Knowledge Tracing Using Deep Learning Methods

Ghodai Abdelrahman Zaki

School of Computing College of Engineering and Computer Science Australian National University, Canberra, Australia

ghodai.abdelrahman@anu.edu.au

April 5, 2023

Agenda

2 Related Work

- 3 Research Goals and Challenges
- 4 Contributions and Publications
- 5 Methodology
 - Sequence Deep Knowledge Tracing (SKVMN)
 - Deep Graph Memory Networks (DGMN)
 - Learning Knowledge Augmented Data teaching Strategies (KADT)
 - Database Exercises Dataset for Knowledge Tracing (DBE-KT22)

6 Conclusion & Future Work

 Human instructors can intelligently track the knowledge state of each student with respect to learning concepts and customize the learning experience accordingly.

- Human instructors can intelligently track the knowledge state of each student with respect to learning concepts and customize the learning experience accordingly.
- However online learning systems lack the ability to track the student's knowledge state.

- Human instructors can intelligently track the knowledge state of each student with respect to learning concepts and customize the learning experience accordingly.
- However online learning systems lack the ability to track the student's knowledge state.
- This asks the question: can machines trace the student's knowledge state like a human instructor?

Knowledge tracing (KT): the process of estimating a student's learning state over underlying learning concepts given the previous practice history.

Questions

Answers

Questions

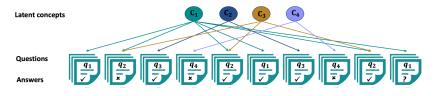
Answers

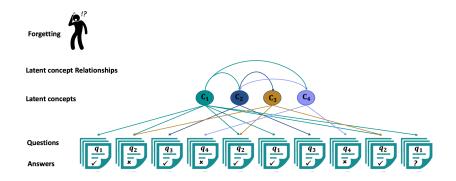
Latent concepts

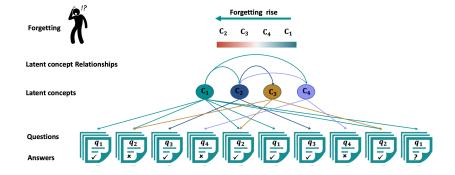
Questions

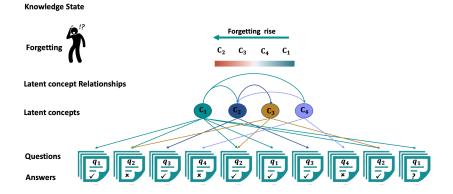
Answers

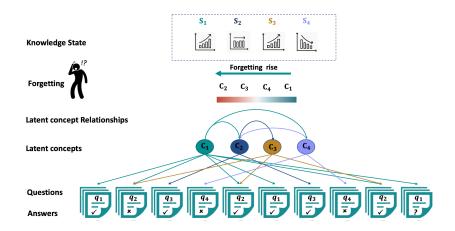
Latent concept Relationships











Given

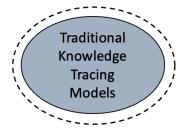
- A set of question tags Q = {q₁, q₂,..., q_n} relating to a hidden set of learning concepts.
- A student's practice history $X = \langle (q_1, y_1), (q_2, y_2), \dots, (q_{t-1}, y_{t-1}) \rangle \text{ , where } y_i \in \{0, 1\}.$

The KT problem is to predict the probability of correctly answering the next question q_t by the student:

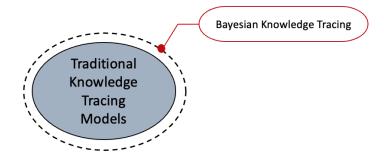
$$p_t = (y_t = 1 | q_t, X)$$

The related work in knowledge tracing $(KT)^1$ problem can be categorized into two main categories:

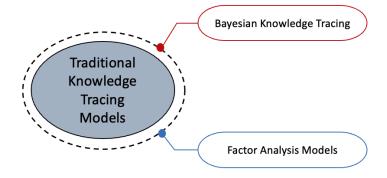
¹Knowledge Tracing: A Survey, G. Abdelrahman, Q. Wang, and B. Pereira Nunes, Journal publication accepted (ACM Comp. Surveys)



