
Entity Resolution with Active
Learning

Jingyu Shao

A thesis submitted for the degree of
Doctor of Philosophy at

The Australian National University

October 2021

© Jingyu Shao, 2021

All Rights Reserved.

I certify that the thesis is my own original work, except where otherwise indicated.

Jingyu Shao
10 October 2021

Dedicated to my dear parents and my dear wife.

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor, Dr. Qing Wang for
her continuous support of my research and PhD study. Her guidance helped me all the time
of my research and writing the thesis. Her enthusiasm on research teaches me to be respectful
on my work; her motivation encourages me to find new research problems and go deeper into
them; her patience helps me to keep clam when suffering from complex issues; her immense
knowledge guides me to avoid unnecessary mistakes. There are countless cases that she gave
me insightful comments during my research life to improve the quality of my works at different
stages of the research problems. I could not have imagined having a better supervisor for my
PhD study.

Besides Dr. Qing Wang, I would also like to thank my co-supervisors, Prof. Peter Christen
and Dr. Kerry Taylor, for their constructive feedback and guidance on my research and annual
progress report.

I would like to thank Dr. Yu Lin, Fangbing Liu, Asiri Wijesinghe and Prof. Erhard Rahm,
who helped me in different research problems and finalized them into publications. I can still
remember Yu always shared his experience with me, he is wisdom, can always propose new
ways of thinking, try different possible solutions during the discussion.

I’m always thinking to be fortunate enough to have many nice colleagues with me in the
Research School of Computer Science. The warm-hearted CS administration team members
Christie, Jasmine, Melissa and so on helped me a lot on dealing with some bureaucratic pro-
cesses. Dr. Josh Milthorpe and Dr. Jeffrey Fisher helped me on dealing with academical
teaching. Graeme, Andrew from Helpdesk provided me IT support and solved my problems at
the firt time.

Last but not the least, I would like to show my deep gratitude to my family members: my
wife and my parents for their unconditional support. They helped me walk through the most
difficult time in my PhD career.

7

Publications

Primary Publications

Contributions from work presented in this thesis have been published across multiple peer-
reviewed conferences and journals. A list of publications in reverse chronological order is
given below:

• J. Shao, Q. Wang, A. Wijesinghe and E. Rahm. ERGAN: Generative Adversarial Net-
works for Entity Resolution. The 20th IEEE International Conference on Data Mining
(ICDM), 2020.

The concepts and related terms of this generative-based approach, theoretical analysis,
algorithm implementation and evaluations of this paper are presented in Chapter 7.

• J. Shao, Q. Wang and F. Liu. Learning To Sample: an Active Learning Framework. The
19th IEEE International Conference on Data Mining (ICDM), 2019.

The preliminaries of this learning-based active learning framework, theoretical analysis,
algorithm implementation and evaluations of this paper are presented in Chapter 6.

• J. Shao, Q. Wang and Y. Lin. Skyblocking for Entity Resolution. Information Systems
(IS), Elsevier, 2019.

The problem definition of this scheme skyline framework, theoretical analysis, algorithm
implementation and evaluations of this paper are presented in Chapter 5.

• J. Shao and Q. Wang. Active Blocking Scheme Learning for Entity Resolution. The
22nd Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD),
2018.

The problem definition of this blocking scheme learning approach, theoretical analysis,
algorithm implementation and evaluations of this paper are presented in Chapter 4.

Secondary Publications

One more paper is published as a join work with other collaborators. However, contributions
from this publication, even though being closely related is not presented in this thesis. This
paper is:

• Q. Bui-Nguyen, Q. Wang, J. Shao, and D. Vatsalan. Repairing of Record Linkage:
Turing Errors into Insight. The 22nd International Conference on Extending Database
Technology (EDBT), 2019.

9

Abstract

Entity Resolution refers to the process of identifying records which represent the same real-
world entity from one or more datasets. In the big data era, large numbers of entities need
to be resolved, which leads to several key challenges, especially for learning-based ER ap-
proaches: (1) With the number of records increasing, the computational complexity of the
algorithm grows exponentially. (2) Quite a number of samples are necessary for training, but
only a limited number of labels are available, especially when the training samples are highly
imbalanced.

Blocking technique helps to improve the time efficiency by grouping potentially matched
records into the same block. Thus to address the above two challenges, in this thesis, we
first introduce a novel blocking scheme learning approach based on active learning techniques.
With a limited label budget, our approach can learn a blocking scheme to generate high qual-
ity blocks. Two strategies called active sampling and active branching are proposed to select
samples and generate blocking schemes efficiently. Additionally, a skyblocking framework
is proposed as an extension, which aims to learn scheme skylines. In this framework, each
blocking scheme is mapped as a point to a multi-dimensional scheme space where each block-
ing measure represents one dimension. A scheme skyline contains blocking schemes that are
not dominated by any other blocking schemes in the scheme space. We develop three scheme
skyline learning algorithms for efficiently learning scheme skylines under a given number of
blocking measures and within a label budget limit.

