deletions. Our fully dynamic method, denoted as FulHL, is to
update a highway cover labelling Γ1 over G1 into a highway cover labelling Γn over
Gn such that IncHL and DecHL are applied for edge insertions and edge deletions,
respectively. We consider FulHL to be correct iff, whenever Q(u, v, Γ1) = dG1(u, v)
holds for any two vertices u and v in G1, Q(u, v, Γn) = dGn(u, v) also holds for any
two vertices u and v in Gn.

Below, we first prove that Lemmata 11- 13 hold for both algorithms IncHL and
DecHL. For simplicity, let G′ refer to the changed graph after applying an edge
insertion or deletion on a graph G in the input of IncHL and DecHL.

Lemma 11. A pair (v, π) appears in Q iff v ∈ Λr.

Proof. IncHL (Lines 12-14, Algorithm 6) guarantees that an inserted edge (a, b) is in
one shortest-path between any vertex added to Q and a landmark r in G′. Similarly,
DecHL (Lines 14-16, FindAffected) guarantees that a deleted edge (a, b) is in one
shortest-path between any vertex added to Q and a landmark r in G. From Lemma
7, we thus have that a vertex is added to Q iff v ∈ Λr.

Lemma 12. A pair (v, π) is in Vin f er
r iff π = dG′(r, v).

Proof. In both IncHL (Lines 5 and 16, Algorithm 6) and DecHL (Lines 3 and 14,
Algorithm 8), (v, π) is added into Vin f er

r iff v has its new distance being inferred from
unaffected and affected vertices whose new distances have already been inferred
w.r.t. a landmark r in G′. Following the proof for Lemma 9, we can thus prove
π = dG′(r, v).

Lemma 13. In Function Update, Vparent is sufficient and necessary to update L(v).

Proof. In both IncHL and DecHL, Vin f er
r contains all inferred vertices which lie in the

shortest path(s) between r and v, and whose new distances to r have been correctly
inferred in G′ (according to Lemma 12). Therefore, Line 2 in Function Update ensures
that Vparent consists of both unaffected and affected vertices that are parents of v w.r.t.
r in G′, which is sufficient and necessary to update L(v).

Based on Lemmata 11-13, the definitions of prunable and weakly prunable ver-
tices, and the fact that a highway H is updated by Algorithm 6 (Line 8) and Algorithm
8 (Line 6), respectively, the following theorem can be proven.

Theorem 4. FulHL is correct.

5.4.2 Preservation of Minimality

It has been reported in [Farhan et al. 2019] that, given a graph G, a highway cover
labelling Γ = (H, L) over G can be constructed using an algorithm proposed in their
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work and such a highway cover labelling Γ is also guaranteed to be minimal in
terms of the labelling size, i.e., size(L′) ≥ size(L) holds for any Γ′ = (H, L′) over G.
Following Lemmata 11-13 and Fact 3, we can prove the following theorem.

Theorem 5. When G1 ↪→ G2 . . . , ↪→ Gn, let IncHL-m and DecHL update a highway cover
labelling Γ1 over G1 into a highway cover labelling Γn over Gn for edge insertions and edge
deletions, respectively. If Γ1 is minimal over G1, then Γn is also minimal over Gn.

We use FulHL-m to refer to our fully dynamic method that preserves the mini-
mality of labelling. More specifically, for G1 ↪→ G2 . . . , ↪→ Gn by a sequence of update
operations (edge insertions or edge deletions), FulHL-m updates a highway cover la-
belling Γ1 over G1 into a highway cover labelling Γn over Gn such that IncHL-m and
DecHL are applied for edge insertions and edge deletions, respectively.

5.4.3 Complexity Analysis

Let a be the total number of affected vertices, s be the maximum size of labels (i.e.,
s = |R|) and d be the maximum degree. For each landmark, IncHL-m and IncHL
visit O(a) affected vertices in the worse case, update each affected label by checking
d neighbors in O(d · s) time. Thus, the time complexity of IncHL-m and IncHL is
O(|R| · a · d · s). On the other hand, DecHL takes O(a · d · s) time to find all affected
vertices with their contingent distances (in Function FindAffected) and takes O(a ·
d) to fix the labels of all affected vertices. We omit s from O(a · d) for Algorithm
8 because distances for all unaffected neighbors of affected vertices can be stored
during the first JP-BFS to avoid query cost while updating the labels during the
second JP-BFS. Thus, the time complexity of DecHL is O(|R| × a · d(s + 1)). In our
experiments, we notice that a is usually orders of magnitudes smaller than the total
number of vertices n while s is significantly smaller than |R|.

5.5 Experimental Setup

In this section, we empirically evaluate our incremental, decremental and fully dy-
namic algorithms. The purpose of these experiments is to answer the following
questions:

Q1 How efficiently can our incremental, decremental and fully dynamic algorithms
deal with updates in very large dynamic networks, in comparison with the
state-of-the-art methods?

Q2 How does the number of landmarks affect the performance of our incremental,
decremental and fully dynamic algorithms?

Q3 How do affected vertices correlate to update efficiency in our incremental,
decremental and fully dynamic algorithms?

Q4 How well can our dynamic algorithms scale to deal with updates in very large
dynamic networks?
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We first introduce the datasets and the baseline methods considered in our ex-
periments and then discuss how test data is generated to evaluate our methods.
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Figure 5.4: (a)-(b) show the distance distribution of 1000 pairs of vertices in EI on all the
datasets, where the distance for each pair is recorded before insertion, and (c)-(d) show the
distance distribution of 1000 pairs of vertices in ED on all the datasets, where the distance for
each pair is recorded after deletion.

5.5.1 Datasets

We have used 15 real-world large networks in our experiments to answer the afore-
mentioned questions. The detailed description and summary about these dataset is
provided in Section 4.7.1 and Table 4.2.

5.5.2 Baseline Methods

We compare our fully dynamic methods (i.e. FulHL-m and FulHL), as well as the
incremental and decremental algorithms (IncHL, IncHL-m, IncHLb and DecHL),
with the following state-of-the-art methods:

(1) The dynamic algorithms IncFD, DecFD and FulFD proposed in [Hayashi et al.
2016], which combine a distance labelling with a graph traversal algorithm for
answering distance queries;
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(2) The dynamic algorithms IncPLL [Akiba et al. 2014], DecPLL [D’angelo et al.
2019] and FulPLL proposed in [D’angelo et al. 2019; Akiba et al. 2014], which
are based on the pruned landmark labelling (PLL) [Akiba et al. 2013] to answer
distance queries;

(4) The parallel pruned landmark labelling methods PSL, PSL+ and PSL∗ for static
graphs proposed in [Li et al. 2019], which are also based on the pruned land-
mark labelling (PLL) [Akiba et al. 2013] to answer distance queries;

(5) The optimized online bidirectional BFS algorithm which answers distance queries
by applying an optimized strategy to expand search from the direction with
less vertices [Hayashi et al. 2016], and we name this algorithm BiBFS in our
experiments.

The implementation of these baseline methods were provided by their authors
and are in C++. We used the same parameter settings for these methods as sug-
gested by their authors unless otherwise stated. The initial distance labellings were
constructed using their original static methods, i.e., HL for FulHL [Farhan et al.
2019], FD for FulFD [Hayashi et al. 2016], and PLL for FulPLL [Akiba et al. 2013;
D’angelo et al. 2019; Akiba et al. 2014]. For a fair comparison, we set the number
of landmarks to 20 for our methods, following the same setting of FulFD [Hayashi
et al. 2016] except for the largest datasets i.e., Clueweb09 and Clueweb12. We set the
number of landmarks to 150 for Clueweb09 and Clueweb12 because a small number
of landmarks on such large networks do not help much in pruning the search space.
For parallel PLL methods PSL, PSL+ and PSL∗ [Li et al. 2019], we set the number of
threads to the total number of available cores in our server, i.e., 28.

5.5.3 Test Data Generation

For each network G = (V, E), we randomly sampled 1,000 pairs of vertices as edge
insertions, denoted as EI , where EI ∩ E = ∅, and 1,000 pairs of vertices as edge
deletions, denoted as ED, where ED ⊆ E. We use EI and ED to evaluate incremental
and decremental algorithms, respectively. Then, we randomly selected 1,000 pairs of
vertices EF ⊆ EI ∪ ED with 50% from EI (edge insertions) and 50% from ED (edge
deletions) to evaluate fully dynamic methods.

The distance distribution before applying updates in EI is shown in Figure 5.4(a)-
(b), and the distance distribution after applying the updates in ED is shown in Figure
5.4(c)-(d). We can see that most of the pairs have a small distance ranging from 1 to
10 in EI and from 1 to 4 in ED for most of the datasets and only a few of them are
disconnected (i.e., have distance ∞).

We use the same sampling method as described in Section 4.7.3 to generate
queries for evaluating the query performance on graphs that are changed by up-
dates in EF. We report the labelling size produced by fully dynamic methods after
performing updates in EF.
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Table 5.2: Comparison of the update time and query time of the proposed methods with the
baseline methods, where “–” denotes that a method did not finish to construct labelling in
one day (24 hours) or ran out of memory (512 GB).

Dataset
Update Time (UT) [ms] Query Time (QT) [ms]

FulHL-m FulHL FulFD FulPLL FulHL FulFD FulPLL
Youtube 0.027 0.028 2.089 9040 0.005 0.010 0.006
Skitter 1.096 1.019 10.67 20400 0.027 0.019 0.006
Flickr 0.055 0.053 7.655 6810 0.007 0.012 0.009
Wikitalk 0.127 0.128 17.17 4950 0.006 0.008 0.005
Hollywood 0.223 0.212 10.54 – 0.027 0.037 –
Orkut 1.234 1.075 40.12 – 0.101 0.103 –
Enwiki 1.488 1.459 88.54 – 0.054 0.035 –
Livejournal 0.275 0.179 2.564 – 0.044 0.046 –
Indochina 1.414 0.598 107.2 – 0.737 0.839 –
IT 22.96 10.62 160.3 – 1.069 1.013 –
Twitter 73.37 72.76 2512 – 0.863 0.177 –
Friendster 2.131 2.097 21.64 – 0.814 0.904 –
UK 2.755 1.075 337.6 – 3.443 5.858 –
Clueweb09 103.1 56.25 – – 16.93 – –
Clueweb12 15950 1796 – – 9.375 – –

5.6 Results and Discussion

In this section, we discuss the results of our experiments to answer the aforemen-
tioned questions.

5.6.1 Performance Comparison

We compare the performance of our methods against the labelling-based methods
and online search methods.

Labelling-based Dynamic Methods

We first compare our methods with labelling-based dynamic methods in terms of
update time, labelling size and query time.

Update Time. Table 4.3 shows that the average update times taken by our methods
FulHL-m and FulHL are significantly less than the average update times taken by
the baseline methods FulFD and FulPLL. As we can see, only our methods can scale
to very large networks with billions of vertices and edges. Specifically, FulFD failed
to have results for Clueweb09 and Clueweb12, and FulPLL failed for 11 out of 13
networks. There are several reasons why FulPLL cannot scale to large networks.
Firstly, FulPLL is based on the pruned landmark labelling algorithm [Akiba et al.
2013] which has very high space requirements and construction time of labelling on
large networks. Secondly, FulPLL has a very high updating cost in restoring the
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Table 5.3: Comparison of the update time for edge insertion and edge deletion of the pro-
posed methods IncHL-m, IncHL, IncHLb, and DecHL with the baseline methods.

Dataset
Incremental Algorithms Decremental Algorithms

IncHL-m
(ms)

IncHL
(ms)

IncHLb

(ms)
IncFD
(ms)

IncPLL
(ms)

DecHL
(ms)

DecFD
(ms)

DecPLL
(sec.)

Youtube 0.004 0.006 0.007 0.043 0.208 0.059 6.213 15.2
Skitter 0.133 0.075 0.194 0.447 2.189 1.443 19.48 21.3
Flickr 0.005 0.005 0.006 0.046 1.869 0.152 17.71 11.7
Wikitalk 0.002 0.003 0.004 0.022 0.073 0.231 30.08 11.0
Hollywood 0.027 0.026 0.031 0.078 48.97 0.265 21.03 –
Orkut 1.687 1.423 2.026 2.039 – 0.418 48.12 –
Enwiki 0.119 0.105 0.134 0.129 6.596 2.969 163.8 –
Livejournal 0.201 0.122 0.245 0.225 – 0.300 7.406 –
Indochina 2.587 1.187 5.443 167.7 2021 0.233 60.60 –
IT 49.77 21.34 95.92 241.8 – 5.843 210.5 –
Twitter 0.017 0.015 0.027 0.106 – 192.6 5126 –
Friendster 0.119 0.119 0.159 0.396 – 2.409 42.92 –
UK 4.071 2.132 11.49 397.7 – 0.267 151.5 –
Clueweb09 27.04 9.205 40.68 – – 131.8 – –
Clueweb12 26365 2061 61661 – – 2129 – –

2-hop cover property [D’angelo et al. 2019] for the decremental case. Overall, our
methods are more than 30 times faster as compared to FulFD and several orders of
magnitude faster than FulPLL.