¹Knowledge Tracing: A Survey, G. Abdelrahman, Q. Wang, and B. Pereira Nunes, Journal publication accepted (ACM Comp. Surveys)

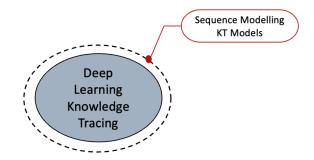


¹Knowledge Tracing: A Survey, G. Abdelrahman, Q. Wang, and B. Pereira Nunes, Journal publication accepted (ACM Comp. Surveys)

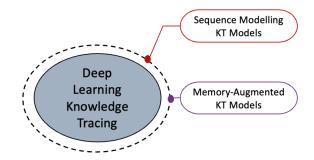


¹Knowledge Tracing: A Survey, G. Abdelrahman, Q. Wang, and B. Pereira Nunes, Journal publication accepted (ACM Comp. Surveys)

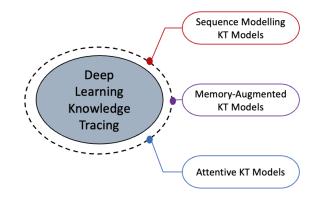
¹Knowledge Tracing: A Survey, G. Abdelrahman, Q. Wang, and B. Pereira Nunes, Journal publication accepted (ACM Comp. Surveys)



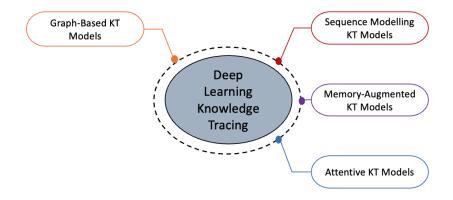
¹Knowledge Tracing: A Survey, G. Abdelrahman, Q. Wang, and B. Pereira Nunes, Journal publication accepted (ACM Comp. Surveys)



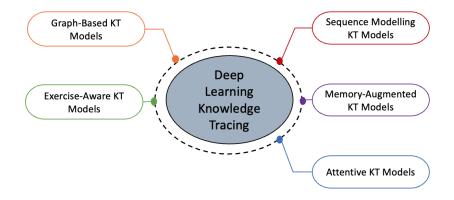
¹Knowledge Tracing: A Survey, G. Abdelrahman, Q. Wang, and B. Pereira Nunes, Journal publication accepted (ACM Comp. Surveys)



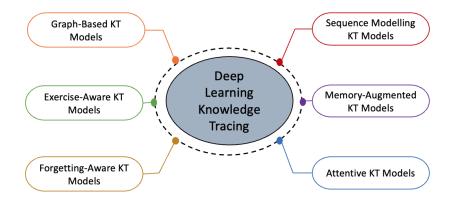
¹Knowledge Tracing: A Survey, G. Abdelrahman, Q. Wang, and B. Pereira Nunes, Journal publication accepted (ACM Comp. Surveys)



¹Knowledge Tracing: A Survey, G. Abdelrahman, Q. Wang, and B. Pereira Nunes, Journal publication accepted (ACM Comp. Surveys)



¹Knowledge Tracing: A Survey, G. Abdelrahman, Q. Wang, and B. Pereira Nunes, Journal publication accepted (ACM Comp. Surveys)



¹Knowledge Tracing: A Survey, G. Abdelrahman, Q. Wang, and B. Pereira Nunes, Journal publication accepted (ACM Comp. Surveys)

Research Goals and Challenges

Conduct a detailed literature review for KT literature to guide future directions in the field.

- Conduct a detailed literature review for KT literature to guide future directions in the field.
- Propose novel and effective methods for tackling the KT problem.

- Conduct a detailed literature review for KT literature to guide future directions in the field.
- Propose novel and effective methods for tackling the KT problem.
- Collect and formulate a new KT dataset to overcome limitations in existent datasets.

RQ1: How to effectively represent and track a student's knowledge state given exercise observations?

- RQ1: How to effectively represent and track a student's knowledge state given exercise observations?
- RQ2: How to represent and tackle the student's forgetting behaviour during knowledge tracing?