While blocks are well established, we further develop the Learning To Sample approach
to deal with the second challenge, i.e. training a learning-based active learning model with a
small number of labeled samples. This approach has two key components: a sampling model
and a boosting model, which can mutually learn from each other in iterations to improve the
performance of each other. Within this framework, the sampling model incorporates uncer-
tainty sampling and diversity sampling into a unified process for optimization, enabling us to
actively select the most representative and informative samples based on an optimized integra-
tion of uncertainty and diversity. On the contrary of training with a limited number of samples,
a powerful machine learning model may be overfitting by remembering all the sample fea-
tures. Inspired by recent advances of generative adversarial network (GAN), in this paper, we
propose a novel deep learning method, called ERGAN, to address the challenge. ERGAN
consists of two key components: a label generator and a discriminator which are optimized
alternatively through adversarial learning. To alleviate the issues of overfitting and highly im-
balanced distribution, we design two novel modules for diversity and propagation, which can
greatly improve the model generalization power. We theoretically prove that ERGAN can
overcome the model collapse and convergence problems in the original GAN. We also conduct
extensive experiments to empirically verify the labeling and learning efficiency of ERGAN.

11

12

Contents

Acknowledgements 7

Publications 9

Abstract 11

1 Introduction 1
1.1 Background . 1
1.2 Challenges in Entity Resolution . 3
1.3 Research Objectives . 5

1.3.1 Blocking Objectives . 5
1.3.2 Classification Objectives . 7

1.4 Contributions . 8
1.5 Thesis Outline . 10

2 Preliminaries 11
2.1 Notations . 11
2.2 Experimental Setups . 12

2.2.1 Datasets . 13
2.2.2 Measurements . 14

2.2.2.1 Quality Measurements . 14
2.2.2.2 Efficiency Measurements 16

3 Background and Related Work 19
3.1 Entity Resolution . 19

3.1.1 Traditional Entity Resolution . 19
3.1.1.1 Blocking . 20
3.1.1.2 Comparison . 23
3.1.1.3 Classification . 26
3.1.1.4 Clustering . 27

3.1.2 Entity Resolution with Deep Learning 28
3.2 Skyline Queries . 29
3.3 Active Learning . 30
3.4 Ensembling Techniques for Classification . 33
3.5 Generative Adversarial Networks . 34

13

14 Contents

4 Active Blocking Scheme Learning for Entity Resolution 35
4.1 Introduction . 35
4.2 Problem Formulation . 37
4.3 Active Scheme Learning Framework . 37

4.3.1 Active Sampling . 37
4.3.2 Active Branching . 39
4.3.3 Algorithm Description . 40

4.4 Theoretical Analysis . 40
4.5 Experiments . 42

4.5.1 Experimental Setup . 43
4.5.2 Results and Discussion . 44

4.5.2.1 Label Efficiency . 44
4.5.2.2 Blocking Quality . 45
4.5.2.3 Blocking Efficiency . 47

4.6 Summary . 47

5 Skyblocking for Entity Resolution 49
5.1 Introduction . 49
5.2 Problem Formulation . 51
5.3 Scheme Skyline Learning Framework . 51

5.3.1 Scheme Extension Strategy . 52
5.3.2 Naive Skyline Learning . 52
5.3.3 Adaptive Skyline Learning . 55
5.3.4 Progressive Skyline Learning . 56

5.4 Theoretical Analysis . 59
5.5 Experiments . 59

5.5.1 Experimental Setup . 59
5.5.2 Results and Discussion . 60

5.5.2.1 Label Efficiency . 60
5.5.2.2 Time Efficiency . 63
5.5.2.3 Blocking Quality . 65

5.6 Summary . 68

6 Learning-To-Sample for Entity Resolution 69
6.1 Introduction . 69
6.2 Problem Formulation . 71
6.3 The Learning-To-Sample Framework . 71

6.3.1 Boosting Model . 72
6.3.2 Sampling Model . 73

6.4 Sampling Strategies . 74
6.4.1 Uncertainty Sampling . 74
6.4.2 Diversity Sampling . 75
6.4.3 Algorithm Description . 76