In Table 5.3, the average update times taken by incremental and decremental algo-
rithms are compared separately. For incremental algorithms, our methods IncHL-m
and IncHL significantly outperform the baseline methods IncHL+, IncFD and Inc-
PLL on all the datasets. Further, IncHL is faster than IncHL-m which strictly pre-
serves the minimality of labelling. This performance difference between IncHL and
IncHL-m provides us good insights on the additional cost required by guaranteeing
the minimality property of labelling on dynamic graphs. For the decremental algo-
rithms, we can also see that the average update time taken by DecHL is significantly
less than DecFD and DecPLL on all the datasets. DecPLL took time in seconds to
update the labellings and failed to update the labelling for Hollywood, Enwiki and
Indochina due to very high update time complexity, which is cubic in the worst case
in terms of the number of vertices [D’angelo et al. 2019].

Labelling Size. Table 5.4 shows that the labelling sizes of our method FulHL after
applying updates in EF are significantly (ranges from 30% to 90%) smaller than the
labelling sizes of FulFD and FulPLL. When updates occur on a graph, the labelling
sizes of FulFD and FulHL remain stable because their average label size is bounded
by the constant (i.e. the size of landmarks set |R|). Specifically, FulFD stores complete
shortest-path trees w.r.t. the landmarks; while FulHL stores pruned shortest-path
trees thereby leading to a labelling of much smaller sizes than FulFD. However, the
labelling sizes of FulPLL increase because its incremental algorithm does not remove
outdated and redundant entries. In Table 5.6, we present the difference ∆IncPLL and
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Table 5.4: Comparison of the labelling size of the proposed methods with the baseline meth-
ods, where “–” denotes that a method did not finish to construct labelling in one day (24
hours) or ran out of memory (512 GB).

Dataset
Labelling Size (LS)

FulHL FulFD FulPLL
Youtube 20 MB 83 MB 2.83 GB
Skitter 42 MB 153 MB 11.6 GB
Flickr 34 MB 152 MB 12.7 GB
Wikitalk 41 MB 74 MB 4.30 GB
Hollywood 27 MB 263 MB –
Orkut 70 MB 711 MB –
Enwiki 82 MB 608 MB –
Livejournal 122 MB 663 MB –
Indochina 87 MB 840 MB –
IT 862 MB 4.73 GB –
Twitter 1.14 GB 3.83 GB –
Friendster 2.43 GB 9.14 GB –
UK 1.78 GB 11.8 GB –
Clueweb09 163 GB – –
Clueweb12 49 GB – –

∆IncPLL in the labelling sizes before and after updating the labelling by our method
IncHL and the baseline method IncPLL, respectively. This also shows how much
the labelling sizes increase after applying the updates in EI in several datasets. It
confirms that the increase in the labelling size by our method is negligibly small
while IncPLL has considerably large increase in the labelling sizes. Particularly,
IncPLL has a huge increase (several gigabytes) in the labelling size of Indochina for
just 1000 updates. Thus, IncPLL may cause FulPLL to produce an ever increasing
labelling sizes, particularly when graphs are updated frequently.

Query Time. Table 5.2 shows that the average query times after applying updates
in EF. FulHL performs comparably with FulFD and FulPLL. More specifically, as
compared to FulFD, the query time of FulHL outperforms on 7 out of 11 datasets
where FulFD can construct labelling. For the two largest datasets, FulFD fails to
construct labelling and thus cannot answer queries. Notice that FulHL considerably
underperforms FulFD on Twitter when ignoring updates on graphs. This is because
the maximum degree of Twitter is very high (Table 4.2, i.e., 2997487) and FulFD
maintains shortest-path trees for landmarks along with their neighbors which may
cause a large fraction of pairs to be covered by very high degree landmarks. However,
if we consider the overall query time on dynamic graphs as the sum of the total
update time plus the query time after the update operation, then our method FulHL
would indeed significantly outperform FulFD on Twitter. It has been reported in
[D’angelo et al. 2019] that the average query time is dependent on the labelling size.
As discussed in Section 6.8.1, the update operations do not considerably affect the
labelling sizes of FulFD and FulHL; thus, their query times remain stable. The query
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Table 5.5: Construction time, labelling size and query time of the state-of-the-art methods
PSL, PSL+ and PSL∗ where “–” denotes that a method did not finish to construct labelling in
one day (24 hours) or ran out of memory (512 GB).

Dataset
Construction Time (sec.) Labelling Size (GB) Query Time (ms)

PSL PSL+ PSL∗ PSL PSL+ PSL∗ PSL PSL+ PSL∗

Youtube 6 5 3 0.72 0.48 0.32 0.002 0.002 0.002
Skitter 28 24 17 2.16 1.72 1.01 0.003 0.005 0.007
Flickr 36 26 16 2.80 1.78 0.98 0.004 0.004 0.005
Wikitalk 6 4 4 0.91 0.22 0.16 0.001 0.001 0.001
Hollywood 577 325 261 11.2 6.17 4.15 0.020 0.020 0.146
Orkut 22755 22983 18971 147 146 121 0.086 0.086 0.192
Enwiki 363 368 302 10.0 9.84 7.04 0.005 0.005 0.021
Livejournal 6149 5754 3179 80.7 73.8 40.4 0.035 0.035 0.047
Indochina 336 79 71 17.3 5.05 3.39 0.004 0.003 0.007
IT – 15599 10377 – 227 130 – 0.016 0.059
Twitter – – – – – – – – –
Friendster – – – – – – – –
UK – – – – – – – – –
Clueweb09 – – – – – – – – –
Clueweb12 – – – – – – – – –

time of FulPLL increases because it allows the existence of outdated and redundant
entries in the labels of affected vertices which deteriorates query performance over
time, particularly when graphs are updated frequently.

Table 5.6: Comparison of the difference in the labelling sizes of the proposed method IncHL
and the baseline method IncPLL after applying 1,000 updates.

size(LAfter)− size(LBefore)
Datasets

Skitter Flickr Hollywood Enwiki Indochina
∆IncPLL 5 MB 9 MB 22 MB 2 MB 7,334 MB
∆IncHL 7 KB 5 KB 1 KB 0 KB 1,833 KB

Labelling-based Static Methods

To understand how our dynamic algorithms perform against the state-of-the-art
methods for static graphs, we compare the performance of our proposed methods
against the parallelised pruned landmark labelling methods PSL, PSL+ and PSL∗

which have been shown to achieve the state-of-the-art performance for answering
distance queries on static graphs [Li et al. 2019]. The results for PSL, PSL+ and PSL∗

are presented in Table 5.5. It is worth to note that, PSL, PSL+ and PSL∗ are not dy-
namic methods, thereby requiring us to reconstruct labelling from scratch after each
update in a graph. As we can see in Table 5.5 that the construction time of distance
labelling is by far greater than the update time of our methods FulHL-m and FulHL
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Figure 5.5: Comparison of query time of the proposed method FulHL against online search
method BiBFS. BiBFS has no results for Clueweb09 and Clueweb12 because it did not finish
within 24 hours.
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Figure 5.6: Labelling size comparison of the proposed method FulHL (in colored bars) and
the baseline method FulFD (in colored plus grey bars) under 10-150 landmarks. Note that
there are no results of FulFD for Clueweb09 and Clueweb12 as FulFD failed to construct
labelling.

in Table 5.2. For example, our methods FulHL-m and FulHL takes 1 millisecond
on average to update labelling on Skitter, whereas PSL takes 28 seconds on average
to construct labelling. Furthermore, PSL, PSL+ and PSL∗ all failed to scale to large
graphs. Specifically, PSL failed for 6 out of 13 datasets, and PSL+ and PSL∗ failed
for 5 out of 13 datasets and have a very high construction cost on datasets with large
average degrees such as Orkut and Livejournal. Although the construction times of
PSL+ and PSL∗ are reduced using index reduction techniques, these index reduction
techniques affect the query performance. For query performance, PSL∗ is comparable
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Figure 5.7: Average update time comparison for performing decremental updates between
the proposed method FulHL (in colored bars) and the baseline method FulFD (in col-
ored plus grey bars) under 10-150 landmarks. Note that there are no results of FulFD for
Clueweb09 and Clueweb12 as FulFD failed to construct labelling.
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Figure 5.8: Average update time comparison for performing incremental updates between the
proposed method FulHL (in colored bars) and the baseline method FulFD (in colored plus
grey bars) under 10-150 landmarks. Note that there are no results of FulFD for Clueweb09
and Clueweb12 as FulFD failed to construct labelling.

to our method FulHL on Flickr, Hollywood, Orkut, Enwiki and Livejournal.
We also notice that the labelling sizes of PSL, PSL+ and PSL∗ (as presented in

Table 5.5) are much larger than FulHL (as presented in Table 5.4). As we can see in
Table 5.5, PSL* produces the labelling of size almost 99% larger than the labelling of
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FulHL for Orkut and IT. The query times of PSL are the fastest among all baseline
methods, but unfortunately, unbearably long construction times and large labelling
sizes make these methods hardly scale to very large graphs. This situation becomes
even worse when the underlying graphs are dynamic. Considering the overall per-
formance w.r.t. three main factors i.e., query time, labelling size and construction
time, FulHL stands out in claiming the best trade-offs between query time, labelling
size and construction time among all other baseline methods for large and dynamic
graphs.

Online Search Methods

To understand the impact of labelling on distance queries, we also compare the query
performance of our fully dynamic method FulHL with an online search method
BiBFS. The results are shown in Figure 5.5. To make a fair comparison, we consider
the overall query time of our method as the sum of the total update time on labelling
for randomly sampled updates of varying sizes (i.e., 1 to 10,000) plus the query time
of 1,000 queries after applying the updates, denoted as FulHL+QT. For the baseline
method BiBFS, we take only the query time of 1,000 queries after applying updates.
We see that, the overall performance of our methods is significantly better than BiBFS
on all the datasets. In particular, our methods show promising performance on large
networks even when the number of updates is 10,000. Only FulHL is able to have
results within 24 hours for the two largest datsets Clueweb09 and Clueweb12. These
confirm that our method is efficient and can scale to very large networks.

5.6.2 Performance under Varying Landmarks

We also evaluate the performance of our method FulHL under different numbers
of landmarks. The results are presented in Figures 5.6, 5.8, 5.7 and 5.9. For the
largest two datasets Clueweb09 and Clueweb12, the baseline method FulFD failed
to construct labelling. Thus, Figures 5.6, 5.8, 5.7 and 5.9 does not include any results
for FulFD on these two datasets.

Labelling Size

Figure 5.6 shows the labelling sizes produced by FulHL and FulFD after applying
the updates in EF under different numbers of landmarks on all the datasets. As we
can see, when the number of landmarks increases, the labelling sizes of FulHL and
FulFD also increase. The labelling sizes of our method FulHL increase sublinearly
when increasing the number of landmarks. This is due to the pruning during JP-
BFSs. In contrast, the labelling sizes of FulFD increase linearly with increasing the
number of landmarks since it does not have the minimality of labelling. Thus, the
labelling sizes of FulHL are always by far smaller than the labelling sizes of FulFD.



78 FulHL: Fully Dynamic Labelling For Distance Queries

Update Time

Figures 5.8 and 5.7 show the average update times of our methods IncHL and DecHL
against the baseline methods IncFD and DecFD after applying the updates in EI and
ED, respectively. As we can see in Figure 5.8, IncHL outperforms IncFD on all the
datasets against every selection of landmarks, except Orkut and Enwiki for which
IncHL and IncFD have comparable results. This is because the average distances
on these networks are small, and only a small fraction of vertices are affected to
update their labels. In such cases, the performance of our method is comparable
with IncFD. When a large fraction of vertices is affected against a graph change, our
method better leverages the pruning power to perform than IncFD. For instance, our
method significantly outperforms IncFD on the datasets Indochina and UK because
a large fraction of affected vertices are caused by graph changes, as can be seen from
Figure 5.10(d).

From Figure 5.7, we can also confirm that DecHL outperforms DecFD on all the
datasets under every selection of landmarks. Further, we observe that the average
update times of our methods IncHL and DecHL either remain low or increase very
slowly when we increase the number of landmarks. This is because a larger number
of landmarks can contribute more to leverage the pruning power of our methods,
thereby performing much better than the baseline methods.

Query Time

In Figure 5.9, we also show the trend in the average query times of our method
FulHL in comparison with the baseline method FulFD under varying landmarks
{10, 20, 30, 40, 50} for all datasets and {150} for the two largest datasets after applying
the updates in EF. As we can see in Figure 5.9(a), generally the trend in the average
query times of FulHL is decreasing or remains the same, whereas the trend in Figure
5.9(b) is increasing for FulFD with the increased number of landmarks. Furthermore,
we notice that the trend in the average query times of Indochina, IT and UK in
Figure 5.9(a) and 5.9(b) are all decreasing. This is because they have large average
distances (in Table 4.2), due to which an increased number of landmarks might cover
a large fraction of shortest paths and yield the tighter upper-distance bounds to help
efficient querying. Overall, the increased number of landmarks help improve query
time performance.

