Local Vertex Colouring Graph Neural Networks

Shouheng Li^{1,3}, Dongwoo Kim², Qing Wang¹

¹Graph Research Lab, School of Computing, Australian National University

²Machine Learning Lab, Graduate School of Artifical Intelligence,

POSTECH

³Data61 CSIRO

The work is partially funded by the Australian Research Council under Discovery Project DP210102273, and by Institute of Information & communications Technology Planning & Evaluation grant (No.2019-0-01906, Artificial Intelligence Graduate School Program (POSTECH)) and National Research Foundation of Korea grant (NRF-2021R1C1C1011375) by the Korean government.

The expressivity of MPNNs is upper-bounded by 1-Weisfeiler-Lehman (1-WL) test [Xu et al., 2019]. Recently there are methods developed to go beyond 1-WL,

The expressivity of MPNNs is upper-bounded by 1-Weisfeiler-Lehman (1-WL) test [Xu et al., 2019]. Recently there are methods developed to go beyond 1-WL,

 \hookrightarrow but they are often

The expressivity of MPNNs is upper-bounded by 1-Weisfeiler-Lehman (1-WL) test [Xu et al., 2019]. Recently there are methods developed to go beyond 1-WL,

- \hookrightarrow but they are often
 - Computationally expensive

The expressivity of MPNNs is upper-bounded by 1-Weisfeiler-Lehman (1-WL) test [Xu et al., 2019]. Recently there are methods developed to go beyond 1-WL,

- \hookrightarrow but they are often
 - Computationally expensive
 - Cannot solve simple graph problems such as biconnectivity [Zhang et al., 2023]

The expressivity of MPNNs is upper-bounded by 1-Weisfeiler-Lehman (1-WL) test [Xu et al., 2019]. Recently there are methods developed to go beyond 1-WL,

- \hookrightarrow but they are often
 - Computationally expensive
 - Cannot solve simple graph problems such as biconnectivity [Zhang et al., 2023]

Question:

Can we develop an efficient GNN that goes beyond 1-WL and solves graph problems like biconnectivity?

Breadth-first Search

Breadth-first Colouring (BFC)

Breadth-first Colouring (BFC)

Breadth-first Colouring (BFC)

1-WL Limitation

Ego Shortest-Path Graph (ESPG)

Lemma: ESPG

Lemma 4.2. (Informal) Under BFC, two vertices have the same colour if and only if they have the same ego shortest-path graph (ESPG).

Depth-first Search

Depth-first Colouring (DFC)

Depth-first Colouring (DFC)

Depth-first Colouring (DFC)

Graph Biconnectivity: Cut Vertex & Cut Edge

Lemma: Biconnectivity

Lemma 4.5. (Informal) DFC can solve graph biconnectivity problems, e.g. distinguishing cut vertices and edges.

Expressivity Hierarchy of BFC

Lemma 4.6. BFC-1 is equivalent to 1-WL.

Expressivity Hierarchy of BFC

Lemma 4.6. BFC-1 is equivalent to 1-WL.

Theorem 4.3. BFC- $\delta+1$ is strictly more expressive than BFC- δ in distinguishing non-isomorphic graphs.

Expressivity Hierarchy of BFC

Lemma 4.6. BFC-1 is equivalent to 1-WL.

Theorem 4.3. BFC- $\delta + 1$ is strictly more expressive than BFC- δ in distinguishing non-isomorphic graphs.

Theorem 4.1. The expressivity of BFC- δ is strictly upper bounded by 3-WL.

Expressivity of DFC

Lemma 4.7. DFC-1 is more expressive than to 1-WL.

Expressivity of DFC

Lemma 4.7. DFC-1 is more expressive than to 1-WL.

Theorem 4.4. DFC- $\delta+1$ is not necessarily more expressive than DFC- δ in distinguishing non-isomorphic graphs.

Expressivity of DFC

Lemma 4.7. DFC-1 is more expressive than to 1-WL.

Theorem 4.4. DFC- $\delta+1$ is not necessarily more expressive than DFC- δ in distinguishing non-isomorphic graphs.

Theorem 4.4. The expressive powers of DFC- δ and 3-WL are incomparable.

Search Guided Graph Neural Network (SGN)

Search Guided Graph Neural Network (SGN) inherits the ideas of local search-based vertex colouring.

$$h_u^{(l+1)} = \mathsf{MLP}\left(\left(1+\epsilon^{(l+1)}
ight) \cdot h_u^{(l)} \parallel \sum_{v \in N_\delta(u)} h_{u \leftarrow v}^{(l+1)}
ight)$$

where

$$h_{u \leftarrow v}^{(l+1)} = \left(h_u^{(l)} + \sum_{w \in \eta_v(u)} h_{w \leftarrow v}^{(l)}\right) W_c$$

where $\eta_{\nu}(u)$ is defined based on BFC or DFC.

SGN Complexity

	MPNN	ESAN	Graphormer-GD	3-IGN	SGN-BF	SGN-DF
Time	V + E	V (V + E)	$ V ^2$	$ V ^3$	$ V d^{\delta-1}$	$ V d^{2\delta}$
Space	V	$ V ^2$	V	$ V ^2$	$ V d^{\delta-1}$	$ V d^{2\delta}$

Thank You

https://bit.ly/3CM1DKv Interactive Demo

References I

Zhang, B., Luo, S., Wang, L., and He, D. (2023). Rethinking the expressive power of GNNs via graph biconnectivity. In 11th International Conference on Learning Representations, ICLR 2020, Kigali, Rwanda, May 1-5, 2023.