6.5 Theoretical Analysis . 78

6.6 Experiments . 79
6.6.1 Experimental Setup . 79
6.6.2 Results and Discussion . 80

6.6.2.1 Performance Comparison 80
6.6.2.2 Impact of Parameters . 81
6.6.2.3 Label Efficiency . 83

6.6.3 Supplementary Experiments on Classification Tasks 84
6.7 Summary . 84

7 Generative Adversarial Networks for Entity Resolution 87
7.1 Introduction . 87
7.2 Problem Formulation . 88
7.3 Proposed Method: ERGAN . 89

7.3.1 Label Generator . 89
7.3.2 Discriminator . 90
7.3.3 Algorithm Description . 91

7.4 Theoretical Analysis . 92
7.5 Experiments . 94

7.5.1 Experimental Setup . 94
7.5.2 Results and Discussion . 95

7.5.2.1 Performance Comparison 95
7.5.2.2 Ablation Analysis . 98
7.5.2.3 Extremeness Test . 100

7.6 Summary . 101

8 Conclusions and Future Work 103

Bibliography 105

16 Contents

List of Figures

1.1 A general process of ER. One or more datasets after pre-processing (e.g. data
cleaning) are used as input, and clusters of records referring to the same real-
world entities are generated as output. 2

1.2 An example of the overfitting problem in ER classification. The dash line
indicates how the model classifies samples. 4

1.3 An example of the cold start problem in ER classification. Samples in solid
colors are labeled for training, which are all from the majority class, i.e., sam-
ples in blue. 4

3.1 The four general steps in entity resolution process with the input and out-
put for each step. 20

4.1 Overview of the active blocking scheme learning approach. 36
4.2 A comparison on the sample distribution of 100 samples from Cora dataset:

(a) random sampling, and (b) active sampling, where a red circle indicates a
matched sample and a blue star indicates a non-matched sample. 38

4.3 Comparison on constraint satisfaction by Active Scheme Learning (ASL)
and Random Scheme Learning (RSL) under different label budgets and
different error rates over four datasets. 45

4.4 Comparison on blocking quality by different blocking approaches over
four datasets using the measures: (a) RR, (b) PC, (c) PQ, and (d) FM. . . . 46

5.1 An example for scheme skyline where schemes on the skyline refer to the
points in the red line. The blocking schemes (green points) are presented in a
2-dimensional space of PC and PQ, and their corresponding values are shown
in the table (left). 50

5.2 An illustration of the Naive Skyline Learning (Naive-Sky) algorithm. The
optimal blocking schemes are learned in parallel as shown in (a), and the
scheme skyline is depicted in (b). 54

5.3 An illustration of the Adaptive Skyline Learning (Adap-Sky) algorithm.
This algorithm can choose the PC threshold adaptively, based on the same
example as in Fig. 5.2. 55

5.4 An illustration of the Progressive Skyline Learning (Pro-Sky) algorithm:
(a) shows three different spaces w.r.t. a blocking scheme at the crossing; (b) -
(d) illustrate how our Pro-Sky algorithm may learn a scheme skyline progres-
sively. 57

17

5.5 An illustration of the progressive process for learning scheme skylines by
Pro-Sky over five datasets. The three rows from top to bottom show the re-
sults of 1-ary, 2-ary (in both conjunction and disjunction) and 3-ary blocking
schemes, respectively. 64

5.6 Comparison on blocking quality using Pro-Sky under different PC thresh-
olds over five datasets: (a) PC and (b) PQ. 65

5.7 Comparison on blocking quality by using different blocking approaches
over five datasets and using the measures: (a) FM, (b) PC, and (c) PQ. . . . 66

6.1 An illustration of Learning-To-Sample (LTS) for entity resolution in rela-
tion to uncertainty sampling and random sampling, where random sampling
(active) indicates that random samples are gradually selected during the iter-
ations of active learning, and random sampling (non-active) indicates that all
samples are randomly selected in a one-off manner (i.e., no active learning). . . 70

6.2 Overview of the LTS framework. The boosting model is highlighted in green
and the sampling model is highlighted in blue. 72

6.3 Comparison of different sampling strategies. 24 samples are selected in
each sub-figure of (b), (c) and (d). 74

6.4 Comparison of f-measure results for the LTS approach under two differ-
ent sampling distributions. 82

6.5 Comparison of accuracy results for image classification and salary level
prediction tasks under different label budgets. 85

7.1 Overview of the ERGAN framework. Using only a limited number of la-
beled samples for training, ERGAN takes unlabeled samples as input and clas-
sifies them as being matches or non-matches (i.e., predicting their labels). . . . 88

7.2 An illustration for propagation of ERGAN. A boundary between two classes
(red and blue) is learned through propagation. 91