- RQ1: How to effectively represent and track a student's knowledge state given exercise observations?
- RQ2: How to represent and tackle the student's forgetting behaviour during knowledge tracing?
- RQ3: Could teaching strategies be learned via knowledge tracing?

- RQ1: How to effectively represent and track a student's knowledge state given exercise observations?
- RQ2: How to represent and tackle the student's forgetting behaviour during knowledge tracing?
- RQ3: Could teaching strategies be learned via knowledge tracing?
- **RQ4**: What are the current limitations in KT datasets? How to address them?

Contributions and Publications

Contributions and Publications

- Deep Knowledge Tracing
 - SKVMN G. Abdelrahman and Q. Wang. Knowledge Tracing with Sequential Key-Value Memory Networks. Conference publication accepted (SIGIR 2019).
 - DGMN G. Abdelrahman and Q. Wang. Deep Graph Memory Networks for Forgetting-Robust Knowledge Tracing. Journal publication accepted (TKDE 2022).
- Knowledge-aware Teaching Strategy Learning
 - KADT G. Abdelrahman and Q. Wang. Learning Data Teaching Strategies Via Knowledge Tracing. Under review journal publication (Knowledge-Based Systems).

New KT Dataset

- DBE-KT22 G. Abdelrahman, S. Mohamed, Q. Wang and Y. Lin. DBE-KT22: A Knowledge Tracing Dataset Based On Online Student Evaluation. Under review journal publication (UMUAI).
- Comprehensive KT Survey
 - G. Abdelrahman, Q. Wang, and B. Pereira Nunes. Knowledge Tracing: A Survey. Journal publication accepted (ACM Comp. Surveys)

Methodology

- Sequence Key-Value Memory Network (SKVMN)
- Deep Graph Memory Network (DGMN)
- Learning Knowledge Augmented Data teaching Strategies (KADT)
- Database Exercises Dataset for Knowledge Tracing (DBE-KT22)

²G. Abdelrahman and Q. Wang. Knowledge Tracing with Sequential Key-Value Memory Networks. (SIGIR 2019).

- In Knowledge tracing over multiple KCs.
 - A key-value memory $\langle M^k \mbox{ (static)}, \, M^v_t (\mbox{dynamic}) \rangle$
- ② Recurrent hopping mechanism.
 - Hop-LSTM

- Knowledge-informed memory update.
 - Attention-based memory read and write

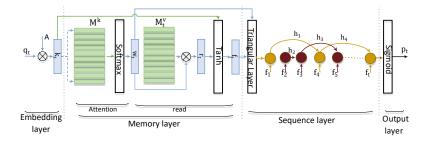
- In Knowledge tracing over multiple KCs.
 - A key-value memory $\langle M^k \mbox{ (static), } M^v_t(\mbox{ dynamic)} \rangle$
- Pecurrent hopping mechanism.
 - Hop-LSTM
- Showledge-informed memory update.
 - Attention-based memory read and write

Contribution

- Knowledge tracing over multiple KCs.
 - A key-value memory $\langle \mathbf{M}^{\mathbf{k}} (\text{static}), \mathbf{M}^{\mathbf{v}}_{\mathbf{t}} (dynamic) \rangle$
- 2 Recurrent hopping mechanism.
 - Hop-LSTM

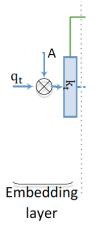
Showledge-informed memory update.

- Attention-based memory read and write

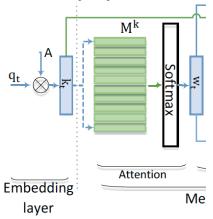


- Four layers in this model:
 - Embedding layer maps a question into a continuous vector.
 - Memory layer involves two processes: attention and read.
 - **Sequence** layer consists of recurrently connected LSTM cells.
 - Output layer yields probability of correctly answering a question.