5.6.3 Analysis of Affected Vertices

To understand how affected vertices correlate with update times against different
types of updates: edge insertion and deletion, we analyze the distributions of the
numbers of affected vertices and their update times. The results are presented in
Figures 5.10 and 5.11, in which 1000 edge insertions and edge deletions are taken
from EI and ED, respectively, and their numbers of affected vertices and update
times are sorted in ascending order.
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Figure 5.9: Query time comparison of the proposed method FulHL and the baseline method
FulFD under 10-150 landmarks: (a) and (c) illustrate the average query time for FulHL; (b)
and (d) illustrate the average query time for FulFD. Note that there are no results of FulFD
for Clueweb09 and Clueweb12 as FulFD failed to construct labelling.

From the figures, we can see that there is a correlation between the number of
affected vertices and update times of these updates. We observe that the difference
in the number of affected vertices is not significant among these updates and only a
few updates correspond to a large number of affected vertices for which the update
times are also high in most of the datasets.

5.6.4 Scalability of Updates

We analyse the performance of our methods with increasing the number of updates.
We start with 500 updates, and then iteratively increase 500 updates until 10,000
updates. Figures 5.12-5.13 show the average update times after constructing the
labelling from scratch, and updating the labelling using our incremental and decre-
mental algorithms after each increase.

We observe from Figure 5.12 that the update time of IncHL on all the datasets
is almost always below the construction time of labelling. On IT and Twitter, the
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Figure 5.10: 1000 edge insertions from EI : (a)-(b) show the distribution of update times, and
(c)-(d) show the distribution of the numbers of affected vertices.

update time reaches the construction time after performing 5,000 updates. This is
because the average distance of IT is large as depicted in Table 4.2, which may lead
to high percentages of affected vertices to be updated; although the average distance
of Twitter is small, the density of Twitter is high and fewer updates can still cause a
large fraction of vertices to be affected as can be observed from Figure 5.10(d).

In Figure 5.13, we can also see that DecHL generally performs well on all the
datasets. Compared to the other datasets, DecHL performs relatively worse on Skit-
ter, Enwiki, Twitter and Clueweb12. This is because the updates in these networks
can have larger distances after removal, as can be observed from the distance distri-
bution in Figure 5.4, which may cause more vertices to be affected and require more
update time as depicted in Figure 5.11. Overall, the performance of the proposed al-
gorithms is dependent on the fraction of affected vertices and our methods can scale
to perform large batches of updates efficiently.

5.7 Summary

In this chapter we have studied the distance query problem on dynamic graphs in the
single-update setting. We considered two fundamental changes in dynamic graphs,
i.e., edge insertions and edge deletions. We proposed incremental, decremental and



§5.7 Summary 81

100 101 102 103

x-th update

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

U
p
d
a
te

 T
im

e
 (

se
c.

)

(a)

100 101 102 103

x-th update

10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103 (b)

100 101 102 103

x-th update

100

101

102

103

104

105

106

#
 o

f 
a
ff

e
ct

e
d
 v

e
rt

ic
e
s

(c)
Youtube

Skitter

Flickr

Wikitalk

Hollywood

Orkut

Enwiki

Livejournal

100 101 102 103

x-th update

100

101

102

103

104

105

106

107 (d)
Indochina

IT

Twitter

Friendster

UK

Clueweb09

Clueweb12

Figure 5.11: 1000 edge deletions from ED: (a)-(b) show the distribution of update times, and
(c)-(d) show the distribution of the numbers of affected vertices.

fully-dynamic algorithms that exploit the properties of the highway cover distance
labelling presented in Chapter 4 in order to efficiently maintain a highway cover dis-
tance labelling for dynamic graphs undergoing changes such as edge insertions and
deletions. We theoretically proved that the proposed fully dynamic method is cor-
rect and can preserve the minimality property of highway cover distance labelling
after updating a highway cover distance labelling to reflect changes into a graph.
We conducted extensive experiments to empirically verify the efficiency and scala-
bility of the proposed algorithms. The results showed that the proposed algorithms
significantly outperform the state-of-the-art methods.
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Figure 5.12: Comparison of average update time of the proposed method IncHL for per-
forming up to 10,000 updates against the construction time.
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Figure 5.13: Comparison of average update time of the proposed method DecHL for per-
forming up to 10,000 updates against the construction time.



Chapter 6

BatchHL: Batch-Dynamic Labelling
For Distance Queries

6.1 Overview

In this chapter, we study the problem of answering exact shortest-path distance
queries in batch-dynamic networks that undergo rapid changes in their topologi-
cal structure over time. In real-world applications, it is often unrealistic to process
changes such as edge insertion and deletion one by one in a sequential manner on
graphs. Rather, changes may be aggregated to reflect into graphs in large batches
efficiently.

We propose a batch-dynamic method, called BatchHL, to dynamize a distance
labelling in order to reflect large batches of updates on a graph. BatchHL consists of
two phases:

(1) Batch search which finds vertices whose labels are affected by batch updates.

(2) Batch repair which updates the labels of affected vertices to ensure correctness
of distance queries and minimality of distance labelling.

Figure 6.1 presents a high-level overview of BatchHL which performs batch search
and then batch repair.
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Figure 6.1: A high-level overview of our batch-dynamic method (BatchHL) which performs
a batch update in two phases: 1) Batch Search: find vertices that are affected, and 2) Batch
Repair: repair vertices returned by Batch Search.
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Figure 6.2: An illustration for the number of vertices affected by batch updates of varying
sizes. BHL and BHL+ are our batch-dynamic algorithms, BHLs is a variant of BHL which
splits edge insertions and deletions into sub-batches and performs them sequentially, and
UHL handles updates in the single-update setting.

Further, we discuss the limitations of performing updates in the single-update
setting, compared to the batch-update setting. Figure 6.2 illustrates the gap in the
number of affected vertices by batch updates and unit updates. As we can see in
Figure 6.2, the gaps in the number of vertices affected by batch updates when differ-
ent variants of our method are used in the batch-update setting, in comparison with
the single-update setting, the number of affected vertices in the single-update setting
(i.e., UHL) is much higher than the ones in the batch-update setting (i.e., BHLs, BHL
and BHL+). This is because one vertex may be affected by multiple updates in a
batch, which would unavoidably lead to repeated and unnecessary computations in
the single-update setting.

The main contributions of this chapter are as follows:

• We propose a batch-dynamic method which can handle batch updates effi-
ciently and uniformly so as to reflect them on graphs by updating a highway
cover labelling. Previous studies [Akiba et al. 2014; D’angelo et al. 2019] re-
ported that handling edge deletions on a graph has been recognized as being
computational expensive and difficult, even in the single-update setting. Our
method alleviates this challenge and can handle both edge insertions and dele-
tions in batches efficiently.

• We develop efficient pruning strategies in our method, i.e., in both batch search
and batch repair, to eliminate repeated and unnecessary computations on graphs.
As a result, when dealing with batch updates, we traverse much smaller num-
bers of vertices than in the single-update setting where each update is handled
independently. We also design an inference mechanism to compute new dis-
tances based on boundary vertices and incorporate this into batch repair in our
method.

• We prove that our proposed method can preserve the minimality of labelling
on batch-dynamic graphs. Notice that, maintaining the minimality is a difficult
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but highly desirable property to have for designing a distance labelling over
dynamic graphs. Otherwise, a distance labelling may have increasingly unnec-
essary entries left in its labels and query performance would deteriorate over
time.

• Our proposed method can scale to very large dynamic graphs. This is due to
several reasons: the design choices on combining offline labelling and online
searching, the properties of highway cover labelling, the pruning strategies in
batch search and batch repair, and landmark-based parallelism. We will discuss
these in detail in Section 6.7.

The rest of this chapter is organized as follows. Section 6.2 introduces the problem
definition. Section 6.3 formulates the proposed batch-dynamic framework. Section
6.4 introduces several optimization techniques. Section 6.5 provides a detailed anal-
ysis of the proposed algorithm. Section 6.6 shows that the proposed algorithms are
correct and can preserve the property of minimality. Section 6.7 discusses the exper-
imental results, which compare the performance of our proposed algorithms against
the baseline algorithms. Section 6.9 summarises the chapter.

6.2 Problem Definition

In this chapter, we study the distance query problem on batch-dynamic graphs. We
formulate our problem as the batch-dynamic labelling problem for distance queries.
Given a graph that undergoes rapid changes such as edge insertions or deletions over
time, the batch-dynamic labelling problem is concerned about updating a highway
cover distance labelling to ensure that distance queries can be correctly answered on
the batch-dynamic graph. Formally, we define this problem below.

Definition 15 (Batch-Dynamic Labelling Problem). Let G = (V, E) and G′ = (V, E′)
be two graphs, and G be changed to G′ by a batch B of edge insertions and deletions. The
batch-dynamic labelling problem is, given a highway cover distance labelling Γ over G such
that Q(u, v, Γ) = dG(u, v) for any two vertices u and v in G, to compute a highway cover
distance labelling Γ′ over G′ such that Q(u, v, Γ′) = dG′(u, v) for any two vertices u and v
in G′.

6.3 Batch-dynamic Labelling Framework

In this section, we present how to answer distance queries for any two vertices
in a batch-dynamic graph by combining the highway cover labelling with online
searching. The key idea is to dynamically maintain a highway cover labelling on a
batch-dynamic graph, and then use such a highway cover labelling to bound online
searches on a sparsified search space in order to accelerate query processing.

The major challenge is how to design an algorithm that can efficiently maintain a
highway cover labelling for answering distance queries on graphs that undergo batch
updates, particularly when graphs are very large?
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Algorithm 10: BatchHL (BHL)
Input: G, G′, B, R, Γ over G
Output: Γ′ over G′

1 Γ′ ← Γ
2 foreach r ∈ R do
3 Vaff ← BatchSearch(G′, B, r, Γ)
4 BatchRepair(G′, Vaff, r, Γ, Γ′)
5 end
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Figure 6.3: Example graphs, where r is a landmark, the edges marked by + are inserted, and
the edges marked by − are deleted: (a) a batch update with two edge insertions and two
edge deletions; (b) a sub-batch update with only two edge insertions; and (c) a sub-batch
update with only two edge deletions.

6.3.1 Batch Search

In the following let G = (V, E) be a graph, R ⊆ V a set of landmarks and B a batch
update resulting in the updated graph G′ = (V ′, E′). We denote the highway cover
labelling on G and G′ by Γ and Γ′, respectively. Our first aim is to identify vertices
for which the set of shortest paths to a given landmark changes.

Definition 16 (Affected Vertex). A vertex v ∈ V is affected by a batch update B w.r.t. a
landmark r ∈ R iff PG(r, v) 6= PG′(r, v).

We use Vaff(r, B) = {v ∈ V | PG(v, r) 6= PG′(v, r)} to denote the set of all affected
vertices by a batch update B w.r.t. a landmark r. It is worth noting that Lemma 7
presented in Chapter 4 states how affected vertices relate to a single update (either
edge insertion or edge deletion).

An edge insertion or deletion (a, b) can create or eliminate shortest paths starting
from a landmark r and passing through (a, b). By Corollary 3 of chapter 4, we know
that any update on an edge (a, b) with dG(r, a) = dG(r, b) is trivial w.r.t. a landmark
r, since such an update does not affect any vertices w.r.t. the landmark r.

Until now, the standard way of handling graph changes is to treat edge insertion
and edge deletion separately, since they have opposite effects on a graph. A natural
extension on batch updates would then be to devise an incremental algorithm for
batch edge insertions and a decremental algorithm for batch edge deletions. How-
ever, for a batch update that contains both edge insertions and edge deletions, we
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Algorithm 11: Batch Search
Input: G′, B, r, Γ
Output: Vaff+

1 foreach (a, b) ∈ B do
2 if dG(r, a) < dG(r, b) then
3 add (dG(r, a) + 1, b) to Q
4 end
5 else if dG(r, a) > dG(r, b) then
6 add (dG(r, b) + 1, a) to Q
7 end
8 end
9 while Q is not empty do

10 remove minimal (d, v) from Q
11 if v /∈ Vaff+ then
12 add v to Vaff+
13 foreach w ∈ NG′(v) do
14 if d + 1 ≤ dG(r, w) then
15 add (d + 1, w) to Q
16 end
17 end
18 end
19 end

would then need to split it into two sub-batches - one for edge insertions and the
other for edge deletions, and apply incremental and decremental algorithms, respec-
tively. Thus, repeated computations across edge insertions and deletions cannot be
eliminated because no interaction between edge insertion and deletion can be cap-
tured.

Example 18. Consider Figure 6.3(a) with four updates. If handling edge insertions and
deletions separately in two sub-batches as shown in Figure 6.3(b)-6.3(c), insertions of (a, b)
and (d, e) lead to affected vertices {b, e, f , g}, while deletions of (a, c) and (b, e) lead to
affected vertices {c, d, e, f , g}. The traversal on edges (e, f ) and ( f , g) is repeated.

To overcome the aforementioned shortcomings, we propose an efficient algorithm
that unifies edge insertions and deletions. The key idea is based on our observation
of a “shared pattern” that characterises affected vertices w.r.t. a landmark in a unified
way for both edge insertions and edge deletions.

Let r ∈ R and (a, b) ∈ B. Here, (a, b) is any update. That is, (a, b) is either an
inserted edge or a deleted edge.