7.3 Comparison of precision, recall and f-measure results with 20% training
over four datasets. 96

7.4 Comparison of f-measure results with 0.1% – 10% training for ablation
study under four datasets. 96

List of Tables

1.1 An smartphone dataset referring to four entities. 1

2.1 A bibliographic dataset example with three attributes: Title, Authors and
PublicationYear. 12

2.2 Characteristics of datasets for entity resolution. 13
2.3 Attributes of datasets. 13
2.4 The notions tp, tn, f p, f n defined in blocking evaluation w.r.t. a blocking

scheme s. 14
2.5 The notions tp, tn, f p, f n defined in classification. 15
2.6 Notations in this Thesis. 17

4.1 Comparison on label cost by ASL and RSL over four real datasets. 44
4.2 Comparison on the number of record pairs generated by different ap-

proaches. 47

5.1 Comparison on the label costs and run times (in seconds) of three skyline
algorithms over five datasets. ∆ refers to the threshold interval and RT refers
to the run time in seconds. 62

5.2 Comparison on the label costs of ASL+ and RSL with CS = 90%. 63
5.3 Comparison on blocking quality. 67

6.1 Comparison of label budgets w.r.t. classification results with desired FM
values, where XG+LTS has α = 1. 83

6.2 Datasets for Classification Tasks. 84
6.3 Comparison of f-measure results for entity resolution tasks under differ-

ent label budgets. 86

7.1 Comparison of f-measure results with 60% training. The results marked by
∗ are taken from the original chapters and the others are obtained by running
the code provided by the authors. 97

7.2 Comparison of f-measure results with 0.1%, 1%, 20% and 60% training
for ablation analysis. 99

7.3 Comparison of f-measure results under extremely limited real-labeled sam-
ples. The methods SVM, LR, XGBoost, DM, ERGAN-D, and ERGAN+WE
have the f-measure value 0 in all these settings and are thus excluded from the
table. 100

20 LIST OF TABLES

Chapter 1

Introduction

1.1 Background

Considering when you are scheduling a holiday trip, you can always find the cheapest flight
tickets on the website from different agents even for the same flight. When you are searching
for a paper or textbook with its title, website links from different sources may be provided.
Such things happen everyday to make our life easier, which is associated with a term: entity.

An entity normally refers to a thing that is distinct and unique existence in the real-world,
such as a person, a business company or even a place to go. In database systems, an entity can
be stored as a record with descriptions of the entity, which can be the color of a car, the venue
of a publication or the address of a person. Table 1.1 shows a dataset example of smartphones,
iPhone X and Samsung Galaxy S9 Plus with two colors, respectively.

Entity resolution techniques have been studied for about half a century since Fellegi et al.
first proposed the theoretical concepts of probabilistic record linkage in 1969 [47]. Entity Reso-
lution (ER) is of great importance in many applications, such as matching product records from
different online stores for customers, detecting people’s financial status for national security,
or analyzing health conditions from different medical organizations [26; 50]. For example, if
a national census agency wants to obtain the population growth of its country in a time period,
ER is necessary to detect whether records from different time points refer to the same person,
no matter whether he or she changed name (e.g. due to marriage), postal address and so on. In
the Big-data era, large organizations deal with millions of records every day to discover useful
knowledge for decision making, and even a person can deal with thousands of records if he or
she types in one key word on a searching website. Normally, these websites integrate records

Table 1.1: An smartphone dataset referring to four entities.

Record Number Name Color Storage Screen Size
r1 Apple iPhone X Silver 64GB 5.8”
r2 Apple iPhone X Space Gray 256GB 5.8”
r3 iPhone X Space Gray 256GB 5.8”
r4 Apple iPhone X Space Gray 256GB -
r5 Samsung Galaxy S9 Plus Midnight Black 64GB 6.2”
r6 Galaxy S9 Plus Black 64GB -
r7 Galaxy S9 Plus Coral Blue - -

1

2 Introduction

Figure 1.1: A general process of ER. One or more datasets after pre-processing (e.g. data cleaning)
are used as input, and clusters of records referring to the same real-world entities are generated as
output.

of multiple datasets from different data sources. For example, different online-shopping web-
sites such as ebay and amazon may provide different descriptions on the same product, on the
other hand, different product records may have similar descriptions as well. Such cases may
confuse the customers so that they may fail to tell one from another and thus make a poor de-
cision. How to process a large number of records and find out the real-world entity they refer
to is becoming more and more important.

Conceptually, Entity Resolution, which is also called Record Linkage [62; 70], Deduplica-
tion [27] or Data Matching [26], refers to the process of identifying records which represent
the same real-world entity from one or more datasets [147]. Traditionally, the entity resolution
process contains four steps: Blocking, Comparison, Classification and Clustering as shown in
Fig 1.1.