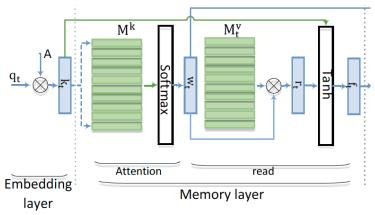
Embedding Layer:



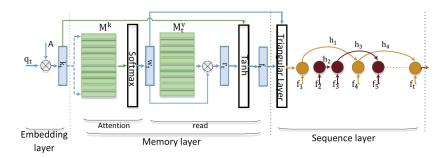
Memory Layer - Attention:



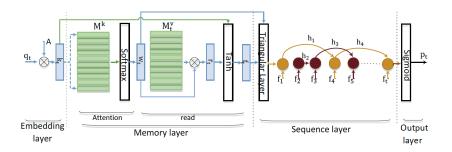
Memory Layer - Read:



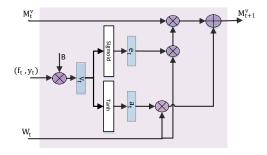
Sequence Layer:



Output Layer:



Memory Write:



Five datasets:

Dataset	#Questions	#Students	#Exercises	#Exercises per student
Synthetic-5	50	4,000	200,000	50
ASSISTments2009	110	4,151	325,637	78
ASSISTments2015	100	19,840	683,801	34
Statics2011	1,223	333	189, 297	568
JunyiAcademy	575	199, 549	25,628,935	128

Three baselines:

- Bayesian knowledge tracing (BKT)
- Deep knowledge tracing (DKT)
- Dynamic key-value memory networks (DKVMN)

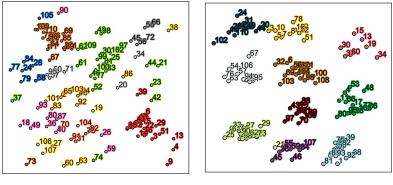
How does SKVMN perform on predicting a student's answers of questions, given an exercise history?

Dataset	BKT	DKT	DKVMN	SKVMN
Synthetic-5	62.0 ± 0.02	80.3 ± 0.1	82.7 ± 0.1	$\textbf{84.0} \pm \textbf{0.04}$
ASSISTments2009	63.1 ± 0.01	80.5 ± 0.2	81.6 ± 0.1	$\textbf{83.6} \pm \textbf{0.06}$
ASSISTments2015	64.2 ± 0.03	72.5 ± 0.1	72.7 ± 0.1	$\textbf{74.8} \pm \textbf{0.07}$
Statics2011	73.0 ± 0.01	80.2 ± 0.2	82.8 ± 0.1	$\textbf{84.9} \pm \textbf{0.06}$
JunyiAcademy	65.0 ± 0.02	79.2 ± 0.1	80.3 ± 0.4	$\textbf{82.7} \pm \textbf{0.01}$

Key observations:

- DL models generally performed better than traditional models.
- Memory-augmented models performed better than RNN-based models.
- Sequential dependencies among exercises in our model enhanced the prediction accuracy.

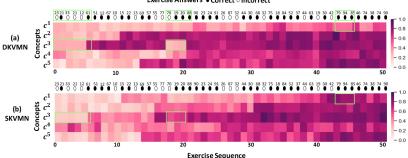
How does SKVMN perform on discovering the correlation between latent concepts and questions?



(DKVMN)

(SKVMN)

How does SKVMN perform on tracing the dynamics of a student's knowledge state?



Exercise Answers

Correct

Incorrect

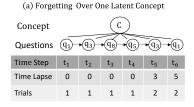
- Sequence Key-Value Memory Network (SKVMN)
- Deep Graph Memory Network (DGMN)
- Learning Knowledge Augmented Data teaching Strategies (KADT)
- Database Exercises Dataset for Knowledge Tracing (DBE-KT22)

³G. Abdelrahman and Q. Wang. "Deep Graph Memory Networks for Forgetting-Robust Knowledge Tracing". (TKDE 2022).

