
𝒩-WL: A New Hierarchy of Expressivity for Graph Neural Networks
Qing Wang, Dillon Chen, Asiri Wĳesinghe, Shouheng Li, and Muhammad Farhan

Graph Research Lab, School of Computing, Australian National University

Introduction

Is 𝑘-WL hierarchy a good yardstick for measuring expressivity of GNNs?

GNNs

vs

𝑘-WL

d = 3d = 2d = 1

v1

v2

v3

N1(v) N2(v) N3(v)v = {v1, v2, v3}
v1

v2 v3

v

N1(v) N2(v) N3(v)

Colouring nodes

Colouring k-tuples

Local
neighbourhood

Global
neighbourhood

Neighbourhood WL Hierarchy

Neighbourhood WL (𝒩-WL) hierarchy colours nodes via 𝑡-order induced sub-
graphs within 𝑑-hop neighbourhoods:

d = 1
d = 2

d = 3

d = 1
d = 2

d = 3

…

…

d = 1
d = 2

d = 3

d = 1
d = 2

d = 3

…

…

𝑑-hop neighbourhoods 𝑡-order induced subgraphs

A Simple Experiment

A graph isomorphism test on 312 pairs of simple graphs of 8 vertices:

•None-or-all:
None by 1-WL but all by 3-WL

•Progressive:
Varying with 𝑑 and 𝑡 by 𝒩-WL

td

0
11

22
33 44 55

1-WL indistinguishable pairs

312
186

186
186

186

20

Main Results

• Increasing the order of induced subgraphs, the expressive power increases:

Theorem
(Weak Hierarchy)

𝒩
−(𝑡, 𝑑)-WL ⊊𝒩

−(𝑡+1, 𝑑)-WL

• Increasing the hops of neighbourhoods, the expressive power may decrease:

Theorem
(Strong Hierarchy)

𝒩(𝑡, 𝑑)-WL ⊊𝒩(𝑡+1, 𝑑)-WL
𝒩(𝑡, 𝑑)-WL ⊊𝒩(𝑡, 𝑑+1)-WL

• Induced connected subgraphs remain the same expressive power:

Theorem
(Equivalence)

𝒩
𝑐(𝑡, 𝑑)-WL ≡𝒩(𝑡, 𝑑)-WL

Published as a conference paper at ICLR 2023

Ic
t It � Ic

t

t = 4

t = 3

t = 2

t = 1

Figure 9: Isomorphism types for graphs of t vertices, where 1 t 4, Ic
t refers to a set of

isomorphism types for connected subgraphs of order less than or equal to t, and It � Ic
t refers to a set

of isomorphism types for disconnected subgraphs (i.e., containing at least two connected components)
of order less than or equal to t.

According to Statement A1, there must exist an injective function f such that & l(u) = f(& l
c(u))

for any vertex in G1 and G2. Then, since for any l-th iteration where l = 0, 1, . . . , k�1
N c(t, d)-WL has the same multiset of node colours for G1 and G2, i.e., {{& l

c(u1)}}u12V (G1) =

{{& l
c(u2)}}u22V (G2), N (t, d)-WL must also have the same multiset of node colours for G1 and

G2, i.e., {{f(& l
c(u1))}}u12V (G1) = {{f(& l

c(u2))}}u22V (G2). This means that N (t, d)-WL cannot
distinguish G1 and G2 after k iterations, which contradicts with the assumption.

Example 1. Figure 9 depicts all isomorphism types for graphs with up to 4 vertices. Below, we

illustrate how to calculate c() on graphs by applying the Vertex Theorem, where is an
isomorphism type in (It � Ic

t) for t = 4.

– Step 1: We calculate c() using the following equation, where c() and c() are
known because both and are isomorphism types in

S
1k2 Ic

k:

c()c() ⌘ 2c() + 2c() + c(). (10)

– Step 2: We calculate c() by decomposing into two subgraphs S1 = and S2 = .
Since the coefficients that correspond to the following isomorphism types are zeros, we omit
these isomorphism types in the equation:

Then, we have the equation below:

c()c() ⌘a1c() + a2c() + a3c() + a4c() + a5c() + a6c()+

a7c() + a8c() + a9c() + a10c()+

a11c() + a12c()+ (11)

a13c()+

a14c()

Following the Vertex Theorem, we have the following coefficients for Equation 11:

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14

0 1 0 2 3 1 3 2 0 1 0 2 2 0

27

Subgraph counts

implies
−→

Published as a conference paper at ICLR 2023

Ic
t It � Ic

t

t = 4

t = 3

t = 2

t = 1

Figure 9: Isomorphism types for graphs of t vertices, where 1 t 4, Ic
t refers to a set of

isomorphism types for connected subgraphs of order less than or equal to t, and It � Ic
t refers to a set

of isomorphism types for disconnected subgraphs (i.e., containing at least two connected components)
of order less than or equal to t.

