
N -WL: A New Hierarchy of Expressivity for
Graph Neural Networks

Qing Wang, Dillon Chen, Asiri Wijesinghe,
Shouheng Li, Muhammad Farhan

Graph Research Lab
School of Computing

Australian National University

The work is partially funded by the Australian Research

Council under Discovery Project DP210102273.

1 / 11

Classical k-WL Hierarchy

k-Weisfeiler-Lehman (k-WL) hierarchy is a theoretical framework for
graph isormorphism tests

↪→ but not practically useful when k ≥ 3!

• GIN ≡ 1-WL [Xu et al., 2019]

• Many expressive GNNs go beyond 1-WL

Question:

Is k-WL hierarchy a good yardstick for measuring expressivity of GNNs?

2 / 11

GNNs vs k-WL

d = 3d = 2d = 1

v1

v2

v3

N1(v) N2(v) N3(v)v = {v1, v2, v3}
v1

v2 v3

v

N1(v) N2(v) N3(v)

Colouring nodes

Colouring k-tuples

Local
neighbourhood

Global
neighbourhood

d = 3d = 2d = 1

v1

v2

v3

N1(v) N2(v) N3(v)v = {v1, v2, v3}
v1

v2 v3

v

N1(v) N2(v) N3(v)

Colouring nodes

Colouring k-tuples

Local
neighbourhood

Global
neighbourhood

3 / 11

Our N -WL Hierarchy

N -WL hierarchy computes node coloring via t-order induced subgraphs
within d-hop neighbourhoods.

d = 1
d = 2

d = 3

d = 1
d = 2

d = 3

…

…

d = 1
d = 2

d = 3

d = 1
d = 2

d = 3

…

…

d-hop neighbourhoods t-order induced subgraphs

4 / 11

A Simple Experiment

A graph isomorphism test on 312 pairs of simple graphs of 8 vertices:

• None-or-all: none by 1-WL but all by 3-WL

• Progressive: varying with d and t by N -WL

td

0
11

22
33 44 55

1-WL indistinguishable pairs

t

d

0 1

1

2

2

3

3

4

4

5

5 312

186
20
6
5

6

1-WL
indistinguishable

pairs

312
186

186
186

186

20

5 / 11

Observations and Theorems

Increasing the order of induced subgraphs, the expressive power increases
− Not surprising

Theorem:
(Weak Hierarchy) N −(t, d)-WL ⊊ N −(t+1, d)-WL

Increasing the hops of neighbourhood, the expressive power may decrease
− Surprising but can be fixed

Theorem:
(Strong Hierarchy)

N (t, d)-WL ⊊ N (t+1, d)-WL
N (t, d)-WL ⊊ N (t, d+1)-WL

Induced connected subgraphs remain the same expressive power
− Surprising but can be proved

Theorem:
(Equivalence) N c(t, d)-WL ≡ N (t, d)-WL

6 / 11

Main Ideas in Proofs (1)

Theorem:
(Strong Hierarchy)

N (t, d)-WL ⊊ N (t+1, d)-WL
N (t, d)-WL ⊊ N (t, d+1)-WL

We prove strictness of hierarchies by constructing counterexample graphs.

Ĝ1 Ĝ2

-cycles(2d+ 2) -cycle(4d+ 4)

Ĝ1 Ĝ2

-cycles(2d+ 1) -cycle(4d+ 2)

-cycles(2d+ 3)

Ĝ1 Ĝ2

-cycle(4d+ 6)

Ĝ1 Ĝ2

v1 v2

Ĝ1 Ĝ2

v1 v2

Ĝ1 Ĝ2

v1 v2

Ĝ1 Ĝ2

-cycles(2d+ 2) -cycle(4d+ 4)

Ĝ1 Ĝ2

-cycles(2d+ 1) -cycle(4d+ 2)

-cycles(2d+ 3)

Ĝ1 Ĝ2

-cycle(4d+ 6)

Ĝ1 Ĝ2

v1 v2

Ĝ1 Ĝ2

v1 v2

Ĝ1 Ĝ2

v1 v2

7 / 11

Main Ideas in Proofs (2)

Theorem:
(Equivalence) N c(t, d)-WL ≡ N (t, d)-WL

Our proof is based on Kocay’s Vertex Theorem [Kocay, 1982].
Published as a conference paper at ICLR 2023

Ic
t It � Ic

t

t = 4

t = 3

t = 2

t = 1

Figure 9: Isomorphism types for graphs of t vertices, where 1 t 4, Ic
t refers to a set of

isomorphism types for connected subgraphs of order less than or equal to t, and It � Ic
t refers to a set

of isomorphism types for disconnected subgraphs (i.e., containing at least two connected components)
of order less than or equal to t.