- Modelling forgetting over the knowledge space.
 - A key-value memory $\langle M^k \mbox{ (static)}, \ M^v_t \mbox{ (dynamic)} \rangle$
- Ø KC graph representation learning.
 - Dynamic latent concept graph
- Ission of knowledge and forgetting features.
 - Forget Gating mechanism

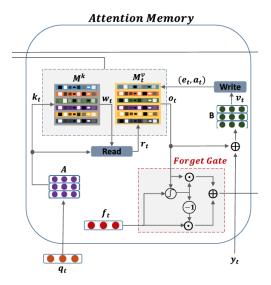
- Modelling forgetting over the knowledge space.
 - A key-value memory $\langle M^k \mbox{ (static)}, \, M^v_t \mbox{ (dynamic)} \rangle$
- Ø KC graph representation learning.
 - Dynamic latent concept graph
- Ission of knowledge and forgetting features.
 - Forget Gating mechanism

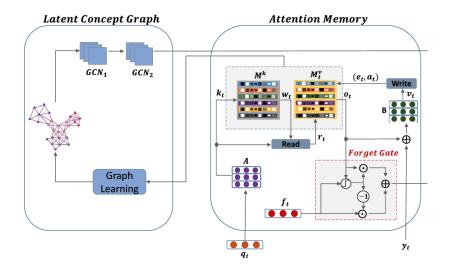
- Modelling forgetting over the knowledge space.
 - A key-value memory $\langle \mathbf{M}^{\mathbf{k}} (\text{static}), \mathbf{M}^{\mathbf{v}}_{\mathbf{t}} (dynamic) \rangle$
- O KC graph representation learning.
 - Dynamic latent concept graph
- Susion of knowledge and forgetting features.
 - Forget Gating mechanism

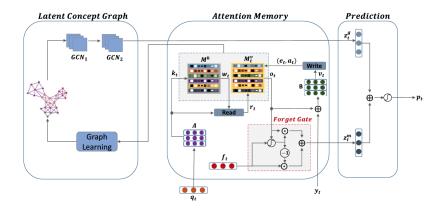


(b) Forgetting Over Multiple Latent Concepts

Concepts	c_1 c_2 c_3							
Questions	(q_1)	•Q3	•@	18)	•@	5)-	·q_3	•q1)
Time Step	t ₁	t ₂	t	3	t	4	t ₅	t ₆
Concepts	c ₂	c ₂	c ₂	c ₃	c ₁	c ₂	c ₂	c ₂
Time Lapse	0	1	1	0	0	1	1	1
Trials	1	2	3	1	1	4	5	6







Experimental Setup

Four datasets:

Dataset	#Students	# Questions	#Exercises	#Concepts
ASSISTments2009	4,151	110	325,637	110
Statics2011	335	1,362	190,923	85
Synthetic-5	4,000	50	200,000	5
Kddcup2010	575	436	607,026	112

Seven baselines:

- Deep Knowledge Tracing (DKT) + forgetting(DKT+forget)
- Dynamic key-value memory networks (DKVMN)
- Graph-based Knowledge Tracing (GKT)
- Self-Attentive Knowledge Tracing (SAKT)
- Attentive Knowledge Tracing (AKT)
- HawkesKT
- Separated Self-Attentive Neural Knowledge Tracing (SAINT+).

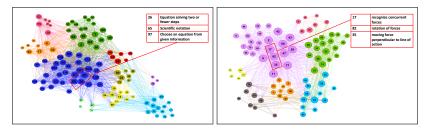
How does our DGMN model perform against the state-of-the-art KT models?

Model	Dataset					
Model	ASSISTments2009	Statics2011	Synthetic-5	Kddcup2010		
GKT	72.3 ± 0.02	73.4 ± 0.03	74.2 ± 0.01	76.9 ± 0.01		
DKT+forget	73.2 ± 0.02	74.5 ± 0.01	75.1 ± 0.03	$\textbf{79.0} \pm \textbf{0.01}$		
DKVMN	81.6 ± 0.03	82.8 ± 0.02	82.7 ± 0.01	79.8 ± 0.02		
SAKT	83.7 ± 0.02	84.2 ± 0.01	81.9 ± 0.03	80.4 ± 0.02		
HawkesKT	83.9 ± 0.04	83.8 ± 0.05	82.2 ± 0.05	79.5 ± 0.03		
AKT	84.1 ± 0.03	85.0 ± 0.02	83.6 ± 0.03	81.5 ± 0.02		
SAINT+	84.4 ± 0.04	85.1 ± 0.03	83.8 ± 0.03	81.6 ± 0.05		
DGMN (ours)	$\textbf{86.1} \pm \textbf{0.01}$	$\textbf{86.4} \pm \textbf{0.02}$	$\textbf{85.9} \pm \textbf{0.03}$	$\textbf{83.4} \pm \textbf{0.01}$		

How different components in the DGMN model affect on its performance?

