Local Vertex Colouring Graph Neural Networks
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Motivation

The expressivity of MPNNs is upper-bounded by 1-Weisfeiler-Lehman
(1-WL) test [Xu et al., 2019]. Recently there are methods developed to
go beyond 1-WL,
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Motivation

The expressivity of MPNNs is upper-bounded by 1-Weisfeiler-Lehman
(1-WL) test [Xu et al., 2019]. Recently there are methods developed to
go beyond 1-WL,

< but they are often

® Computationally expensive

® Cannot solve simple graph problems such as
biconnectivity [Zhang et al., 2023]

Question:

Can we develop an efficient GNN that goes beyond 1-WL and solves
graph problems like biconnectivity?
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Breadth-first Search

BFS Tree
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Breadth-first Colouring (BFC)
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Breadth-first Colouring (BFC)




Breadth-first Colouring (BFC)
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1-WL Limitation

1-WL X
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Ego Shortest-Path Graph (ESPG)
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Lemma: ESPG

Lemma 4.2. (Informal) Under BFC, two vertices have the same colour if
and only if they have the same ego shortest-path graph (ESPG).
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Depth-first Search

DFS Tree
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Depth-first Colouring (DFC)
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Depth-first Colouring (DFC)
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Depth-first Colouring (DFC)
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Graph Biconnectivity: Cut Vertex & Cut Edge
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Lemma: Biconnectivity

Lemma 4.5. (Informal) DFC can solve graph biconnectivity problems,
e.g. distinguishing cut vertices and edges.
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Expressivity Hierarchy of BFC

Lemma 4.6. BFC-1 is equivalent to 1-WL.
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Expressivity Hierarchy of BFC

Lemma 4.6. BFC-1 is equivalent to 1-WL.

Theorem 4.3. BFC-0 + 1 is strictly more expressive than BFC-6 in
distinguishing non-isomorphic graphs.

Theorem 4.1. The expressivity of BFC-6 is strictly upper bounded by
3-WL.
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Expressivity of DFC

Lemma 4.7. DFC-1 is more expressive than to 1-WL.
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Expressivity of DFC

Lemma 4.7. DFC-1 is more expressive than to 1-WL.

Theorem 4.4. DFC-§ 4 1 is not necessarily more expressive than DFC-9
in distinguishing non-isomorphic graphs.

Theorem 4.4. The expressive powers of DFC-§ and 3-WL are
incomparable.
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Search Guided Graph Neural Network (SGN)

Search Guided Graph Neural Network (SGN) inherits the ideas of local
search-based vertex colouring.

hUHD = MLP ((1 +e(’+1)) YA h(u’ilv))

veEN;s(u)
where
hJE) = + > A, | We
wen, (u)

where 1), (u) is defined based on BFC or DFC.
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SGN Complexity

MPNN ESAN Graphormer-GD  3-IGN  SGN-BF  SGN-DF
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Thank You

https://bit.1ly/3CM1DKv
Interactive Demo
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https://bit.ly/3CM1DKv
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