Definition 17 (Anchor Vertex and Pre-anchor Vertex). The anchor vertex of an update
(a, b) in a batch B is either a or b, whichever is further away from r, and the pre-anchor
vertex of (a, b) is a vertex in {a, b} that is not the anchor.
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Table 6.1: An illustration of anchor vertices b, c and e w.r.t. the batch update depicted in
Figure 6.3(a). The anchor distance for b and c through pre-anchor vertex a is dG(r, a) + 1 = 2.
The anchor distance for e through pre-anchor vertex d is dG(r, d) + 1 = 2.

v = a b c d e f g
dG(r, v) = 1 3 2 3 4 5 6

Anchor vertex dG′(b, v) = 1 0 1 2 3 4 5
b Eq. 6.1 = False True False False False False False

Anchor vertex dG′(c, v) = 2 1 0 1 2 3 4
c Eq. 6.1 = False True True True True True True

Anchor vertex dG′(e, v) = 4 3 2 1 0 1 2
e Eq. 6.1 = False False False False True True True

Definition 18 (Anchor Distance). The anchor distance of an update (a, b) in a batch
B is defined as dG(r, u′) + 1 where u′ is the pre-anchor vertex in {a, b}. Note that when
dG(r, a) = dG(r, b), there is no anchor vertex nor pre-anchor vertex corresponding to the
update (a, b).

For a batch B of updates, there exists a set of anchor vertices corresponding to
the updates in B.

Lemma 14. An affected vertex v in G w.r.t. r by a batch B of updates can be found if the
following condition is satisfied by at least one anchor vertex u from B:

dG(r, v) ≥ (dG(r, u′) + 1) + dG′(u, v). (6.1)

Proof. By Lemma 7, if v is affected w.r.t. r, there must exist a shortest path from vertex
v to r passing through (u′, u). The length of such a path is dG(r, u′) + 1 + dG(u, v)
which should always be smaller than or equal to the original length dG(r, v). Thus
dG(r, v) ≥ (dG(r, u′) + 1) + dG(u, v) holds.

Example 19. Consider Figure 6.3.a again, which has three anchor vertices b, c and e cor-
responding to the four updates. By applying Eq. 6.1, we can identify affected vertices
{b, c, d, e, f , g} as shown in Table 6.1.

This striking pattern enables us to design a simple yet efficient algorithm for
finding affected vertices which only needs to traverse local neighbors v of each an-
chor vertex u on G′ recursively, i.e., computing dG′(u, v), regardless whether updates
are edge insertions or deletions. The anchor distance dG(r, u′) + 1 and the distance
dG(r, v) on G can be efficiently computed from the highway cover labelling Γ. The
searches by different updates can be combined into a single search in the order of
the anchor distances plus their distances to the anchor vertices to avoid unnecessary
computation.

We note that due to this unified handling of insertions and deletions, optimization
that apply to only one of these operations cannot simply be applied to the combined
algorithm. However, we show how one such optimization can still be leveraged in
Section 6.4.1.
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Figure 6.4: An example graph for composite-path affected vertices where r is a landmark.

Armed with these ideas, Algorithm 11 eliminates unnecessary searches on un-
affected vertices v with dG(r, v) < dG(r, u′) + 1 and also avoids traversing vertices
affected by multiple updates more than once. However, Algorithm 11 does not pre-
cisely compute the set of all affected vertices, but a superset of it. The following
example illustrates why this happens, and why it is difficult to avoid.

Example 20. Consider the graph in Figure 6.4 with two updates. The dotted edge between r
and u indicates a long path between them, and the dotted edge between r and v indicates an
even longer path. When both edge deletion (r, u) and edge insertion (u, v) occur, the distance
between r and u in G is used to compute the anchor distance of v for the update (u, v),
ignoring that the distance between r and u has changed. It is difficult to identify whether v
is affected – it hinges on whether the long path between r and v is longer than the long path
between r and u plus 1, which cannot be ascertained by Γ.

We now characterize the set of vertices returned by Algorithm 11.

Definition 19 (Composite Path). A path from r to v in G ∪ G′ is a composite path iff it
consists of two parts: a part that lies in G followed by a part in G′.

A composite path is significant iff it passes through at least one deleted and at
least one inserted edge. In Figure 6.3.a, r− a− b− c and r− a− c− d are insignificant
composite paths, r− a− c− d− e is a significant composite path, and r− a− b− e is
not a composite path as a deleted edge comes after an inserted edge.

Definition 20 (Composite-Path Affected). A vertex v ∈ V is composite-path-affected
(CP-affected) by a batch update B w.r.t. a landmark r ∈ R iff

(i) v is affected w.r.t. r, or

(ii) there exists a significant composite path from r to v of length dG(r, v) or less.

We will show that Algorithm 11 returns the set of all composite-path-affected ver-
tices. Clearly this includes all affected vertices. Additional vertices due to condition
(ii) are undesirable but hard to avoid, as illustrated in Example 20. From an algorith-
mic perspective, it happens because our starting distance is calculated w.r.t. G, so we
are effectively considering paths for which the first part (from r to an anchor) lies in
G, and the rest in G′.



90 BatchHL: Batch-Dynamic Labelling For Distance Queries

6.3.2 Batch Repair

In the following, we develop an efficient algorithm to repair labels. At its core is an
inference mechanism for the distances of affected vertices, which allows us to update
their labels. We start with boundary vertices that lie on the boundary of affected and
unaffected vertices, and for which the distance to a landmark r can be computed
from neighboring vertices whose distance did not change. Importantly, even though
a vertex may be affected by multiple edge updates in a batch, its r-label only needs
to be updated once.

Definition 21 (Boundary Vertex). A vertex v is a boundary vertex w.r.t. a landmark r if
v is an affected vertex but has an unaffected neighbor w, i.e. w /∈ Vaff(r, B) ∧ w ∈ N(v).

Let v ∈ Vaff. For every neighbor w of v in G′, dG′(r, v) must be upper-bounded by
dG′(r, w) + 1. If such a neighbor lies outside of Vaff, the value of dG′(r, w) = dG(r, w)
can easily be obtained. By taking the minimum of such known upper bounds, we
get a readily available distance bound for v.

Definition 22 (Distance Bound). Let S ⊂ V \ {r} be a set of vertices. The distance bound
of v w.r.t. S is:

dbou(v, S) := min{dG′(r, w) + 1 | w ∈ NG′(v) \ S}.

The following lemma allows us to compute the distance of vertices in Vaff from r
in G′ using their distance bounds.

Lemma 15. Let S ⊂ V \ {r} and v ∈ S with minimal distance bound. Then dG′(r, v) =
dbou(v, S).

Proof. For dG′(r, v) = ∞ this is trivial. Otherwise let p be a shortest-path from r to v
in G′, v′ is the first vertex in p that lies in S, and w its predecessor in p. Since w /∈ S
we have dbou(v′, S) ≤ dG′(r, w) + 1 = dG′(r, v′). If v′ 6= v then dG′(r, v′) < dG′(r, v) ≤
dbou(v, S), and therefore dbou(v′, S) < dbou(v, S). This contradicts the minimality of
dbou(v, S), so v′ = v. It follows that dbou(v, S) = dG′(r, v).

Note that dG′(r, v) = dbou(r, S) does not generally hold for every boundary vertex
v. This can, for example, be seen in the graph of Example 6.5 - when computing
distances to r1, e must be repaired before f , as the new shortest-path between r1 and
f passes through e. The situation is reversed when computing distance to r2. Based
on Lemma 15, we repair labels by starting with boundary vertices that have the
smallest distance bound. After each iteration, we treat affected vertices with repaired
labels as being unaffected and find boundary vertices that have the smallest distance
bound again. This process terminates only when the labels of all affected vertices are
repaired.

To further improve efficiency, we develop a landmark pruning strategy based on
the following lemma.
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Figure 6.5: An example graph where r1 and r2 are landmarks, the edges marked by + are
inserted, and the edges marked by − are deleted.

Lemma 16. A vertex v ∈ Vaff(r, B) can be pruned from repairing (i.e., do not repair its
label) if there exists a landmark r′ ∈ R\{r} lying on one shortest path in PG′(v, r).

Proof. By Definition 4, if there exists such a landmark r′, dG′(r, v) can be computed
using Equation 4.1 based on the highway and label of v w.r.t. the landmark r′. Thus,
the entry in L(v) w.r.t. the landmark r is not needed.

By Lemma 16, we thus notice that, if a vertex v ∈ Vaff(r, B) can be pruned,
then any vertex v′ ∈ aff(r, B) satisfying dG′(r, v′) = dG′(r, v) + dG′(v, v′) can also be
pruned. Putting all together, we incorporate our landmark pruning strategy into our
algorithm for batch repair.

Algorithm 12 shows the pseudo-code of our batch repair algorithm. Given a
graph G′ and a set of all affected vertices Vaff, we first compute the distance bounds
of vertices in Vaff using their unaffected neighbors. We then find vertices in Vaff

with the minimal distance bounds and remove them from Vaff. By Lemma 15 their
distance to r in G′ equals their distance bounds. For each v ∈ Vmin, we check if v is
prunable by Lemma 16. Then, if v is a landmark, we update the highway; otherwise
we remove r-label of v and prune the search from v (Lines 8-13). If v is not prunable,
we set r-label of v to (ri, Dbou[v]) (Line 15) and assign new distances to the affected
children of v in Vaff (Lines 14-15). We continue this process until Vaff is empty.

6.4 Optimization

In this section, we propose an optimized batch search method which aims to pre-
cisely compute the set of affected vertices. We also present a landmark-level parallel
approach to parallelize our batch-dynamic method.

6.4.1 Improved Batch Search

So far we aimed at computing affected vertices. However, changes to shortest paths
between r and v do not always cause a change in distance. Thus we shall differentiate
between new and eliminated paths, and strengthen the pruning condition d + 1 ≤
dG(r, w) in Line 14 of Algorithm 11 to d + 1 < dG(r, w) for new paths.

Things get a little trickier though, as we may need to eliminate redundant labels,
or restore previously eliminated labels when they become non-redundant. Thus even
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Algorithm 12: Batch Repair
Input: G′, Vaff, ri, Γ, Γ′

Output: Γ′

1 foreach v ∈ Vaff do
2 Dbou[v]← dbou(v, Vaff) // use Γ to compute
3 end
4 while Vaff is not empty do
5 Vmin ← {v ∈ Vaff | Dbou[v] is minimal}
6 remove Vmin from Vaff

7 foreach v ∈ Vmin do
8 if v is prunable then
9 if v is a landmark then

10 δ′H(ri, v)← Dbou[v]
11 else
12 remove r-label from Γ′(v)
13 end
14 else
15 set r-label of Γ′(v) to (ri, Dbou[v])
16 foreach w ∈ NG′(v) ∩Vaff do
17 Dbou[w]← min(Dbou[w], Dbou[v] + 1)
18 end
19 end
20 end
21 end

if the distance between r and v does not change, the highway labelling may need to
be updated.

Example 21. Consider the graphs in Figure 6.6. In all cases, vertex v is affected, but the
distance between r and v does not change. For case (a) adding the edge (b, v) does not cause
a label change for v because there does not exist any landmark in the newly created path
between v and r. It does however for case (b) because b is a landmark in the newly created
path between v and r which will cause the r-label of v to be deleted. Similarly, deletion of
(b, v) does not cause a change on the label of v in case (c) because of the presence of landmark
a in a shortest-path between v and r, but causes a change in case (d) where an r-label needs to
be inserted because a path passing through landmark b no longer exists and there is not any
landmark on a shortest-path between v and r.

A core difficulty in identifying whether affected vertices have changes on their
labels is that label changes can happen far away from updates, further computing
the changed labels of such vertices may require the consideration of vertices whose
labels do not change, as illustrated by the example below.

Example 22. Consider the graph in Figure 6.7. The distance between r and c changes, but
the label of c does not change. That is because the shortest-path between r and c goes through
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(a) no change
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(b) change
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(c) no change
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v
-

(d) change

Figure 6.6: Example graphs where the landmarks are circled. (a) Adding the edge (b, v)
does not cause a label change for v; (b) Adding the edge (b, v) causes the label of v to be
changed where the r-label of v needs to be deleted; (c) Deleting the edge (b, v) does not
cause a change on the label of v; (d) Deleting the edge (b, v) causes a change on the label of
v where an r-label needs to be inserted in v.

landmark b without change. At the same time the label of v does change, as the edge (r, b)
eliminates a shortest-path between r and v that passes through landmark b, similar to case (d)
in Example 21. Although the label of c does not change, the changed distance between r and
c is needed for computing the changed label of v. Therefore, c needs to be captured as well.

a b c
v

r d e
-

r-label changes

Figure 6.7: An example graph where r and b are landmarks and the edge (r, b) is deleted.
The r-label of v is changed although the r-label of c does not change.

We thus need to reexamine exactly which vertices need to be returned. Firstly,
this includes any vertex v for which the highway labelling must be updated. For non-
landmarks the only possible change is to their r-label. For landmarks their distance
to r is stored as part of the highway, and needs to be updated when it changes.
Secondly, we must return any vertex for which the distance to r changes. That is
because the batch repair algorithm computes the updated distance of a vertex to r
from that of its neighbors, so using outdated values for a neighbor could lead to
errors.