Component				Dataset				
Forget	Graph	Rank	Memory	ASSISTments2009	Statics2011	Synthetic-5	Kddcup2010	
~	Dynamic	\checkmark	Key-Value	$\textbf{86.1} \pm \textbf{0.01}$	$\textbf{86.4} \pm \textbf{0.02}$	$\textbf{85.9} \pm \textbf{0.03}$	$\textbf{83.4} \pm \textbf{0.01}$	
×	Dynamic	×	Key-Value	82.8 ± 0.01	83.9 ± 0.03	83.8 ± 0.04	80.7 ± 0.03	
\checkmark	×	×	Key-Value	85.2 ± 0.02	85.5 ± 0.01	84.7 ± 0.02	82.4 ± 0.01	
\checkmark	Dynamic	×	Key-Value	85.7 ± 0.02	85.9 ± 0.01	85.1 ± 0.02	82.7 ± 0.03	
×	×	×	Key-Value	81.9 ± 0.01	82.9 ± 0.03	82.9 ± 0.01	80.0 ± 0.02	
×	×	×	RNN	72.8 ± 0.08	73.9 ± 0.07	73.6 ± 0.04	76.2 ± 0.03	
×	Static	×	Key-Value	75.4 ± 0.09	76.1 ± 0.08	75.7 ± 0.05	78.3 ± 0.05	

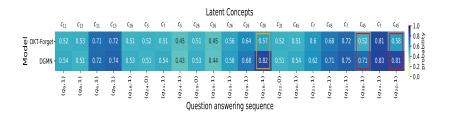
How effectively can a learned latent concept graph reflect latent concepts and their relationships?



(ASSISTments2009)

(Statics2011)

How does modelling forgetting over multiple concepts in our model compare to other deep learning models assuming only a single concept?

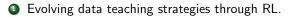


- Sequence Key-Value Memory Network (SKVMN)
- Deep Graph Memory Network (DGMN)
- Learning Knowledge Augmented Data teaching Strategies (KADT)
- Database Exercises Dataset for Knowledge Tracing (DBE-KT22)

 $^{^4} G.$ Abdelrahman and Q. Wang. "Learning Data Teaching Strategies Via Knowledge Tracing". Under review journal publication(Knowledge-Based Systems).

Knowledge Augmented Data Teaching (KADT)

Contribution



Knowledge-informed state representation learning.

Adaptive training procedure.

Knowledge Augmented Data Teaching (KADT)

Contribution

Evolving data teaching strategies through RL.

Ø Knowledge-informed state representation learning.

Adaptive training procedure.

Knowledge Augmented Data Teaching (KADT)

- Evolving data teaching strategies through RL.
- Ø Knowledge-informed state representation learning.
- Adaptive training procedure.

Knowledge Augmented Data Teaching (KADT)

Problem definition

 Student problem: a conventional supervised learning problem to minimize a loss function given a labeled training dataset.

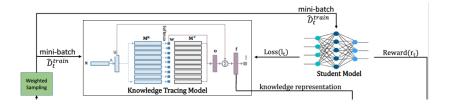
$$heta^* = \operatorname*{arg\,min}_{ heta \in \Theta} \operatorname{L}(h_ heta, D^{ ext{train}})$$

- Teacher problem: a teacher agent g_{ω} aims at maximizing rewards from progress on a student's validation performance metric η

$$\omega^* = rg\max_{\omega \,\in\, \Omega} \eta(h_ heta, g_\omega(D^{ ext{train}}), D^{ ext{valid}})$$

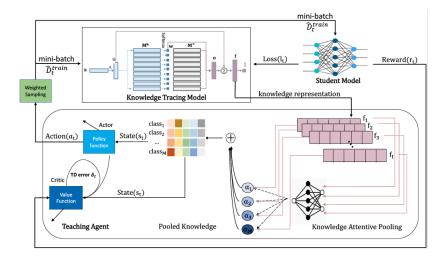
Knowledge Augmented Data Teaching (KADT)

Student Knowledge Tracing:



Knowledge Augmented Data Teaching (KADT)

Learning Teaching Strategy:



Four datasets:

Task	Dataset Student Model Setup Similar Student Mode		o [training→Testing] Different Student Mode	
Knowledge Tracing	ASSISTments2009	[SKVMN→SKVMN]	[SKVMN→DKT]	
Sentiment Analysis	IMDB	[LSTM→LSTM]	[LSTM→SVM]	
Movie Recommendations	MovieLens	[LSTM→LSTM]	[LSTM→MF]	
Image Recognition	CIFAR-100	[MLP→MLP]	[MLP→CNN]	

- Three baselines:
 - Self-Paced Learning (SPL)
 - Learning to Teach (L2T)
 - Random Sampling (RandomTeach)

How effectively can our KADT method teach a student model across different learning tasks?

Dataset	Similar Student Mode			
Dataset	RandomTeach	SPL	L2T	KADT
ASSISTments2009	81.63 ± 0.4	83.45 ± 0.02	84.31 ± 0.03	$\mid \textbf{87.10} \pm \textbf{0.04}$
IMDB	88.54 ± 0.8	88.80 ± 0.05	89.46 ± 0.06	$\textbf{92.24} \pm \textbf{0.05}$
MovieLens	75.12 ± 0.6	76.45 ± 0.06	77.23 ± 0.03	$\textbf{80.31} \pm \textbf{0.02}$
CIFAR-100	62.18 ± 0.4	64.68 ± 0.04	65.33 ± 0.06	$\textbf{68.75} \pm \textbf{0.03}$

How well can our KADT method be generalized to teach different student models?

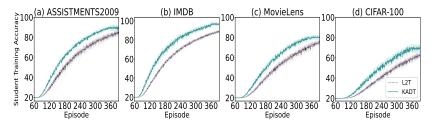
Dataset	Different Student Mode			
Dataset	RandomTeach	SPL	L2T	KADT
ASSISTments2009	79.82 ± 0.3	80.41 ± 0.06	81.29 ± 0.04	$\mid \textbf{84.26} \pm \textbf{0.04}$
IMDB	78.87 ± 0.5	81.04 ± 0.03	83.22 ± 0.05	$\textbf{86.16} \pm \textbf{0.03}$
MovieLens	74.82 ± 0.8	76.87 ± 0.04	77.73 ± 0.06	$\textbf{80.47} \pm \textbf{0.03}$
CIFAR-100	68.71 ± 0.5	70.27 ± 0.05	71.82 ± 0.03	$\textbf{74.58} \pm \textbf{0.02}$

Experiments 3

How well can our KADT method learn knowledge representation of a student model to improve the performance?



How well can our KADT method perform in comparison to the state-of-the-art RL teaching method?



- Sequence Key-Value Memory Network (SKVMN)
- Deep Graph Memory Network (DGMN)
- Learning Knowledge Augmented Data teaching Strategies (KADT)
- Database Exercises Dataset for Knowledge Tracing (DBE-KT22)

⁵G. Abdelrahman, S. Abdelfattah, Q. Wang and Y. Lin. "DBE-KT22: A Knowledge Tracing Dataset Based on Online Student Evaluation".Under review journal publication (UMUAI)

Data Collection

- Based on exercise practicing in the Relational Databases course taught at the ANU.
- Collected using the *CodeBench* online platform 1 .
- Spans over a three-years time period from 2018 to 2021.
- Published through the Australian Data Archive (ADA) platform ².

¹https://cs.anu.edu.au/dab/index.html

²https://ada.edu.au/

Data Collection

- Based on exercise practicing in the Relational Databases course taught at the ANU.
- Collected using the CodeBench online platform ¹.
- Spans over a three-years time period from 2018 to 2021.
- Published through the Australian Data Archive (ADA) platform ².