– Blocking: Given one or several sets of records, blocking aims to group all the records
into different blocks, so that only potentially matched records within a block need to be
resolved referring to the same entity. For example, schema-agnostic blocking technique
considers a subset of attribute values, and records sharing the same values will be in
the same block. Blocking is a very important process in ER in that it can minimize the
number of comparisons without affecting the accuracy of resolution significantly.

– Comparison: Given records within a block, a pre-defined function is used to compare
record values pairwise by measuring the similarity of values, and it returns a vector
for each record pair indicating the degree of similarity of the two records. Standard
comparison functions includes n-gram Jaccard similarity, edit distance and so on [26].

– Classification: In this step, the feature vectors indicating the similarity of each record
pair are categorized as matches and non-matches as their labels, indicating whether the
corresponding records referring to the same real world entity or not. For example, a
machine learning-based classifier is normally trained based on labeled feature vectors
(as samples) and used to predict other vectors’ labels.

– Clustering: The final step comes to identify all the records referring to the same entity
into the same cluster, so that all records within one cluster are matches and referring to a
single entity. This step also helps to identify those records hardly to be directly identified
as matches corresponding to the same entity. E.g., A and B is match, B and C is match
but A and C is non-match [26].

§1.2 Challenges in Entity Resolution 3

1.2 Challenges in Entity Resolution

A large number of approaches have been proposed in recent years to deal with aforementioned
issues. These approaches to classify the records can be either supervised or unsupervised.
Most of unsupervised approaches classify record pairs based on their similarities without any
label information, i.e., the ground truth (matches or non-matches) of record pairs [84], thus the
predicted classes may not be promised. For example, it is hard to define a proper similarity
threshold to determine whether a record pair is a match, and similar records may refer to
different entities. Supervised approaches, on the other hand, use prior knowledge on part of the
record pairs in a dataset to train a classifier, and apply this classifier to the rest of the dataset for
label prediction. However, the ground truth is expensive and sometimes even unable to achieve
[26], due to two reasons: (1) the labels are normally provided by the domain experts, which
may contain human mistakes; (2) considering to compare 1,000 records in a dataset pairwise,
there will be in-total 499,500 labels; with the increasing size of a dataset, obtaining all the
labels becomes harder and more expensive.

Designing a model which can solve ER tasks with a limited number of ground truth labels
is not easy. There are three key challenges involved.

• Scalability: In ER tasks, in order to identify all the records referring to the same entity,
traditionally, every two records need to be compared as a pair. Given two datasets D1

and D2, the number of pairwise comparisons is thus |D1| × |D2|. This is not efficient
for large datasets. As a result, blocking techniques can be applied to group potentially
matched records into the same block, such that only records in the same block will be
compared in details using comparison functions. With the application of blocking, large
numbers of potentially non-match record pairs will not be compared. However, it is still a
problem to find good blocking schemes w.r.t. various criteria, such as pair completeness
(similar to recall) or pair quality (similar to precision) [11].

• Label Cost: When the number of record pairs are large, generating their labels (matches
or non-matches) is very expensive. Various approaches were proposed to improve the
time efficiency for blocking and classification in recent years [58; 62; 2], but few of them
referred to the label efficiency for supervised approaches, i.e., how to train a good clas-
sifier with only a small number of labeled samples. Additionally, the class imbalance
problem exists in ER tasks, i.e., more non-matches than matches for the record pairs of
a dataset (the majority of pairs correspond to non-matches) [149]. Traditional classifi-
cation methods need a large percentage of training set with random selected samples,
to guarantee its training performance and allow more matches to be selected. If we can
alleviate the class imbalance problem, the number of samples and labels we need will
decrease. Thus one challenge is how to obtain a (nearly) balanced training set with a
limitation number of labels?

• Quality: Using supervised learning-based classification models is an efficient and promis-
ing way to solve ER tasks and categorize record pairs into matches and non-matches
when the labeled training samples are sufficient. However, if the labeled samples are
limited, the quality of the performance can not be guaranteed. The models are so power-
ful that they can remember the features of all the samples, where the overfitting problem

4 Introduction

Figure 1.2: An example of the overfitting problem in ER classification. The dash line indicates how
the model classifies samples.

Figure 1.3: An example of the cold start problem in ER classification. Samples in solid colors are
labeled for training, which are all from the majority class, i.e., samples in blue.

occurs. The natural of ER tasks aggravates this problem since the samples are highly im-
balanced, i.e., most of the samples are from the majority class. Thus how to train a model
with high performance under a limited number of labeled samples is still a problem in
solving ER tasks.