Example 23. Consider the graph in Figure 6.8. Although the distances from r to a and b are
both changed, the only vertex for which the highway cover labelling needs to be updated is a.
For b, its r-label is still redundant. Using the old distance between r and b would cause our
batch repair algorithm to compute dG′(r, a) as dG(r, b) + 1 = 3.

By considering vertices for which either label or distance changes, we can address
both of the issues illustrated in Examples 22 and 23. This motivates the following
definition.

Definition 23 (Landmark-Distance Affected). A vertex v is landmark-distance-affected
(LD-affected) by a batch update B w.r.t. a landmark r ∈ R iff it is
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a b
r

c d

-

Figure 6.8: An example graph where r, a and c are landmarks and the edge (r, a) is deleted.
The distances from r to a and b are both changed.

(i) label-affected: the r-label of v changes, or

(ii) distance-affected: the distance between r and v changes.

As seen in Example 21, changes to r-label without changes to distance happen
whenever a new shortest-path passing through another landmark is created where
none existed previously, or when the last such path is deleted. To identify such cases,
we track whether a shortest-path to r passes through another landmark.

Definition 24 (Landmark Length). The landmark length of a path p starting from r ∈ R
is a tuple (d, l) ∈N×B where

• d is the length of p (number of edges), and

• l is the landmark flag, with l = True iff p passes through a landmark other than r.

We denoted this landmark length as |p|l. The landmark distance between r and v in G is
the minimal landmark length of paths between them, denoted as

dL
G(r, v) := min

{
|p|l | p is a path between r and v in G

}
The ordering used to compare landmark length tuples is the lexicographical one, with True <
False. The latter ensures that the landmark flag of dL

G(r, v) is set iff any of the shortest paths
between r and v passes through another landmark.

Lemma 17. Let dL
G′(r, v) = (d, l). If d = ∞ or l = True then v has no r-label in Γ′.

Otherwise v has the r-label (r, d).

Proof. If v has any r-label in Γ′ it must be (r, d). As Γ′ is minimal, this r-label exists
iff it is not redundant. For d = ∞ redundancy of (∞, r) is obvious. Otherwise (d, r)
is redundant iff the correct distance could also be computed using the highway. This
happens iff a shortest-path between r and v passes through another landmark, which
is indicated by the landmark flag.

Lemma 18. A vertex v is LD-affected iff dL
G(r, v) 6= dL

G′(r, v).

Proof. Let lG and lG′ denote the landmark flags of dL
G(r, v) and dL

G′(r, v), respectively.
Condition (ii) of Definition 23 states dG(r, v) 6= dG′(r, v). It suffices to show that
for dG(r, v) = dG′(r, v) condition (i) holds iff lG 6= lG′ . This is trivial for dG(r, v) =
dG′(r, v) = ∞. For finite distances it follow from Lemma 17.
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Like Algorithm 11, our improved batch search algorithm computes a superset of
the set of all LD-affected vertices, albeit a smaller one. By Lemma 18 we need to
return a vertex whenever its landmark distance changes. Thus we improve upon
Algorithm 11 by tweaking the pruning conditions:

– Insertion: To affect the landmark distance, the landmark length of a new path
pnew from r to v must be strictly smaller than the current landmark distance
between r and v. Thus we check |pnew|l < dL

G(r, v).

– Deletion: A deleted path pdel can only affect landmark distance if its landmark
length was minimal, i.e., equal to the old landmark distance. This suggests
checking |pdel|l = dL

G(r, v). However, deleted paths may be obscured by shorter
composite paths, so we check |pdel|l ≤ dL

G(r, v) instead.

The effects of these optimizations can be observed in Example 21, where v will
not be returned for case (a) and case (c).

To apply the new pruning conditions, we must know the landmark length of a
path we are following, and whether or not it passes through a deleted edge. Thus we
track not only the length of each path, but also a landmark flag and a deletion flag.

Definition 25 (Extended Landmark Length). The extended landmark length of a path
p starting from r ∈ R is a tuple (d, l, e) ∈N×B×B where

• (d, l) is the landmark length of p, and

• e is the deletion flag, with e = True iff p passes through a deleted edge.

We use lexicographical order for comparison, with True < False.

For ease of extending landmark length values we will flatten tuples implicitly, i.e.,
we treat ((d, l), e) as (d, l, e). The choice of the ordering True < False for the deletion
flag is not arbitrary. When multiple search paths merge, we only track the length of
the shorter one w.r.t. extended landmark length. To ensure that deleted paths will
not be pruned using the stricter condition for insertion, we need to keep the deletion
flag if any path has it, which is achieved by ordering True < False.

We apply our pruning conditions by comparing the extended landmark lengths
computed for paths ending in v to the landmark distance of v in G. For this we
identify the minimal extended landmark length that indicates LD-affectedness.

Lemma 19. Let v be LD-affected w.r.t. r, and β defined as

β(r, v) :=
(
dL

G(r, v), True
)

Any composite path of minimal extended landmark length equals to β(r, v) or less and pass
through an updated edge.

Proof. In the following we shall always refer to composite paths from r to v. By
Lemma 18 we have dL

G(r, v) 6= dL
G′(r, v).
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Algorithm 13: Improved Batch Search
Input: G′, B, r, Γ
Output: Vaff+

1 foreach (a, b) ∈ B do
2 e← (a, b) is deleted
3 if dG(r, a) < dG(r, b) then
4 add

(
dL

G(r, a)⊕ b, e, b
)

to Q
5 end
6 else if dG(r, a) > dG(r, b) then
7 add

(
dL

G(r, b)⊕ a, e, a
)

to Q
8 end
9 end

10 while Q is not empty do
11 remove minimal (d, l, e, v) from Q
12 if v /∈ Vaff+ then
13 add v to Vaff+
14 foreach w ∈ NG′(v) do
15 dw ←

(
(d, l)⊕ w, e

)
16 if dw ≤ β(r, w) then
17 add (dw, w) to Q
18 end
19 end
20 end
21 end

(1) If dL
G(r, v) < dL

G′(r, v) then all paths of minimal landmark length must pass
through a deleted edge. That makes their extended landmark length β(r, v) or less.

(2) If dL
G(r, v) > dL

G′(r, v) then all paths of minimal landmark length must pass
through an inserted edge. Their landmark length is at most dL

G′(r, v), so their ex-
tended landmark length is strictly less than β(r, v).

Batch search with improved pruning is described in Algorithm 13. As we fre-
quently need to update the landmark length of a path when appending another
vertex, we define an operator for this:

(d, l)⊕ w :=

{
(d + 1, True) if w is a landmark

(d + 1, l) otherwise

We finally show the correctness of Algorithm 13, i.e., that all LD-affected vertices
are included in its result set. Note that some additional vertices may be returned as
well.

Lemma 20. Algorithm 13 returns all LD-affected vertices.
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Proof sketch. Let v be LD-affected, and Pmin be the set of all composite paths from r to
v of minimal landmark length. By Lemma 19 these (and all their prefixes) meet the
pruning condition in line 16 and pass through an updated edge. Thus the search in
Algorithm 13 will follow them, starting from the last deleted or first inserted edge.
While some paths may be pruned in line 12, the search will still follow at least one
path p ∈ Pmin with minimal landmark length. While its extended landmark length
may not be minimal, this only causes p to be pruned if its landmark length equals
dL

G(r, v) and p does not pass through a deleted edge. But in this case, v is not LD-
affected.

6.4.2 Improved Batch Repair

Now, we present improved batch repair method that repairs LD-affected vertices
Vaff+ returned by the improved batch search method. As we wish to eliminate re-
dundant r-labels, we track landmark distance. Thus, we redefine distance bound as
landmark distance bound for v ∈ Vaff+.

Definition 26 (Landmark Distance Bound). Let S ⊂ V \ {r} be a set of vertices. The
landmark distance bound of v w.r.t. S is:

dL
bou

(v, S) := min{dL
G′(r, w)⊕ v | w ∈ NG′(v) \ S};

The following lemma allows us to compute the landmark distance of vertices in
Vaff+ from r in G′ using their landmark distance bounds.

Lemma 21. Let S ⊂ V \ {r} and v ∈ S with minimal landmark distance bound. Then
dL

G′(r, v) = dL
bou

(v, S).

Proof. For dG′(r, v) = ∞ this is trivial. Otherwise let p be a shortest-path from r
to v in G′ w.r.t. landmark length, v′ the first vertex in p that lies in S, and w its
predecessor in p. Since w /∈ S we have dL

bou
(v′, S) ≤ dL

G′(r, w) ⊕ v = dL
G′(r, v′). If

v′ 6= v then dG′(r, v′) < dG′(r, v) ≤ dbou(v, S), and therefore dbou(v′, S) < dbou(v, S).
This contradicts the minimality of dbou(v, S), so v′ = v. It follows that dL

bou
(v, S) =

dL
G′(r, v).

Note that dL
G′(r, v) = dL

bou
(r, S) does not generally hold for every boundary vertex

v.
Algorithm 14 shows the pseudo-code of our improved batch repair algorithm.

Given a graph G′ and a set of all affected vertices Vaff+, we first compute the land-
mark distance bounds of vertices in Vaff+ using their unaffected neighbors. We then
find vertices in Vaff+ with minimal distance bounds and remove them from Vaff+. By
Lemma 21 their landmark distance to r in G′ equals their landmark distance bounds.
We use these landmark distances to update their r-labels, as well as their highway
distances in the case of landmarks. Finally we update the landmark distance bounds
of neighboring vertices in Vaff+. We continue this process until Vaff+ is empty.
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Algorithm 14: Improved Batch Repair
Input: G′, Vaff+, ri, Γ, Γ′

Output: Γ′

1 foreach v ∈ Vaff+ do
2 Dbou[v]← dL

bou
(v, Vaff+) // use Γ to compute

3 end
4 while Vaff+ is not empty do
5 Vmin ← {v ∈ Vaff+ | Dbou[v].d is minimal}
6 remove Vmin from Vaff+
7 foreach v ∈ Vmin do
8 if Dbou[v].d = ∞ ∨ Dbou[v].l then
9 remove r-label from Γ′(v)

10 else
11 set r-label of Γ′(v) to (ri, Dbou[v].d)
12 end
13 if v is a landmark then
14 δ′H(ri, v)← Dbou[v].d
15 end
16 foreach w ∈ NG′(v) ∩Vaff+ do
17 Dbou[w]← min(Dbou[w], Dbou[v]⊕ w)
18 end
19 end
20 end

6.4.3 Landmark Parallelism

Below, we show that BatchHL can be easily parallelized at the landmark level. Let
Γ = (H, L) be the unique minimal highway cover labelling over G. Then the unique
minimal highway cover labelling Γ′ = (H′, L′) over G′ may differ from Γ in:

(1) highway: H is changed to H′

To enable the parallelism on highway, we store H using a highway matrix such
that hij = hji for each pair of landmarks (ri, rj). Then, searches can be conducted
in parallel to update the entries in this highway matrix.

(2) labels: L is changed to L′

For any vertex v, distance entries in L(v) w.r.t. different landmarks are disjoint
subsets. Thus updating distance entries in L(v) w.r.t. different landmarks can
be processed in parallel.

Putting them all together, for any batch update, we run batch search and batch
repair w.r.t. each landmark in parallel to speed up the performance.
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6.5 Analysis of BatchHL

The following example illustrates the individual steps that our BatchHL algorithm
runs through.

Example 24. Consider the graph and updates in Figure 6.5. The initial highway labelling
Γ = (H, L) will look like this:

H = {δH(r1, r2) = 2},

L =

a b c d e f g h i
(r1, 1) (r1, 1) (r1, 1) (r1, 2) (r1, 1) (r1, 2) (r1, 3)

(r2, 1) (r2, 1) (r2, 2) (r2, 1) (r2, 2) (r2, 2)

BatchHL will initialize Γ′ as Γ, and then run BatchSearch and BatchRepair for both r1 and
r2.

– For r1 the basic BatchSearch described as Algorithm 11 returns

Vaff+ = {r2, d, e, f , g, h, i}

Here vertex e is not actually affected, but still returned due to the composite path
r1 − f − e.

– For r1 the improved BatchSearch described as Algorithm 13 returns only

Vaff+ = {e, f , g, h}

For r2, d and i, the new paths through a have the same landmark length as existing ones
and are thus pruned. The eliminated path r1 − f − g− h− i has strictly greater landmark
length than the existing path through r2, and thus is pruned. Note that e is still returned due
to the composite path r1 − f − e, despite not being LD-affected.

