\mathcal{N}-WL: A New Hierarchy of Expressivity for Graph Neural Networks

Qing Wang, Dillon Chen, Asiri Wijesinghe, Shouheng Li, and Muhammad Farhan

Introduction

Is k-WL hierarchy a good yardstick for measuring expressivity of GNNs?

Neighbourhood WL (\mathcal{N}-WL) hierarchy colours nodes via t-order induced sub graphs within d-hop neighbourhoods:

A Simple Experiment
A graph isomorphism test on 312 pairs of simple graphs of 8 vertices:

- None-or-all:

None by 1-WL but all by 3-WL

- Progressive:

Varving with d and t bv $\cdot \mathcal{N}$-WL

Main Results

- Increasing the order of induced subgraphs, the expressive power increases:

$$
\begin{array}{cl}
\text { Theorem } \\
\text { (Weak Hierarchy) } & \mathcal{N}^{-}(t, d) \text {-WL } \subsetneq \mathscr{N}^{-}(t+1, d) \text {-WL }
\end{array}
$$

- Increasing the hops of neighbourhoods, the expressive power may decrease:

$$
\begin{array}{cl}
\text { Theorem } & \mathcal{N}(t, d) \text {-WL } \subsetneq \mathcal{N}(t+1, d) \text {-WL } \\
\text { (Strong Hierarchy) } & \mathcal{N}(t, d) \text {-WL } \subsetneq \mathcal{N}(t, d+1) \text {-WL }
\end{array}
$$

- Induced connected subgraphs remain the same expressive power:

Theorem (Equivalence)			$\mathcal{N}^{c}(t, d)-\mathrm{WL} \equiv \mathcal{N}(t, d)-\mathrm{WL}$			
Subgraph counts						
k-WL vs \mathcal{N}-WL						
	k-WL	$\delta-k$-LWL	(k, s)-LWL	(k, c)(\leq)-SETWL	$\mathcal{N}(t, d)$-WL	$\mathcal{N}^{c}(t, d)$-WL
Coloured bjects		n^{k}	$\operatorname{subset}\left(n^{k}, s\right)$	$\operatorname{subset}\left(\sum_{q=1}^{k}\binom{n}{q}, c\right)$	n	n
Neighbour bjects	$n \times k$	$a \times k$	$a \times k$	$n \times q$	$\binom{a^{a}}{t}$	$\operatorname{subset}\left(\sum_{q=1}^{t}\binom{\left(a^{d}\right.}{q}, 1\right)$
Coloured bjects	k-tuples	k-tuples	k-tuples	$\leq k$-sets	nodes	nodes
Neighbour bjects	k-tuples	k-tuples	k-tuples	$\leq k$-sets	t-sets	$\leq t$-sets
parsity awareness	x	\checkmark	\checkmark	\checkmark	x	\checkmark

Theorem $\quad 1-\mathrm{WL} \equiv \mathscr{N}(1,1)-\mathrm{WL} \equiv \mathscr{N}^{c}(1,1)-\mathrm{WL}$

Graph Neighbourhood Neural Network

- Graph Neighbourhood Neural Network (G3N) instantiates the ideas of \mathcal{N}-WL algorithms for graph learning.

- Runtime analysis