These challenges are not standing alone. With a limited number of training samples, the
overfitting problem is more likely to occur, where the label cost and the quality challenges are
related. Due to the class imbalance problem, there are far more non-matches than matches in
the training set, which will affect the performance of a machine learning model. Addition-
ally, when the samples are highly imbalanced, in the worst case, all the samples are from the
majority class and thus the cold start problem occurs. These problems are shown in Fig. 1.2
and Fig. 1.3, where the red and blue points refer to matches and non-matches, respectively.
Specifically, in Fig. 1.2, a powerful model can easily distinguish the training samples with
different labels, even they are quite similar to each other in the sample space. However, such
models lose their generalization. All these problems will aggravate the difficulty of training a
classification model in solving ER tasks.

§1.3 Research Objectives 5

1.3 Research Objectives

The aforementioned challenges can be summarized into two questions: (1) How to resolve en-
tities efficiently? (2) How to resolve entities accurately? This thesis addresses these challenges
from two perspectives in ER: (1) blocking and (2) classification.

1.3.1 Blocking Objectives

In ER, with the size of a dataset growing, the similarity computation time for records in-
creases quadratically. To eliminate the unnecessary computation and improve the time effi-
ciency, blocking techniques are widely applied by grouping potentially matched records into
blocks, and restricting the comparison only occurring between records in the same block. For
example, given a dataset D, the total number of record pairs to be compared is |D|∗(|D|−1)

2
(i.e., each record is paired with all other records in D). Using blocking technique can reduce
the number of compared record pairs to no more than m∗(m−1)

2 ∗ n, where m is the number of
records in the largest block and n is the number of blocks.

In past years, a good number of techniques have been proposed for blocking [43; 146;
50; 121; 122; 135], such as sorted neighborhood based blocking [43], locality-sensitive hash-
ing (LSH) based blocking [146], clustering based blocking [35; 50], graph based blocking
[121; 122], and scheme based blocking [11; 135; 84; 108; 85; 17]. Among these techniques,
using blocking schemes is an efficient and declarative way to generate blocks. Intuitively, a
blocking scheme takes records from a dataset as input, and groups the records using a logical
combination of blocking predicates, where each blocking predicate specifies an attribute and
its corresponding function. Thus, using a blocking scheme helps the user to understand how
the blocks are generated.

Learning a blocking scheme is the process of deciding which attributes are chosen for
blocking, what the corresponding functions are used to compare values in attributes, and how
different attributes and methods are logically combined so that desired blocks can be generated
to satisfy the given criterion, e.g. at least how many percentages of matches are supposed to be
in the blocks. Compared with blocking techniques that consider data at the instance level [43],
for example, split and merge specific records based on their own record values [50], block-
ing schemes have several advantages: (1) They only require to decide what metadata, such as
attributes and the corresponding functions, is needed, rather than what data from individual
records is selected; (2) They provide a more human readable description for how attributes
and methods are involved in blocking; and (3) They enable more natural and effective interac-
tion for blocking across heterogeneous datasets. A number of blocking approaches have been
proposed to learn blocking schemes [11; 84; 108]. They generally fall into two categories:
(1) Supervised blocking scheme learning approaches. For example, Michelson and Knoblock
presented an algorithm called BSL to automatically learn effective blocking schemes [108]; (2)
Unsupervised blocking scheme learning approaches [84]. For example, Kejriwal and Miranker
proposed an algorithm called Fisher which uses record similarity to generate labels for train-
ing based on the TF-IDF measure, and a blocking scheme can then be learned from a training
set [84]. However, as mentioned above, sufficient labeled samples are necessary for super-
vised learning approaches; and there is no performance guarantee for unsupervised learning

6 Introduction

approaches.
Additionally, ER applications often involve multi-criteria analysis in choosing blocking

schemes. More specifically, given a scheme space that contains a large number of possible
blocking schemes and a collection of criteria for choosing blocking schemes, such as pair
completeness (PC), pair quality (PQ) and reduction ratio (RR) [27], how can we select the
most preferred blocking scheme? Ideally, a good blocking scheme should yield blocks that
minimize the number of record pairs to compare, while still preserving true matches as many
as possible, i.e., optimizing all criteria simultaneously. Unfortunately, the criteria for selecting
blocking schemes are often competing with each other. For example, PC and PQ are negatively
correlated in many applications, as well as RR and PQ [27]. That is to say, a blocking scheme
with high PC normally leads to a low PQ, and conversely, a blocking scheme with high PQ
may have a low PC. From users’ perspective, they may have different preferences on blocking
schemes to deal with different applications, which may have specific requirements, and thus to
achieve entity resolution results from various perspectives. For example,

• Crime investigation: In crime investigation, when individuals are investigated for a
crime, it is necessary to identify as many candidates as possible so that the criminal
will not be missed out. In this case, blocking schemes with high PC values would be
preferred.