One of these sets is then used as input for BatchRepair described in Algorithm 14, say
Vaff = {e, f , g, h}. The initial landmark bounds for this set are

dL
bou

(r1, . . .) =
e f g h

(2, False) (∞, False) (3, True) (5, True)

Here e has the minimal distance bound, so we update L(e) by setting its r1-label to 2 (which
does not actually change L′(e)). Afterwards e is removed from Vaff and the landmark bound
of f is updated to (3, False). In the next iteration f and g are minimal, so the r1-label in
L( f ) is updated to (r1, 3) and the r1-label in L′(g) is removed. Finally dL

bou
(r1, h) is updated

to (4, True) and the r1-label in L′(h) is removed. This leaves L′ as:

L′ =
a b c d e f g h i

(r1, 1) (r1, 1) (r1, 1) (r1, 2) (r1, 3)
(r2, 1) (r2, 1) (r2, 2) (r2, 1) (r2, 2) (r2, 2)



100 BatchHL: Batch-Dynamic Labelling For Distance Queries

Running BatchSearch for r2 gives us one of

Vaff = {r1, a, b, e} or Vaff = {a, e}

depending on which algorithm (Algorithms 11 or 13) is used. Running BatchRepair Al-
gorithm 14 on either of those inserts (r2, 1) into L′(a) and (r2, 2) into L′(e) for the final
updated highway labelling

L′ =
a b c d e f g h i

(r1, 1) (r1, 1) (r1, 1) (r1, 2) (r1, 3)
(r2, 1) (r2, 1) (r2, 1) (r2, 3) (r2, 2) (r2, 1) (r2, 2) (r2, 2)

6.6 Theoretical Results

In this section, we prove the correctness of our batch-dynamic method and show that
our batch-dynamic method can preserve the minimality property of highway cover
labelling. We also analyse the complexity of the proposed algorithms.

6.6.1 Proof of Correctness

Lemma 22. Algorithm 11 returns the set of all CP-affected vertices.

Proof. We show that a vertex is CP-affected iff it lies in Vaff+ returned by Algo-
rithm 11. We prove the “if” and “only if” below.

(if) Let v ∈ Vaff+. Then there must exist a composite path p from r to v of length
at most dG(r, v) that passes through at least one edge in B. If p lies in G then it lies
in PG(r, v) but not in PG′(r, v), so v is affected. If p lies in G′, then either it lies in
PG′(r, v) or there exists an strictly shorter path p′ in PG′(r, v). Neither p nor p′ lies in
PG(r, v), so v is affected. If p lies neither in G nor in G′ then it must be significant.
Thus v is CP-affected. in all cases.

(only if) Reversely, let v be CP-affected. If PG(r, v) 6⊆ PG′(r, v) then there exists
a path p in G of length dG(r, v) that passes through a deleted edge. If PG(r, v) (
PG′(r, v) then there exists a path p in G′ of length at most dG(r, v) that passes through
an inserted edge. Otherwise the exists a significant composite path of length at most
dG(r, v). Thus, in all cases, there exists a composite path p of length at most dG(r, v)
that passes through an edge in B.

Let (a, b) be either the last deleted edge that p passes through, or the first inserted
edge, with dG(r, a) < dG(r, b). Then p can be split into pra from r to a, (a, b) and pbv
from b to v such that pra lies in G and pbv in G′. The search in Algorithm 11 starting
at b will use |prb| = dG(r, a) + 1 as the anchor distance for b, and proceed along pbv.
Thus for every vertex w ∈ pbv, including v, it will obtain |prw| ≤ dG(r, w) and add w
to Vaff+.
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6.6.2 Preservation of Minimality

Theorem 6. The highway labelling Γ′ returned by Algorithm 10 is the minimal highway
labelling for G′.

Proof. By Lemmas 22 and 20, the vertex set Vaff returned by BatchSearch contains all
LD-affected vertices, regardless of which Algorithm (11 or 13) is used. By Lemma 18
this means that for vertices outside of Vaff the landmark distance to ri does not
change, so that in line 2 of Algorithm 10 the value of dL

bou
(v, Vaff) can be computed

from Γ. From Lemma 21 it follows that Dbou[v] = dL
G′(ri, v) whenever vertex v lies in

Vmin.
For each landmark r and each vertex LD-affected w.r.t. r we update the r-label of

v in Γ′ based on its landmark distance to r in G′. By Lemma 17 these updates are
correct. As the r-labels of vertices outside of Vaff do not change, and we initialized
Γ′ using Γ, this leave all vertices with correct r-labels, for all r ∈ R, so the distance
labelling of Γ′ is correct and minimal. Highway is updated for vertices in Vaff as
well, for all r ∈ R, and do not change for others by Definition 23.

6.6.3 Complexity Analysis

Let a be the total number of affected vertices, s be the maximum label size and
d be the maximum degree. In our method, a refers to CP-affected vertices in the
batch-update setting which is different from FulFD [Hayashi et al. 2016] and FulPLL
[D’angelo et al. 2019] in the single-update setting. We perform a number |R| of
BFSs to construct highway labelling in O(|R| · |V|) time and space. Then, we update
highway labelling in Algorithm 10 where Algorithm 11 visits O(a) vertices and for
each affected vertex performs d queries to check its affected neighbors in O(d · s) time.
Thus, the time complexity of Algorithms 11 and 13 is O(a · d · s). Note that Algorithm
13 further reduces the total number of CP-affected vertices and is naturally faster
than Algorithm 11. In practice, s and d are closer to the average values, and a is
usually orders of magnitudes smaller than the total number of vertices in a graph.
Next, Algorithm 12 repairs CP-affected vertices returned by Algorithm 11 which in
the worse case could repair the labels of all CP-affected vertices. To decide whether
the label of an affected vertex needs to be repaired, we check its neighbors in O(d).
Thus, the time complexity of Algorithm 14 is (a · d), and the overall time complexity
of Algorithm 10 is O(|R| · a · d · s) using O(|V|) space. We omit s from the time
complexity of Algorithm 12 and 14 because we store distances for all unaffected
neighbors of affected vertices in Algorithms 11 and 13.

6.7 Experimental Setup

In this section, we present the datasets, the baseline methods and the test data gen-
eration process for the evaluation of our proposed batch-dynamic method.
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Table 6.2: Datasets, where size(G) denotes the size of a graph G with each edge appearing
in the forward and reverse adjacency lists and being represented by 8 bytes.

Dataset Network n m m/n avg. deg. max. deg. avg. dist. size(G)

Italianwiki web (d) 1.2M 35M 16.6 33.25 81090 3.5 153 MB
Frenchwiki web (d) 2.2M 59M 13.2 26.36 137021 3.9 223 MB

6.7.1 Datasets

We use 17 real-world large networks in our experiments. The detailed description
and summary for 15 out of 17 of these datasets are provided in Section 4.7.1 and Table
4.2, respectively. The other two datasets are two dynamic real-world networks whose
topology evolves over time. The summary of these two datasets i.e., Italianwiki
and Frenchwiki, is provided in Table 6.2. These datasets are accessible at Koblenz
Network Collection [Kunegis 2013]. We briefly describe them below.

– Italianwiki: This is a web graph which shows the evolution of hyperlinks be-
tween articles of the Italian Wikipedia. The articles are represented as nodes
and the existence or removal of hyperlinks between the articles are represented
as edges. An edge between a pair of articles indicates that a hyperlink was
added or removed depending on the edge weight (-1 for removal or +1 for
addition).

– Frenchwiki: This is a web graph which shows the evolution of hyperlinks
between articles of the French Wikipedia. The nodes represent articles and
edges represent hyperlinks between articles. An edge between a pair of articles
indicates that a hyperlink was added or removed depending on the edge weight
(-1 for removal or +1 for addition) [D’angelo et al. 2019].

6.7.2 Baseline Methods

We consider the following variants of our batch-dynamic algorithm, (1) BHL: which
uses the batch search described in Algorithm 11 and the batch repair described in
Algorithm 12, (2) BHL+: which uses the improved batch search described in Al-
gorithm 13 and the batch repair described in Algorithm 14, and (3) BHLp: which
is a parallel variant of BHL+. We compare these variants with the state-of-the-art
methods as follows:

– FulFD [Hayashi et al. 2016]: A fully dynamic method that incorporates two
algorithms IncFD and DecFD to update distance labelling for edge insertions
and deletions, and then combines it with a graph traversal algorithm to answer
distance queries.

– FulPLL [D’angelo et al. 2019]: A fully dynamic 2-hop cover labelling method
which is composed of two separate dynamic algorithms. The first algorithm
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was proposed in [Akiba et al. 2014] to answer distance queries on graphs un-
dergoing edge insertions and the second algorithm was proposed in [D’angelo
et al. 2019] to answer distance queries on graphs undergoing edge deletions.
This method is based on the pruned landmark labelling (PLL) [Akiba et al.
2013].

– PSL* [Li et al. 2019]: A parallel algorithm which constructs pruned landmark
labelling for static graphs to answer distance queries.

– BiBFS [Hayashi et al. 2016]: An online bidirectional BFS algorithm which an-
swers distance queries using an optimized strategy to expand searches from
the direction with fewer vertices.

Note that FulFD and FulPLL can handle only a single edge insertion/deletion at
a time. Thus, for a fair comparison, we also consider a unit-update variant of our
algorithm: treating our method BHL+ in the unit update setting by performing one
update at a time. We call this unit-update variant as UHL+. The code for FulFD,
FulPLL and PSL∗ was provided by their authors and implemented in C++. We use
the same parameter settings as suggested by their authors unless otherwise stated.
For a fair comparison, we also select high degree landmarks and set them to 20 in the
same way as FulFD for our methods. We set the number of threads to 20 for PSL∗ as
well as for the parallel variant of our method BHLp.

6.7.3 Test Data Generation

For our batch-dynamic variants, we generate 10 batches for the first 15 datasets,
where each batch contains 1,000 edges that are randomly selected. We consider three
batch update settings for testing:

(1) Decremental - delete these batches and measure the average deletion time;

(2) Incremental - add these batches followed by decremental updates and measure
the average insertion time;

(3) Fully dynamic - randomly select 50% updates in each of these 10 batches to
delete and then measure the average update time after applying these batches.

For the two datasets that are real-world dynamic networks, we select 10 batches in the
order of their timestamps, each containing 1,000 real-world inserted/deleted edges
and measure the average update time after applying them in a streaming fashion.

For the methods FulFD, FulPLL and UHL+, we randomly sample 1000 edges and
follow the same update settings as above to measure the update time of performing
updates one by one. These settings enable us to explore the impacts of edge insertions
and edge deletions respectively, in addition to their combined effect.

In Figure 6.9, we report the distance distribution of edges in these batches after
deleting. As we can see, the distances in all datasets are small ranging from 1 to 6.
This shows that the updates are mostly from densely connected components of these
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Figure 6.9: Distance distribution of batch updates.

networks which may cause fewer vertices to be affected in the incremental setting.
Further, only a small number of updates are disconnected (i.e., have distance ∞) in
most of these datasets.

We use the same sampling method as described in Section 4.7.3 to generate
queries in order to evaluate the query performance on graphs being changed by
fully dynamic batch updates. We also report the average labelling size produced by
our batch-dynamic method BHL+ after performing fully dynamic batch updates.

6.8 Results and Discussion

Now we present our experimental results and discuss them in detail.

6.8.1 Performance Comparison

We compare our methods against the labelling-based methods in terms of update
time, labelling size and query time.

Update Time

Table 6.4 present the average update time in the fully dynamic setting and Table 6.3
present the average update time in the incremental and decremental settings of our
proposed method and the baseline methods.

Fully dynamic setting. From Table 6.3, we see that our proposed methods BHLp,
BHL+, and BHL significantly outperform FulFD and FulPLL on all datasets w.r.t.
update time. In particular, our methods BHLp and BHL+ are over 15 times faster
than FulFD on most of the datasets and several orders of magnitude faster than
FulPLL. FulPLL only works on four graphs and fails to scale to large graphs with
more than 100 millions. Further, the performance difference of BHL+ and BHL is
due to the fact that our improved batch search in BHL+ can further prune away
affected vertices that do not need to be repaired, and in practice they are significant
in amount as can be seen in Table 6.6. Our methods also significantly outperform
FuLFD on the real-world dynamic networks: Italianwiki and Frenchwiki. We can
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Table 6.3: Comparing update time and query time of our methods BHLp, BHL+, and BHL
with the state-of-the-art dynamic methods, where the batch size is 1,000 and thus the update
time reported for every method is for 1,000 updates.

Dataset
Fully Dynamic Batch Update Time (sec.) Query Time [ms]

BHLp BHL+ BHL UHL+ FulFD FulPLL BHL+ FulFD FulPLL PSL∗

Youtube 0.046 0.070 0.208 0.091 1.249 9.110 0.005 0.010 0.045 0.002
Skitter 0.147 0.601 0.902 1.587 5.986 8.770 0.029 0.020 0.082 0.007
Flickr 0.024 0.026 0.130 0.099 2.152 6.300 0.007 0.013 0.102 0.005
Wikitalk 0.029 0.025 0.101 0.134 2.926 4.550 0.006 0.008 0.031 0.001
Hollywood 0.008 0.014 0.115 0.056 4.423 – 0.026 0.036 – 0.143
Orkut 0.537 1.775 5.855 4.539 13.30 – 0.102 0.156 – 0.203
Enwiki 0.508 1.681 10.50 3.952 121.7 – 0.053 0.051 – 0.021
Livejournal 0.221 0.306 0.873 0.379 4.736 – 0.043 0.051 – 0.047
Indochina 0.543 1.181 1.547 9.575 20.63 – 0.788 0.767 – 0.007
IT 1.494 4.502 5.433 26.57 129.6 – 1.173 1.103 – 0.059
Twitter 13.29 49.62 115.7 125.6 5103 – 0.868 0.174 – –
Friendster 0.409 0.410 0.811 21.93 23.27 – 0.815 0.902 – –
UK 14.45 41.46 40.79 56.50 110.1 – 1.174 5.233 – –
Clueweb09 – – – – – – – – – –
Clueweb12 – – – – – – – – – –
Italianwiki 0.001 0.001 0.025 0.051 6.623 – 0.008 0.014 – 0.006
Frenchwiki 0.003 0.004 0.067 0.098 5.289 – 0.009 0.016 – 0.006

also observe that the average update time of BHL+, BHL and BHLp is always by far
smaller than recomputing labelling from scratch, i.e., construction time of BHL+ in
Table 6.5. Notice that, we consider the same construction time for BHLp and BHL
as BHL+, which is smaller than the construction time of baseline methods FulFD
[Hayashi et al. 2016] and PSL* [Li et al. 2019] on all datasets. We can see that the
parallel variant of PLL (PSL*) still failed to construct labelling for the largest three
datasets.