According to Statement A1, there must exist an injective function f such that & l(u) = f(& l
c(u))

for any vertex in G1 and G2. Then, since for any l-th iteration where l = 0, 1, . . . , k�1
N c(t, d)-WL has the same multiset of node colours for G1 and G2, i.e., {{& l

c(u1)}}u12V (G1) =

{{& l
c(u2)}}u22V (G2), N (t, d)-WL must also have the same multiset of node colours for G1 and

G2, i.e., {{f(& l
c(u1))}}u12V (G1) = {{f(& l

c(u2))}}u22V (G2). This means that N (t, d)-WL cannot
distinguish G1 and G2 after k iterations, which contradicts with the assumption.

Example 1. Figure 9 depicts all isomorphism types for graphs with up to 4 vertices. Below, we

illustrate how to calculate c() on graphs by applying the Vertex Theorem, where is an
isomorphism type in (It � Ic

t) for t = 4.

– Step 1: We calculate c() using the following equation, where c() and c() are
known because both and are isomorphism types in

S
1k2 Ic

k:

c()c() ⌘ 2c() + 2c() + c(). (10)

– Step 2: We calculate c() by decomposing into two subgraphs S1 = and S2 = .
Since the coefficients that correspond to the following isomorphism types are zeros, we omit
these isomorphism types in the equation:

Then, we have the equation below:

c()c() ⌘a1c() + a2c() + a3c() + a4c() + a5c() + a6c()+

a7c() + a8c() + a9c() + a10c()+

a11c() + a12c()+ (11)

a13c()+

a14c()

Following the Vertex Theorem, we have the following coefficients for Equation 11:

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14

0 1 0 2 3 1 3 2 0 1 0 2 2 0

27

Subgraph counts

𝑘-WL vs 𝒩-WL

𝑘-WL 𝛿-𝑘-LWL (𝑘, 𝑠)-LWL (𝑘, 𝑐)(≤)-SETWL 𝒩(𝑡, 𝑑)-WL 𝒩
𝑐(𝑡, 𝑑)-WL

#Coloured
𝑛𝑘 𝑛𝑘 subset(𝑛𝑘, 𝑠) subset(

∑𝑘
𝑞=1

(𝑛
𝑞

)
, 𝑐) 𝑛 𝑛objects

#Neighbour
𝑛 × 𝑘 𝑎 × 𝑘 𝑎 × 𝑘 𝑛 × 𝑞

(𝑎𝑑
𝑡

)
subset(

∑𝑡
𝑞=1

(𝑎𝑑
𝑞

)
, 1)objects

ΔColoured
𝑘-tuples 𝑘-tuples 𝑘-tuples ≤ 𝑘-sets nodes nodesobjects

ΔNeighbour
𝑘-tuples 𝑘-tuples 𝑘-tuples ≤ 𝑘-sets 𝑡-sets ≤ 𝑡-setsobjects

Sparsity
✗ ✓ ✓ ✓ ✗ ✓-awareness

Theorem 1-WL ≡𝒩(1, 1)-WL ≡𝒩
𝑐(1, 1)-WL

Graph Neighbourhood Neural Network

•Graph Neighbourhood Neural Network (G3N) instantiates the ideas of 𝒩-WL
algorithms for graph learning.

Published as a conference paper at ICLR 2023

(a)

(b)

(c)

(d)

(e)

Figure 4: An overview of a G3N layer: (a) t-order subgraphs are extracted from a node’s d-hop
neighbourhood. (b) The subgraphs are grouped by their positional and isomorphic types. (c) The
subgraphs are embedded by a pooling function POOL. (d) The subgraph embeddings are aggregated
in their own topological groups by AGGT . (e) The resulting embedding vectors are further aggregated
and combined with AGGN and COMBINE to form an updated node embedding.

4 GRAPH NEIGHBOURHOOD NEURAL NETWORK

Motivated by the N -WL algorithm, we design Graph Neighbourhood Neural Network (G3N) which
is able to leverage and learn structural information from neighbourhoods.

