\mathscr{N}-WL: A New Hierarchy of Expressivity for Graph Neural Networks

Qing Wang, Dillon Chen, Asiri Wijesinghe, Shouheng Li, Muhammad Farhan

Graph Research Lab School of Computing
Australian National University

Australian The work is partially funded by the Australian Research National University Council under Discovery Project DP210102273.

Classical k-WL Hierarchy

k-Weisfeiler-Lehman ($k-W L$) hierarchy is a theoretical framework for graph isormorphism tests
\hookrightarrow but not practically useful when $k \geq 3$!

- GIN $\equiv 1-\mathrm{WL}$ [Xu et al., 2019]
- Many expressive GNNs go beyond 1-WL

Question:

Is k-WL hierarchy a good yardstick for measuring expressivity of GNNs?

GNNs vs $k-W L$

colouring nodes

colouring k-tuples

$N_{2}(\vec{v})$

$N_{3}(\vec{v})$

Our \mathscr{N}-WL Hierarchy

\mathscr{N}-WL hierarchy computes node coloring via t-order induced subgraphs within d-hop neighbourhoods.

d-hop neighbourhoods

t-order induced subgraphs

A Simple Experiment

A graph isomorphism test on 312 pairs of simple graphs of 8 vertices:

- None-or-all: none by 1-WL but all by 3-WL
- Progressive: varying with d and t by $\mathscr{N}-\mathrm{WL}$

Observations and Theorems

Increasing the order of induced subgraphs, the expressive power increases

- Not surprising

Theorem:
(Weak Hierarchy)

$$
\mathscr{N}^{-}(t, d)-\mathrm{WL} \subsetneq \mathscr{N}^{-}(t+1, d)-\mathrm{WL}
$$

Increasing the hops of neighbourhood, the expressive power may decrease

- Surprising but can be fixed

Theorem: $\quad \mathscr{N}(t, d)$-WL $\subsetneq \mathscr{N}(t+1, d)$-WL (Strong Hierarchy) $\mathscr{N}(t, d)-\mathrm{WL} \subsetneq \mathscr{N}(t, d+1)-\mathrm{WL}$

Induced connected subgraphs remain the same expressive power

- Surprising but can be proved

Theorem:
(Equivalence) $\quad \mathscr{N}^{c}(t, d)-\mathrm{WL} \equiv \mathscr{N}(t, d)-\mathrm{WL}$

Main Ideas in Proofs (1)

Theorem:
$\mathscr{N}(t, d)-\mathrm{WL} \subsetneq \mathscr{N}(t+1, d)-\mathrm{WL}$ (Strong Hierarchy) $\quad \mathscr{N}(t, d)-\mathrm{WL} \subsetneq \mathscr{N}(t, d+1)-\mathrm{WL}$

We prove strictness of hierarchies by constructing counterexample graphs.

Main Ideas in Proofs (2)

Theorem:
(Equivalence) $\quad \mathscr{N}^{c}(t, d)-\mathrm{WL} \equiv \mathscr{N}(t, d)-\mathrm{WL}$

Our proof is based on Kocay's Vertex Theorem [Kocay, 1982].

k-WL Hierarchy vs \mathscr{N}-WL Hierarchy

Theorem: $1-\mathrm{WL} \equiv \mathscr{N}(1,1)-\mathrm{WL} \equiv \mathscr{N}^{c}(1,1)-\mathrm{WL}$

G3N Architecture

Graph Neighbourhood Neural Network (G3N) instantiates the ideas of $\mathscr{N}-\mathrm{WL}$ algorithms for graph learning.

References I

圊 Kocay, W. L. (1982).
Some new methods in reconstruction theory.
In Combinatorial Mathematics IX, pages 89-114. Springer.
围 Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019).
How powerful are graph neural networks?
In International Conference on Learning Representations (ICLR).

Thank You

