

Introduction

Neighbourhood WL Hierarchy

Neighbourhood WL (\mathcal{N} -WL) hierarchy colours nodes via t-order induced subgraphs within *d*-hop neighbourhoods:

d-hop neighbourhoods

t-order induced subgraphs

A Simple Experiment

A graph isomorphism test on 312 pairs of simple graphs of 8 vertices:

- None-or-all: None by 1-WL but all by 3-WL
- Progressive: Varving with d and t by \mathcal{N} -WL

N-WL: A New Hierarchy of Expressivity for Graph Neural Networks

Qing Wang, Dillon Chen, Asiri Wijesinghe, Shouheng Li, and Muhammad Farhan

Graph Research Lab, School of Computing, Australian National University

Main Results

 Increasing the order of induced 	subgrapl
Theorem (Weak Hierarchy)	$\mathcal{N}^{-}(t, t)$
 Increasing the hops of neighbout 	urhoods,
Theorem (Strong Hierarchy)	$\mathcal{N}(t, d)$ $\mathcal{N}(t, d)$
 Induced connected subgraphs reaction Theorem (Equivalence) 	emain the $\mathcal{N}^{c}(t, a)$
	$\stackrel{\text{implies}}{\longrightarrow}$

Subgraph counts

k-WL vs \mathcal{N} -WL

	k-WL	δ -k-LWL	(k, s)-LWL	$(k, c) (\leq)$ -SETWL	$\mathcal{N}(t,d)$ -WL	$\mathcal{N}^{c}(t,d)$ -WL
#Coloured objects	n^k	n^k	subset (n^k, s)	subset $(\sum_{q=1}^{k} {n \choose q}, c)$	n	п
#Neighbour objects	$n \times k$	$a \times k$	$a \times k$	$n \times q$	$\binom{a^d}{t}$	subset $(\sum_{q=1}^{t} {a^d \choose q}, 1)$
ΔColoured objects	k-tuples	<i>k</i> -tuples	k-tuples	$\leq k$ -sets	nodes	nodes
∆Neighbour objects	<i>k</i> -tuples	k-tuples	k-tuples	$\leq k$ -sets	t-sets	$\leq t$ -sets
Sparsity -awareness	×	\checkmark	\checkmark	\checkmark	×	\checkmark

Theorem

1-WL ≡

aphs, the expressive power increases:

t, d)-WL $\subsetneq \mathcal{N}^{-}(t+1, d)$ -WL

s, the expressive power may decrease:

(d)-WL $\subseteq \mathcal{N}(t+1, d)$ -WL d)-WL $\subsetneq \mathcal{N}(t, d+1)$ -WL

the same expressive power:

$$, d$$
)-WL $\equiv \mathcal{N}(t, d)$ -WL

Subgraph counts

$$\equiv \mathcal{N}(1,1) - WL \equiv \mathcal{N}^{c}(1,1) - WL$$

Graph Neighbourhood Neural Network

algorithms for graph learning.

$$h_u^{(l+1)} = \operatorname{Com}$$

Graph classification

Model	ZINC	ZINC	Modal	MolHIV	MolHIV
	(no edge features) (edge features)		WIGGEI	(test)	(validation)
GCN	0.459 ± 0.006	0.321±0.009	GCN	0.7606±0.0097	0.8204 ± 0.0141
PPGN	0.407 ± 0.028	-	GIN	0.7558±0.0140	0.8232±0.0090
GIN	0.387 ± 0.015	0.163±0.004	GraphSNN	0.7851±0.0170	0.8359 ± 0.0096
PNA	0.320±0.032	0.188 ± 0.004	PNA	0.7905±0.0132	_
DGN	0.219 ± 0.010	0.168 ± 0.003	DGN	0.7970±0.0097	_
DEEP LRP*	0.223±0.008	-	DEEP LRP *	0.7687±0.0180	0.8131±0.0088
GSN*	0.140 ± 0.006	0.115 ± 0.012	GSN*	0.7799 ± 0.0100	0.8658±0.0084
CIN*	0.115±0.003	0.079 ± 0.006	CIN*	0.8094±0.0057	-
G3N-(2,3)	0.165±0.018	0.128±0.015	G3N-(2,3)	0.7900±0.0134	0.8359±0.0061

• Runtime analysis

• Graph Neighbourhood Neural Network (G3N) instantiates the ideas of N-WL

 $\mathsf{MBINE}\left(h_{u}^{(l)}, \operatorname{Agg}_{(i,j)\in I_{t}\times J_{d}}^{N}\left(\operatorname{Agg}_{S\in\mathcal{S}_{u}^{(l)}(i,j)}^{T}\left(\operatorname{Pool}(S)\right)\right)\right)$