Incremental setting. Table 6.4 also shows that our methods BHL+, BHLp are consid-
erably faster than the baseline methods IncFD and IncPLL. Even though IncFD and
IncPLL do not preserve the minimality of distance labellings and thus do not spend
time to delete outdated and redundant label entries, they are still slower than our
methods. We can also see BHL+ and BHLp in the batch update setting are signifi-
cantly faster than UHL+ in the unit update setting. This is because UHL+ requires
extra usage of resource for each single update and involves in repeated and unnec-
essary computations. Here it is also to note that BHLp does not perform well on the
last four datasets as compared to BHL. This is because there only exist a very small
number of average affected vertices against the total number of affected vertices as
shown in Table 6.6. This confirms that the parallel variant of our method works very
well when a large number of vertices are affected by batch updates; otherwise it may
introduce unneeded thread overhead.

Decremental setting. It is evident from Table 6.4 that our methods BHL+ and BHLp

are much faster than DecFD and DecPLL on all the datasets in this setting. Espe-
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Table 6.4: Comparing update time of our methods BHLp and BHL+ with the state-of-the-art
dynamic methods, where the batch size is 1,000 and thus the update time reported for every
method is for 1,000 updates.

Dataset
Incremental Batch Update Time (sec.) Decremental Batch Update Time (sec.)
BHLp BHL+ UHL+ IncFD IncPLL BHLp BHL+ UHL+ DecFD DecPLL

Youtube 0.003 0.008 0.048 0.154 0.194 0.070 0.169 0.239 3.181 9.850
Skitter 0.002 0.006 0.069 0.117 1.312 0.163 0.751 2.382 14.15 31.50
Flickr 0.003 0.008 0.072 0.053 1.259 0.030 0.041 0.107 3.364 13.40
Wikitalk 0.002 0.005 0.097 0.029 0.081 0.046 0.044 0.147 5.674 9.820
Hollywood 0.001 0.002 0.046 0.090 27.53 0.017 0.031 0.071 8.401 –
Orkut 0.005 0.014 0.127 0.367 – 0.677 0.035 5.921 23.94 –
Enwiki 0.008 0.012 0.168 0.316 4.916 0.770 3.079 8.194 251.2 –
Livejournal 0.006 0.010 0.202 0.244 – 0.299 0.570 0.731 4.736 –
Indochina 0.015 0.011 0.308 0.141 4.680 0.553 1.346 19.20 44.92 –
IT 0.101 0.033 13.21 0.147 – 1.505 4.699 42.75 285.6 –
Twitter 0.125 0.024 13.09 0.263 – 19.17 68.85 231.8 9460 –
Friendster 0.163 0.035 20.96 0.254 – 0.420 0.738 21.87 30.38 –
UK 0.218 0.055 4.349 0.258 – 14.99 42.29 75.20 257.3 –
Clueweb09 – – – – – – – – – –
Clueweb12 – – – – – – – – – –
Italianwiki – – – – – – – – – –
Frenchwiki – – – – – – – – – –

cially, BHL and BHLp can achieve outstanding performance on networks which have
a high average degree such as Twitter, Flickr and Hollywood. Due to inherent com-
plexity of edge deletion on graphs (i.e., increasing distances), DecFD and DecPLL
take very long in identifying and updating labels of affected vertices. As we can
see, DecPLL does not have results on 8 out of 12 datasets. This is because while
applying decremental updates their software either crashed or did not finish when
the datasets are large that is why we don’t have query time and labelling size after
updates for these datasets in Table 6.3 and 6.5. Furthermore, our methods BHL+

and BHLp outperform UHL+ because both leverage the benefit of handling updates
in a batch and significantly reduce repeated computations during identifying and
repairing the labels of affected vertices.

Labelling Size

Table 6.5 shows that BHL+ has significantly smaller labelling size than FulFD, FulPLL
and PSL* on all the datasets. When an update occurs, the labelling size of FulFD re-
mains unchanged because they store complete shortest-path trees at all times. In
contrast, BHL+ stores pruned shortest-path trees preserving the property of mini-
mality. Nonetheless, the labelling size of BHL+ remains stable in practice because
the average label size is bounded by a constant, i.e., the number of landmarks. The
labelling size of FulPLL may increase significantly because IncPLL does not remove
outdated and redundant distance entries and there is also no bound on labelling size.
The parallel variant of PLL (PSL*) which exploit PLL properties to reduce labelling
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Table 6.5: Comparing performance of our method BHL+ with the baseline methods in terms
of the construction time and labelling size. Note that when a method did not finish the
labelling construction in 24 hours, we denote it as “–”.

Dataset
Construction Time (CT) [s] Labelling Size (LS)

BHL+ FulFD FulPLL PSL* BHL+ FulFD FulPLL PSL*
Youtube 1.46 3.56 84 4 20 MB 83 MB 3.14 GB 318 MB
Skitter 2.68 8.31 511 21 42 MB 153 MB 11.9 GB 1.01 GB
Flickr 3.17 10.8 546 23 34 MB 152 MB 13.1 GB 0.98 GB
Wikitalk 1.93 4.68 92 4 41 MB 74 MB 5.22 GB 160 MB
Hollywood 6.32 24.7 9,782 377 27 MB 263 MB – 4.15 GB
Orkut 24.6 90.3 – 26,310 70 MB 711 MB – 121 GB
Enwiki 24.4 91.1 7,382 389 82 MB 608 MB – 7.04 GB
Livejournal 20.3 48.3 – 4,441 122 MB 663 MB – 50.5 GB
Indochina 9.06 30.1 3,205 86 85 MB 838 MB – 3.39 GB
IT 76.4 231 – 10,377 854 MB 4.73 GB – 130 GB
Twitter 540 2,010 – – 1.14 GB 3.83 GB – –
Friendster 1,202 3,476 – – 2.43 GB 9.14 GB – –
UK 176 625 – – 1.78 GB 11.8 GB – –
Clueweb09 46,366 – – – – – –
Clueweb12 22,370 – – – – – –
Italianwiki 6 15 – 215 23 MB 159 MB – 0.81 GB
Frenchwiki 11 25 – 433 46 MB 272 MB – 1.54 GB

size still produces labelling of very large size as compared to BHL+.

Query Time

Table 6.3 shows that the average query time of BHL+ is comparable with FulFD and
faster than FulPLL. It has been previously shown [D’angelo et al. 2019] that the aver-
age query time is largely dependent on labelling size. Since the dynamic operations
do not considerably affect the labelling size for BHL+ and FulFD, their query times
remain stable. On Twitter, the query time of BHL+ underperforms FulFD because
FulFD also maintains the shortest-path information for the neighborhood of land-
marks and we can see that the maximum degree of Twitter is very high which might
cause many pairs to be covered by landmarks. However, the query time for FulPLL
may considerably increase over time because they do not remove outdated entries,
leading to labelling of increasing sizes.

Although the query time of PSL* in Table 6.3 is better than BHL+ on some
datasets, it only handles static graphs. For dynamic graphs, it has the following
limitations: (1) the cost of re-constructing labelling from scratch after each batch up-
date is too high to afford, particularly when batch updates are frequent or when
underlying dynamic graph is large which is evident from Table 6.5, (2) the labelling
size is much larger than BHL+. As we can see in Table 6.5, PSL* produces the la-
belling of size almost 99% larger than the labelling of BHL+ for Orkut thus possess a
high query cost as well. Considering the overall performance w.r.t. three main factors
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Table 6.6: Comparing the average number of vertices affected by BHL+ and BHL after per-
forming batch updates on all the datasets.

Dataset
BHL+ BHL

|V| Delete Add Mix Mix
Youtube 1.1 M 366 K 23 K 166 K 476 K
Skitter 1.7 M 971 K 11 K 834 K 1,266 K
Flickr 1.7 M 55 K 22 K 42 K 157 K
Wikitalk 2.4 M 127 K 16 K 81 K 474 K
Hollywood 1.1 M 14 K 2 K 7 K 41 K
Orkut 3.1 M 503 K 3 K 293 K 982 K
Enwiki 4.2 M 1,220 K 4 K 712 K 3,587 K
Livejournal 4.8 M 276 K 12 K 156 K 454 K
Indochina 7.4 M 2,079 K 15 K 200 K 3,085 K
IT 41 M 5,878 K 28 K 5,681 K 6,759 K
Twitter 42 M 10,622 K 2 K 8,341 K 20,705 K
Friendster 66 M 66 K 6 K 36 K 80 K
UK 106 M 54,515 K 12 K 54,026 K 54,864 K
Clueweb09 – – – – –
Clueweb12 – – – – –
Italianwiki 1.2 M – – 337 9 K
Frenchwiki 2.2 M – – 3 K 45 K

Table 6.7: Comparing update time, construction time (CT), query time (QT) and labelling
size (LS) on directed graphs.

Dataset BHLp [s] BHL+ [s] BHL [s] CT [s] QT [ms] LS
Wikitalk 0.02 0.04 0.17 2.03 0.001 54 MB
Enwiki 2.98 12.5 28.0 46.8 0.023 177 MB
Livejournal 7.54 18.9 15.1 44.6 0.050 222 MB
Twitter 16.2 64.4 142 931 0.312 1.7 GB

i.e., query time, labelling size and construction time, BHL+ stands out in claiming
the best trade-off between these factors.

6.8.2 Performance under Varying Landmarks

Figure 6.10 shows how the update time of our method BHL+ in the fully dynamic
setting behaves when increasing the number of landmarks. We can see that the
update time for almost all datasets grows till 30 landmarks and then either decreases
or remains stable. This is because selecting a larger number of landmarks can better
leverage the pruning power of our method. On Twitter, we observe that the update
time grows linearly due to its very high average degree which leads to a large fraction
of vertices to be affected as can be seen in Table 6.6 for 20 landmarks. We can also
see in Figure 6.11 that the query time decreases or remains the same for almost
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Figure 6.10: Update time under 10-50 landmarks.
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Figure 6.11: Query time under 10-50 landmarks.

all datasets with the increased number of landmarks. Particularly, the query time
of Twitter, Orkut and Livejournal decreases because they have a very high average
degree and selecting a larger number of high degree landmarks contributes greatly
towards shortest-path coverage and makes querying process faster.

6.8.3 Performance under Varying Batch Size

We also compare the total time of querying and updating on dynamic graphs. To
make a fair comparison, the total time of our methods BHL+ and BHLp, and the
baseline method FulFD is the total time to perform a batch update plus the query
time to perform 1000 queries after the batch update and then averaged over 1000
queries, denoted as BHL++QT, BHLp+QT and FulFD+QT, respectively. We conduct
the experiments for 5 randomly sampled fully dynamic batch updates of varying
sizes, i.e., 500 to 10,000 in each batch.
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Figure 6.12: Comparing the total time of querying and updating by the proposed methods
against online search methods.

Figure 6.12 presents the results. For the baseline method BiBFS, we take only the
query time averaged over 1000 queries after applying a batch update. We see that, the
overall performance of our methods is significantly better than the baseline methods
on all the datasets. It is worth noticing that BHLp is not only more efficient than
BHL+, but also their efficiency gap becomes larger when the size of batch updates
increases. This shows that the parallelism power of BHLp can be better leveraged
for batch updates of larger sizes. We can also observe that the update time along
with the query time of our methods grows fast for batches of smaller sizes (with up
to 1000 updates) and then grows very slowly when batch sizes become very large
which shows that our methods are robust w.r.t the increased batch size.

6.8.4 Performance on Directed Graphs

We also conduct experiments on directed graphs. We can see in Table 6.7 that the
update time of our methods is significantly smaller than the construction time of la-
belling from scratch. The update time of our optimized method BHL+ is faster than
the method BHL on all datasets except Livejournal. On Livejournal, the amount of
affected vertices traversed by both BHL and BHL+ is the same; however, due to ad-
ditional overhead of computing extended landmark lengths, BHL+ under-performs
BHL. BHLp is still the fastest among all methods. Our methods are also efficient in
performing queries and have small labelling sizes.
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6.9 Summary

In this chapter, we have studied the distance query problem on batch-dynamic graphs
that undergo rapid changes such as edge insertions or deletions in their topological
structure. We proposed a novel method that can efficiently handle such changes
in batches on graphs in order to answer distance queries correctly. Our proposed
method is also based on the properties of the highway cover distance labelling pre-
sented in Chapter 4. It explores the combinatorial nature of interactions occurring
between different types of updates (edge insertions and edge deletions) in a batch for
efficiently maintaining a highway cover distance labelling that reflects batch updates
on graphs. We further developed a parallel variant to speed up the performance.
We proved the correctness and analyzed the complexity of our proposed method.
We also showed that our proposed method can preserve the minimality property of
a highway cover distance labelling. We empirically verified the efficiency and scal-
ability of our approach on 17 real-world networks from a variety of domains. The
results showed that our proposed algorithms significantly outperform the state-of-
the-art methods.
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Chapter 7

Extensions

In this chapter, we provide a brief discussion on extending the proposed methods to
directed and weighted graphs.