¹https://cs.anu.edu.au/dab/index.html

²https://ada.edu.au/

Data Collection

- Based on exercise practicing in the Relational Databases course taught at the ANU.
- Collected using the CodeBench online platform ¹.
- Spans over a three-years time period from 2018 to 2021.
- Published through the Australian Data Archive (ADA) platform ².

https://ada.edu.au/

¹https://cs.anu.edu.au/dab/index.html

Data Collection

- Based on exercise practicing in the Relational Databases course taught at the ANU.
- Collected using the CodeBench online platform ¹.
- Spans over a three-years time period from 2018 to 2021.
- Published through the Australian Data Archive (ADA) platform ².

https://ada.edu.au/

¹https://cs.anu.edu.au/dab/index.html

Data Collection

- Based on exercise practicing in the Relational Databases course taught at the ANU.
- Collected using the *CodeBench* online platform 1 .
- Spans over a three-years time period from 2018 to 2021.
- Published through the Australian Data Archive (ADA) platform ².

¹https://cs.anu.edu.au/dab/index.html

²https://ada.edu.au/

Dataset facts

Fact	Value
Number of registered students	1810
Number of participating students	1361
Total number of questions	212
Total number of KCs	98
Total number of exercises	167222
Student participation ratio	75%
Number of course instructors	2
Hard questions percentage	44.8%
Medium questions percentage	39.6%
Easy questions percentage	15.6%
Percentage of questions with hint	33.5%

Dataset distribution

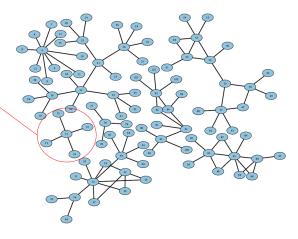


Dataset statistics

Dataset	Question Text	Relations Question - KC	•	Question Difficulty	Answer Confidence
ASSISTments	×	√	×	√	×
STATICS	Х	\checkmark	Х	×	×
Junyi Academy	×	\checkmark	×	\checkmark	×
Simulated-5	×	\checkmark	×	×	×
KDDcup	×	\checkmark	×	\checkmark	×
EdNet	×	\checkmark	×	\checkmark	×
DBE-KT22	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

KC-KC relationship graph

75	Third normal form (3NF)
74	Boyce-Codd normal form (BCNF)
71	Normalization
73	Dependency preservation
72	Lossless Join



In summary, this thesis proposed three novel models and a new dataset for knowledge tracing research including:

- SKVMN: Sequence Key-Value Memory Network.
- DGMN: Deep Graph Memory Networks.
- KADT: Knowledge Augmented Data Teaching.
- DBE-KT22: Database Exercises dataset.
- Comprehensive KT Survey.

- Investigating multi-modal representation learning methods for question, concept, and forgetting aspects.
- Exploring the potential of self-supervised and semi-supervised methods for dealing with limited training data and transfer learning across subjects.
- Exploring interactive (e.g., reinforcement learning) and collaborative (e.g., factorization models) methods to address the student's cold start challenge.
- Exploring methods that can fuse global (across the group level) and local (across individual level) knowledge features during modelling.

- Investigating multi-modal representation learning methods for question, concept, and forgetting aspects.
- Exploring the potential of self-supervised and semi-supervised methods for dealing with limited training data and transfer learning across subjects.
- Exploring interactive (e.g., reinforcement learning) and collaborative (e.g., factorization models) methods to address the student's cold start challenge.
- Exploring methods that can fuse global (across the group level) and local (across individual level) knowledge features during modelling.

- Investigating multi-modal representation learning methods for question, concept, and forgetting aspects.
- Exploring the potential of self-supervised and semi-supervised methods for dealing with limited training data and transfer learning across subjects.
- Exploring interactive (e.g., reinforcement learning) and collaborative (e.g., factorization models) methods to address the student's cold start challenge.
- Exploring methods that can fuse global (across the group level) and local (across individual level) knowledge features during modelling.

- Investigating multi-modal representation learning methods for question, concept, and forgetting aspects.
- Exploring the potential of self-supervised and semi-supervised methods for dealing with limited training data and transfer learning across subjects.
- Exploring interactive (e.g., reinforcement learning) and collaborative (e.g., factorization models) methods to address the student's cold start challenge.
- Exploring methods that can fuse global (across the group level) and local (across individual level) knowledge features during modelling.

I want to acknowledge my gratitude for the support and guidance that I got during my PhD from Dr. Yu Lin. I express my deepest sympathy to his family, friends, and the ANU community.

Thank you!