• Medical study: When studying the medical conditions of patients, we would need to
identify patients that exactly correspond to certain medical conditions. In this case,
blocking schemes with relatively high PQ values would be desired, because they can
help match the patients and the medical conditions so as to diagnose patients that are
necessarily included under study.

To effectively learn a blocking scheme that is optimal under one or more criteria, previ-
ous work has specified various constraints in the learning process [86]. For example, some
approaches [17; 108] aimed to learn a blocking scheme that can maximize both RR and PC of
record pairs. Some approaches [11; 84] targeted to find a blocking scheme that can generate
blocks with a minimal number of non-matched record pairs. However, setting such constraints
perfectly is a challenging task because constraints may vary in different applications and it is
often unknown which constraint is appropriate for a specific entity resolution task. If a con-
straint is set strictly, no blocking scheme can be learned; on the other hand, if a constraint is
set loosely, the learned blocking scheme may not be helpful in the task.

Finally, we summarize our research objectives for blocking as follows:

• Objective 1: To improve the computational efficiency in ER, we first need to build
blocks which contain potentially matched records using blocking schemes. With only a
limited number of labels available, we consider to learn optimal blocking schemes w.r.t.
a user specified criterion.

• Objective 2: A number of scheme-based learning approaches have been proposed, how-
ever, a properly pre-defined criterion, such as a threshold of pair completeness, is still
necessary for learning, which requires the user to be a domain expert with prior knowl-
edge on the dataset. How to overcome this under a limited number of labels is still a

§1.3 Research Objectives 7

question. Hence, we target to proposing a framework which can present a set of “opti-
mal” blocking schemes under various criteria.

1.3.2 Classification Objectives

The challenges in ER classification are long standing and researchers are trying their best to de-
velop better solutions. Among these solutions, learning-based ER classifiers have been widely
used in the past years. However, due to the quadratic nature of record pair comparison required
by ER tasks [24], labeling is costly and time consuming. Additionally, these manual labels are
highly imbalanced, and most of them are useless. This raises the difficulty of applying su-
pervised learning methods for ER, where the classifier requires a sufficient number of labeled
samples for training, which is infeasible in many real-world applications.

To reduce the labeling effort, alternatively, a number of semi-supervised learning methods
have been proposed [87; 149; 136]. Some were proposed based on a low-density separation
assumption, i.e., there exists a low-density “boundary” so that instances belonging to different
classes can be distinguished [6; 101]. However, such a boundary may not always exist or can
be clearly identified, especially when the number of labeled instances is small [71]. Some
semi-supervised learning methods have utilized the idea of self-learning, which firstly trains a
classifier using labeled instances, and then selects unlabeled instances with predicted labels to
train a classifier iteratively [87]. Although promising, these methods often lead to the issue of
overfitting when labeled instances in training are limited [125].

In this thesis, we first tackle these challenges using the active learning techniques. A num-
ber of approaches have been studied to solve the classification problem in entity resolution
tasks with active learning and achieved quite high performance [133; 4; 49]. However, current
solutions normally used pre-defined heuristic rules for sample selection and labelling, while
these rules need prior knowledge and may change w.r.t. different datasets and machine learn-
ing models. For example, uncertainty sampling as one kind of active learning techniques is
associated with a probabilistic learning model which is used to infer the uncertainty w.r.t. the
probability of whether a sample belonging to a certain class [90; 126]. Considering an SVM
(Support Vector Machines) based active learning approach, samples which lie closest to the
SVM’s dividing hyperplane will be selected [132; 45]. However, using such probability may
not be reliable since the classifier itself may not be trusted in some cases: (1) A limited num-
ber of training samples or a classifier with high complexity may cause the overfitting problem,
hence the predicted probabilities are not reliable; (2) When to deal with multi-class problems,
a sample with high uncertainty to one class may be certain to another class [72].

The state-of-the-art active learning framework considering both uncertainty and diversity
[157], is not efficient in sampling. That is, uncertainty of samples is measured by entropy,
which can not be obtained from the classifier until all the samples are actively selected as the
training set. Additionally, considering the diversity of samples, the class of each sample is
known as prior information, so that samples can be selected from each class evenly, which
is not achievable under a limited number of labels. Furthermore, as we have mentioned, the
overfitting problem and the cold start problem may occur while training a classifier under a
limited number of imbalanced samples. How to alleviate the overfitting problem and the class
imbalance problem with a limited number of training samples is still a problem to be explored.