7.1 Directed graphs

The methods proposed in this thesis can be extended to handle directed graphs. For
directed graphs, we redefine dG(s, t) as the distance from vertex s to vertex t. Then,
we store two sets of labels, namely forward label L f (v) and backward label Lb(v) for
each vertex v ∈ V. These forward and reverse labels contain pairs (ri, δriv) that are
computed by performing forward and backward pruned BFSs w.r.t. each landmark
ri ∈ R, respectively. We also store a forward highway H f = (R, δH f ) and a backward
highway Hb = (R, δHb), where for any two landmarks ri, rj ∈ R, δH f (ri, rj) = dG(ri, rj)
and δHb(rj, ri) = dG(rj, ri). To answer a distance query (s, t), we can use L f (s) and
Lb(t) to compute the upper bound distance from s to t in the same way as described
in Equation 4.2.

To repair the labels and highways under single-update setting (proposed in Chap-
ter 5), we conduct JP-BFSs twice: once in the forward direction and once in the back-
ward direction. Similarly, in the batch-update setting (proposed in Chapter 6), we
perform batch search and batch repair methods twice: once in the forward direction
and once in the backward direction. Then the correct upper bound for a distance
query (s, t) can be computed using the updated labels L f (s), Lb(t), and highways
δH f , δHb in the same way as described in Equation 4.2.

7.2 Weighted graphs

The methods proposed in this thesis can also be extended to handle non-negative
weighted graphs.

• For the method proposed in Chapter 4, we conduct pruned Dijkstra’s algorithm
in place of pruned BFSs for constructing the labelling.

• For the method proposed in Chapter 5, we conduct jumped-and-pruned flavour
of Dijkstra’s algorithm in place of JP-BFSs to repair the labels and highways

113



114 Extensions

under single-update setting.

• Similarly, for the batch-update setting proposed in Chapter 6, we use Dijkstra’s
algorithm in our batch search and batch repair algorithms.

For non-negative weighted graphs, we consider updates in the form of edge
weight increase or decrease instead of edge insertion or deletion. Our methods can
then handle weight increases in a similar way to edge deletions, and weight decreases
in a similar way to edge insertions.



Chapter 8

Conclusions and Future Work

In this thesis, we have studied the distance query problem which is a fundamental
problem in graph theory. The existing algorithms to address this problem suffer from
scalability. Thus, we first proposed a highly scalable method to answer distance
queries on static graphs that may have billions of vertices and edges. Then, we
developed dynamic methods that consider both the single-update setting and the
batch-update setting to perform graph updates on labelling efficiently for fast and
accurate distance querying on dynamic graphs. In the following we summarise our
conclusions for each of these problems.

• In Chapter 4, we have studied the distance query problem on large static
graphs. Our solution combines an offline distance labelling and online search-
ing to efficiently answer exact distance queries on large static graphs. We
present a novel property called highway cover labelling and propose a labelling
construction algorithm which enables fast construction of highway cover dis-
tance labelling for billion-scale networks. Then, we formulate a querying frame-
work that combines a highway cover distance labelling with distance-bounded
shortest-path searches to enable fast distance computation. We prove that
our proposed labelling construction algorithm can construct a unique highway
cover distance labelling independent of the order of landmarks being applied
for construction; further, such a unique highway cover distance labelling is
highway cover minimal. Due to these nice highway cover labelling properties,
we also develop a parallel algorithm to speed up the highway cover distance la-
belling construction process by conducting BFSs simultaneously w.r.t. multiple
landmarks. We showed in our experiments that the proposed method is effi-
cient and scalale, outperforming the state-of-the-art methods on 15 real-world
networks from a variety of domains.

• In Chapter 5, we have studied the distance query problem on large dynamic
graphs that undergo changes such as edge insertions and deletions one by
one. We develop two algorithms called incremental algorithm and decremental
algorithm against these two fundamental types of changes in dynamic graphs,
i.e., edge insertions and edge deletions, respectively. The proposed algorithms
further exploit the properties of highway cover labelling in order to efficiently
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maintain a highway cover distance labelling for dynamic networks. Then, we
combine these two algorithms to propose a fully dynamic solution that can
reflect both edge insertions and deletions efficiently into a graph. We theoreti-
cally prove that the proposed fully dynamic method is correct and can preserve
the minimality property of a highway cover distance labelling after updating
the highway cover distance labelling to reflect changes into a graph. We con-
duct extensive experiments to empirically verify the efficiency and scalability of
the proposed algorithms. The results showed that the proposed algorithms can
significantly outperform the state-of-the-art methods on 15 real-world networks
from a variety of domains.

• In Chapter 6, we have studied the distance query problem on batch-dynamic
graphs that undergo rapid changes such as edge insertions or deletions in a
batch. We propose a batch-dynamic method that can efficiently process edge
insertions and deletions together in large batches in order to answer distance
queries accurately when the topological structure of a graph has been changed.
The proposed method explores the combinatorial nature of interactions occur-
ring between different types of updates in a batch in order to efficiently main-
tain a highway cover distance labelling for reflecting batches of updates on
graphs. We also develop a parallel variant that can parallelize the update on
a highway cover distance labelling with respect to different landmarks so as
to speed up the performance. We prove the correctness and analyze the com-
plexity of the proposed method. We show that the proposed method can still
preserve the minimality property of highway cover labelling. We empirically
verify the efficiency and scalability of the proposed method on 17 real-world
networks from a variety of domains (i.e., 15 real-world networks as in Chap-
ters 4 and 5 plus two additional dynamic real-world networks). The results
show that the proposed method can significantly outperform the state-of-the-
art methods.

For future work, one of the interesting directions to explore further is road networks.
All the methods presented in this thesis have used a novel highway structure as an
integral part of their solutions. In the literature, a number of methods targeted for
addressing the distance query problem [Akiba et al. 2014; Jin et al. 2012; Abraham
et al. 2010] on road networks have originally been motivated by the idea of highway
structure that commonly exists in road networks. Thus, it would be interesting to
explore: how well the highway cover distance labelling method proposed in Chapter
4 can perform for road networks. Moreover, real-world road networks are weighted
and their topological structures often remain unchanged but their edge weights are
dynamically updated under dynamic conditions such as changing traffic conditions.
Hence, it would be interesting to extend and explore the applicability of the dynamic
methods proposed in Chapter 5 and Chapter 6 to weighted road networks in a way
that updates are modeled in terms of edge weight increase or edge weight decrease
instead of removal or insertion of edges.

Another interesting direction to explore in future research is the selection of
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highly central landmarks. It has been previously known that landmarks with high
centrality have the potential to cover the shortest paths between a significant frac-
tion of vertex pairs in a graph and are thus desirable for being selected for distance
labelling. In our work, highly central landmarks can help produce highway cover dis-
tance labellings of a smaller size (with a smaller average label size as well), thereby
leading to reduced search space and boosting the query performance. Thus, it would
be interesting to investigate and develop an efficient method for selecting a number
of highly central landmarks that could considerably save us searching on a sparsi-
fied graph with much better quality of upper bounds in our querying framework
presented in Chapter 4. Further, re-selection of highly central landmarks could also
be required after a certain amount of changes occurring on the topological structure
of a dynamic network. This would help optimize the size of a highway cover dis-
tance labelling and query performance. Therefore, it is also interesting to explore the
problems such as: after how much changes on the topological structure of a dynamic
graph, re-positioning of landmarks is required.
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2011. Fast fully dynamic landmark-based estimation of shortest path distances



Bibliography 125

in very large graphs. In Proceedings of the 20th ACM International Conference on
Information and Knowledge Management, CIKM (2011), pp. 1785–1794. (pp. 3, 6, 16,
17, 18, 21)

Ukkonen, A., Castillo, C., Donato, D., and Gionis, A. 2008. Searching the
wikipedia with contextual information. In Proceedings of the 17th ACM Conference
on Information and Knowledge Management, CIKM (2008), pp. 1351–1352. (p. 1)

Vieira, M. V., Fonseca, B. M., Damazio, R., Golgher, P. B., Reis, D. d. C., and

Ribeiro-Neto, B. 2007. Efficient search ranking in social networks. In Proceed-
ings of the Sixteenth ACM Conference on Conference on Information and Knowledge Man-
agement, CIKM (2007), pp. 563–572. (pp. 1, 3, 18)

Watts, D. J. and Strogatz, S. H. 1998. Collective dynamics of ‘small-
world’networks. nature 393, 6684, 440–442. (p. 2)

Wei, F. 2010. Tedi: Efficient shortest path query answering on graphs. In Pro-
ceedings of the 2010 ACM SIGMOD International Conference on Management of Data
(2010), pp. 99–110. (pp. 6, 15, 16, 43)

Xu, B., Huang, Y., Kwak, H., and Contractor, N. 2013. Structures of broken
ties: Exploring unfollow behavior on twitter. In Proceedings of the 2013 Conference
on Computer Supported Cooperative Work, CSCW (2013), pp. 871–876. (p. 3)

Yahia, S. A., Benedikt, M., Lakshmanan, L. V. S., and Stoyanovich, J. 2008. Ef-
ficient network aware search in collaborative tagging sites. Proc. VLDB Endow. 1, 1
(Aug.), 710–721. (pp. 1, 3)

Yang, J. and Leskovec, J. 2015. Defining and evaluating network communities
based on ground-truth. Knowl. Inf. Syst. 42, 1 (Jan.), 181–213. (p. 42)

Zhang, M., Li, L., Hua, W., Mao, R., Chao, P., and Zhou, X. 2021. Dynamic
hub labeling for road networks. In 2021 IEEE 37th International Conference on Data
Engineering (ICDE) (2021), pp. 336–347. IEEE. (p. 22)

Zhang, M., Li, L., Hua, W., and Zhou, X. 2021. Efficient 2-hop labeling mainte-
nance in dynamic small-world networks. In 2021 IEEE 37th International Conference
on Data Engineering (ICDE) (2021), pp. 133–144. (p. 21)


	Certificate Of Authorship/Originality
	Acknowledgements
	Publications
	Table Of Content
	Contents
	List Of Figures
	List Of Tables
	Abstract
	Introduction
	Background
	Complex Networks
	Dynamic Networks

	Research Objectives
	Research Challenges
	Contributions
	Highway Cover Labelling For Distance Queries
	Fully Dynamic Labelling For Distance Queries
	Batch-Dynamic Labelling For Distance Queries

	Outline

	Preliminaries
	Literature Review
	Answering Distance Queries on Static Graphs
	Search-based Methods
	Labelling-based Methods
	Hybrid Methods

	Answering Distance Queries on Dynamic Graphs
	Labelling-based Methods
	Hybrid Methods


	HL: Highway Cover Labelling For Distance Queries
	Overview
	Problem Definition
	Highway Cover Labelling
	Highway and Highway Cover
	Labelling Construction Algorithm
	Order Independence
	Minimality

	Bounded Distance Querying Framework
	Computing Upper Bounds
	Distance-Bounded Bi-Directional Search

	Optimization Techniques
	Label Construction
	Label Compression
	Query Processing

	Theoretical Results
	Proof of Correctness
	Preservation of Minimality
	Complexity Analysis

	Experimental Setup
	Datasets
	Baseline Methods
	Test Data Generation

	Results and Discussion
	Performance Comparison
	Performance under Varying Landmarks

	Summary

	FulHL: Fully Dynamic Labelling For Distance Queries
	Overview
	Problem Definition
	Fully Dynamic Labelling Framework
	Jumped-and-Pruned Search
	Incremental Algorithm
	Improved Incremental Algorithm
	Decremental Algorithm

	Theoretical Results
	Proof of Correctness
	Preservation of Minimality
	Complexity Analysis

	Experimental Setup
	Datasets
	Baseline Methods
	Test Data Generation

	Results and Discussion
	Performance Comparison
	Performance under Varying Landmarks
	Analysis of Affected Vertices
	Scalability of Updates

	Summary

	BatchHL: Batch-Dynamic Labelling For Distance Queries
	Overview
	Problem Definition
	Batch-dynamic Labelling Framework
	Batch Search
	Batch Repair

	Optimization
	Improved Batch Search
	Improved Batch Repair
	Landmark Parallelism

	Analysis of BatchHL
	Theoretical Results
	Proof of Correctness
	Preservation of Minimality
	Complexity Analysis

	Experimental Setup
	Datasets
	Baseline Methods
	Test Data Generation

	Results and Discussion
	Performance Comparison
	Performance under Varying Landmarks
	Performance under Varying Batch Size
	Performance on Directed Graphs

	Summary

	Extensions
	Directed graphs
	Weighted graphs

	Conclusions and Future Work
	Bibliography