Model design. Given a graph G = (V, E), each node u 2 V is associated with an f -dimensional
feature vector xu 2 Rf and h

(0)
u = xu. Let S(l)

u (i, j) denote the set of all t-order subgraphs within
the d-hop neighbourhood of a node u with the isomorphism type i and positional type j at the l-th
layer. Then at the (l+1)-th layer the node embedding h

(l+1)
u of a node u is defined by

h(l+1)
u = COMBINE

⇣
h(l)

u , AGGN
(i,j)2It⇥Jd

⇣
AGGT

S2S(l)
u (i,j)

(POOL(S))
⌘⌘

. (5)

POOL(·) extracts node representations within a subgraph S as a subgraph embedding which can
be defined by any graph pooling method. Aggregation proceeds in two steps: AGGT (·) combines
subgraph embeddings of the same isomorphism and positional types and AGGN (·) combines the
resulting embeddings from all subgraphs in the neighbourhood. COMBINE(·) combines the node
embedding of node u at the previous layer with the aggregated embedding of subgraphs. Further
details of the G3N model architecture are described in Appendix D.

One can compare Equation 5 to the node colouring of N -WL described in Equation 3 where subgraph
pooling corresponds to subgraph colouring, and the aggregation corresponds to the hashing of sets of
multisets. We refer to G3N with given t and d by G3N-(t, d).

Expressivity analysis. G3N-(t, d) is at most as expressive as N (t, d)-WL. To match the expres-
siveness of N (t, d)-WL, one may insert Multi-Layer Perceptrons (MLPs) to approximate injective
functions as employed by Xu et al. (2019). However, this comes at higher parameter complexity
which may increase expressiveness but could decrease generalisability. The following theorem
phrases this formally with the proof available in Appendix C.

Theorem 4.1. G3N-(t, d) with injective COMBINE and AGGN functions, an injective AGGT function
w.r.t. multisets of subgraphs with the same isomorphism and positional types, an injective graph
readout function, and sufficiently many layers is as powerful as N (t, d)-WL.

Complexity analysis. Usually, expressivity comes at a cost of computational complexity and this is
no exception for G3N. Let a denote the average node degree of a graph. Then ignoring node features
embedding dimensions, standard GNNs have the complexity O(n · a) while G3N has O(n ·

�
ad

t

�
) per

layer. Here, t is a very small value, usually less than 6. Note that ad << n is an average size of a
local d-hop neighbourhood, different from k-WL which considers all vertices in a graph, i.e., O(nk).

7

ℎ
(𝑙+1)
𝑢 = Combine

(
ℎ
(𝑙)
𝑢 ,Agg𝑁

(𝑖, 𝑗)∈𝐼𝑡×𝐽𝑑

(
Agg𝑇

𝑆∈S (𝑙)
𝑢 (𝑖, 𝑗)

(
Pool(𝑆)

)))
•Graph classification

Model ZINC ZINC
(no edge features) (edge features)

GCN 0.459±0.006 0.321±0.009

PPGN 0.407±0.028 -
GIN 0.387±0.015 0.163±0.004

PNA 0.320±0.032 0.188±0.004

DGN 0.219±0.010 0.168±0.003

DEEP LRP* 0.223±0.008 -
GSN* 0.140±0.006 0.115±0.012

CIN* 0.115±0.003 0.079±0.006

G3N-(2,3) 0.165±0.018 0.128±0.015

Model MolHIV MolHIV
(test) (validation)

GCN 0.7606±0.0097 0.8204±0.0141

GIN 0.7558±0.0140 0.8232±0.0090

GraphSNN 0.7851±0.0170 0.8359±0.0096

PNA 0.7905±0.0132 -
DGN 0.7970±0.0097 -
DEEP LRP* 0.7687±0.0180 0.8131±0.0088

GSN* 0.7799±0.0100 0.8658±0.0084

CIN* 0.8094±0.0057 -
G3N-(2,3) 0.7900±0.0134 0.8359±0.0061

•Runtime analysis

1 2 3 4 5 6 7 8
t

103

106

109

1012

Co
m

pl
ex

ity

d = 1
-WL

k-WL

1 2 3 4 5 6 7 8
t

104

107

1010

1013
d = 2

1 2 3 4 5 6 7 8
t

104

107

1010

1013
d = 3

1 2 3 4 5 6 7 8
t

104

108

1012

Co
m

pl
ex

ity

d = 1
-WL

k-WL

1 2 3 4 5 6 7 8
t

104

107

1010

1013

d = 2

1 2 3 4 5 6 7 8
t

104

107

1010

1013

d = 3