According to Statement A1, there must exist an injective function f such that & l(u) = f(& l
c(u))

for any vertex in G1 and G2. Then, since for any l-th iteration where l = 0, 1, . . . , k�1
N c(t, d)-WL has the same multiset of node colours for G1 and G2, i.e., {{& l

c(u1)}}u12V (G1) =

{{& l
c(u2)}}u22V (G2), N (t, d)-WL must also have the same multiset of node colours for G1 and

G2, i.e., {{f(& l
c(u1))}}u12V (G1) = {{f(& l

c(u2))}}u22V (G2). This means that N (t, d)-WL cannot
distinguish G1 and G2 after k iterations, which contradicts with the assumption.

Example 1. Figure 9 depicts all isomorphism types for graphs with up to 4 vertices. Below, we

illustrate how to calculate c() on graphs by applying the Vertex Theorem, where is an
isomorphism type in (It � Ic

t) for t = 4.

– Step 1: We calculate c() using the following equation, where c() and c() are
known because both and are isomorphism types in

S
1k2 Ic

k:

c()c() ⌘ 2c() + 2c() + c(). (10)

– Step 2: We calculate c() by decomposing into two subgraphs S1 = and S2 = .
Since the coefficients that correspond to the following isomorphism types are zeros, we omit
these isomorphism types in the equation:

Then, we have the equation below:

c()c() ⌘a1c() + a2c() + a3c() + a4c() + a5c() + a6c()+

a7c() + a8c() + a9c() + a10c()+

a11c() + a12c()+ (11)

a13c()+

a14c()

Following the Vertex Theorem, we have the following coefficients for Equation 11:

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14

0 1 0 2 3 1 3 2 0 1 0 2 2 0

27

subgraph counts

implies
−→

Published as a conference paper at ICLR 2023

Ic
t It � Ic

t

t = 4

t = 3

t = 2

t = 1

Figure 9: Isomorphism types for graphs of t vertices, where 1 t 4, Ic
t refers to a set of

isomorphism types for connected subgraphs of order less than or equal to t, and It � Ic
t refers to a set

of isomorphism types for disconnected subgraphs (i.e., containing at least two connected components)
of order less than or equal to t.

According to Statement A1, there must exist an injective function f such that & l(u) = f(& l
c(u))

for any vertex in G1 and G2. Then, since for any l-th iteration where l = 0, 1, . . . , k�1
N c(t, d)-WL has the same multiset of node colours for G1 and G2, i.e., {{& l

c(u1)}}u12V (G1) =

{{& l
c(u2)}}u22V (G2), N (t, d)-WL must also have the same multiset of node colours for G1 and

G2, i.e., {{f(& l
c(u1))}}u12V (G1) = {{f(& l

c(u2))}}u22V (G2). This means that N (t, d)-WL cannot
distinguish G1 and G2 after k iterations, which contradicts with the assumption.

Example 1. Figure 9 depicts all isomorphism types for graphs with up to 4 vertices. Below, we

illustrate how to calculate c() on graphs by applying the Vertex Theorem, where is an
isomorphism type in (It � Ic

t) for t = 4.

– Step 1: We calculate c() using the following equation, where c() and c() are
known because both and are isomorphism types in

S
1k2 Ic

k:

c()c() ⌘ 2c() + 2c() + c(). (10)

– Step 2: We calculate c() by decomposing into two subgraphs S1 = and S2 = .
Since the coefficients that correspond to the following isomorphism types are zeros, we omit
these isomorphism types in the equation:

Then, we have the equation below:

c()c() ⌘a1c() + a2c() + a3c() + a4c() + a5c() + a6c()+

a7c() + a8c() + a9c() + a10c()+

a11c() + a12c()+ (11)

a13c()+

a14c()

Following the Vertex Theorem, we have the following coefficients for Equation 11:

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14

0 1 0 2 3 1 3 2 0 1 0 2 2 0

27

subgraph counts

8 / 11

k-WL Hierarchy vs N -WL Hierarchy

k-WL δ-k-LWL (k, s)-LWL (k, c)(≤)-SETWL

#Coloured
nk nk subset(nk , s) subset(

∑k
q=1

(
n
q

)
, c)

objects
#Neighbour

n × k a× k a× k n × q
objects

∆Coloured
k-tuples k-tuples k-tuples ≤k-sets

objects
∆Neighbour

k-tuples k-tuples k-tuples ≤k-sets
objects

Sparsity
✗ ✓ ✓ ✓

-awareness

N (t, d)-WL N c(t, d)-WL

n n

(
ad

t

)
subset(

∑t
q=1

(
ad

q

)
, 1)

nodes nodes

t-sets ≤ t-sets

✗ ✓

Theorem: 1-WL ≡ N (1, 1)-WL ≡ N c(1, 1)-WL
9 / 11

G3N Architecture

Graph Neighbourhood Neural Network (G3N) instantiates the ideas of
N -WL algorithms for graph learning.

Published as a conference paper at ICLR 2023

(a)

(b)

(c)

(d)

(e)

Figure 4: An overview of a G3N layer: (a) t-order subgraphs are extracted from a node’s d-hop
neighbourhood. (b) The subgraphs are grouped by their positional and isomorphic types. (c) The
subgraphs are embedded by a pooling function POOL. (d) The subgraph embeddings are aggregated
in their own topological groups by AGGT . (e) The resulting embedding vectors are further aggregated
and combined with AGGN and COMBINE to form an updated node embedding.

4 GRAPH NEIGHBOURHOOD NEURAL NETWORK

Motivated by the N -WL algorithm, we design Graph Neighbourhood Neural Network (G3N) which
is able to leverage and learn structural information from neighbourhoods.

Model design. Given a graph G = (V, E), each node u 2 V is associated with an f -dimensional
feature vector xu 2 Rf and h

(0)
u = xu. Let S(l)

u (i, j) denote the set of all t-order subgraphs within
the d-hop neighbourhood of a node u with the isomorphism type i and positional type j at the l-th
layer. Then at the (l+1)-th layer the node embedding h

(l+1)
u of a node u is defined by

h(l+1)
u = COMBINE

⇣
h(l)

u , AGGN
(i,j)2It⇥Jd

⇣
AGGT

S2S(l)
u (i,j)

(POOL(S))
⌘⌘

. (5)

POOL(·) extracts node representations within a subgraph S as a subgraph embedding which can
be defined by any graph pooling method. Aggregation proceeds in two steps: AGGT (·) combines
subgraph embeddings of the same isomorphism and positional types and AGGN (·) combines the
resulting embeddings from all subgraphs in the neighbourhood. COMBINE(·) combines the node
embedding of node u at the previous layer with the aggregated embedding of subgraphs. Further
details of the G3N model architecture are described in Appendix D.

One can compare Equation 5 to the node colouring of N -WL described in Equation 3 where subgraph
pooling corresponds to subgraph colouring, and the aggregation corresponds to the hashing of sets of
multisets. We refer to G3N with given t and d by G3N-(t, d).

Expressivity analysis. G3N-(t, d) is at most as expressive as N (t, d)-WL. To match the expres-
siveness of N (t, d)-WL, one may insert Multi-Layer Perceptrons (MLPs) to approximate injective
functions as employed by Xu et al. (2019). However, this comes at higher parameter complexity
which may increase expressiveness but could decrease generalisability. The following theorem
phrases this formally with the proof available in Appendix C.

Theorem 4.1. G3N-(t, d) with injective COMBINE and AGGN functions, an injective AGGT function
w.r.t. multisets of subgraphs with the same isomorphism and positional types, an injective graph
readout function, and sufficiently many layers is as powerful as N (t, d)-WL.

Complexity analysis. Usually, expressivity comes at a cost of computational complexity and this is
no exception for G3N. Let a denote the average node degree of a graph. Then ignoring node features
embedding dimensions, standard GNNs have the complexity O(n · a) while G3N has O(n ·

�
ad

t

�
) per

layer. Here, t is a very small value, usually less than 6. Note that ad << n is an average size of a
local d-hop neighbourhood, different from k-WL which considers all vertices in a graph, i.e., O(nk).

7

h(l+1)
u = Combine

(
h(l)u ,AggN

(i,j)∈It×Jd

(
AggT

S∈S(l)
u (i,j)

(
Pool(S)

)))

10 / 11

References I

Kocay, W. L. (1982).
Some new methods in reconstruction theory.
In Combinatorial Mathematics IX, pages 89–114. Springer.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019).
How powerful are graph neural networks?
In International Conference on Learning Representations (ICLR).

Thank You

11 / 11