8 Introduction

Recent approaches indicate that solving ER tasks with neural networks can achieve better
performance than traditional methods such as Magellan [9; 113]. However, without sufficient
training data, a powerful machine learning model may be overfitting by remembering all the
features of training samples. In such cases, the learning model can correctly predict the classes
of seen samples with high certainty, but fail to predict the classes of unseen samples, thus
losing the generalization ability. This challenge is further aggravated when the underlying data
distribution is highly imbalanced, which raises the difficulty of applying supervised learning
methods for ER. Hence we aim to propose a deep learning-based framework which focuses
on tackling the following two challenges that cannot be handled by the existing deep learning-
based ER methods: (1) the overfitting problem; (2) the imbalanced class problem.

Thus, our research objectives for classification are as follows:

• Objective 3: To avoid using various pre-defined active learning heuristics for different
datasets and machine learning models, we consider to design a novel approach where
the active learning strategies can be learned from data. Our approach should also deal
with the cold start problem when the number of labeled samples is limited.

• Objective 4: Existing powerful machine learning models such as neural networks suffer
from the overfitting problem when the training samples are limited or the models are
powerful enough, especially when the samples are highly imbalanced. In such cases,
the models can remember the features of each sample and lose their generalization abil-
ity. We aim to design an approach for ER under a limited number of high imbalanced
samples.

1.4 Contributions

In this thesis, we focus on the above objectives for both blocking and classification. Inspired
by the success of active learning techniques, this thesis provides a detailed study for blocking
and classification with active learning techniques, and shows significant improvements in both
label efficiency and accuracy compared with the state-of-the-art approaches. Particularly, this
is the first time for blocking scheme learning with active learning techniques.

• Active blocking scheme learning. To deal with the first objective, i.e., learning the
“optimal” blocking scheme under a limited number of labels, we propose an active
learning-based approach. This approach contains two complementary and integrated
active learning strategies: (a) Active sampling strategy which converts the class imbal-
ance problem into the balanced sampling problem and then selects informative train-
ing samples; (b) Active branching strategy which determines the extension of candidate
blocking schemes by using either a conjunction or disjunction form. Our experimental
results show that our approach can efficiently learn a blocking scheme with less samples
while still achieving high quality compared with the state-of-the-art baselines. Details
of this solution are introduced in Chapter 4.

• Scheme skyline learning. While the “optimal” blocking schemes can be learned under
a given threshold, it may still suffer from the circumstance that the user has no prior

§1.4 Contributions 9

knowledge on defining a proper threshold. To deal with this issue, we formulate a novel
scheme skyline learning problem for entity resolution where only a limited number of
labels are available. Solving this problem would lead to generating a range of optimal
blocking schemes w.r.t. different blocking criteria and thus enable users to choose their
preferred blocking schemes. Three algorithms are proposed, where we both actively se-
lect informative samples and develop a scheme extension strategy for efficiently identi-
fying schemes that are possibly on a skyline in order to reduce the search space and label
cost used in the learning process. We have evaluated the efficiency and effectiveness of
our scheme skyline learning algorithms over five real-world datasets. The experimental
results show that our algorithms outperform the baseline approaches in all of the fol-
lowing aspects: label efficiency, blocking quality and learning efficiency. Details of this
framework are introduced in Chapter 5.

• Learning-To-Sample (LTS). While blocks of records are well established w.r.t. the
blocking schemes, the next step is to categorize all the record pairs within one block
into matches and non-matches for all blocks. Our objective is to design an active learn-
ing strategy regardless of the datasets and the machine learning models for entity res-
olution, and overcome the cold start problem at the same time. Hence we propose a
novel learning-based active learning framework, called Learning-To-Sample (LTS). In
this framework, two models are designed: a boosting model F and a sampling model G,
which can dynamically learn from each other in iterations for improving the performance
of each other. Additionally, the sampling model incorporates uncertainty and diversity of
samples into a unified process for optimization. This allows us to actively select samples
based on the joint impacts of probabilities of being mis-classified by a boosting model
and the distribution of samples in the sample space. The experimental results show that
our approach significantly outperforms all the baselines under a limited number of la-
bels, and efficiently alleviate the cold start problem, especially when the samples are
highly imbalanced. Details of this framework are introduced in Chapter 6.

• ERGAN. Although the active learning technique helps to reduce the label cost for ER,
it still suffers from the overfitting problem when the model is too powerful. To deal with
this objective including the overfitting problem and the class imbalance problem, we
propose a semi-supervised approach with generative adversarial nets, namely ERGAN,
for entity resolution. ERGAN has two key components: a label generator and a discrimi-
nator, which are optimized in an adversarial learning manner. We develop two integrated
modules: diversity and propagation modules, for the label generator and the discrimi-
nator, respectively, to improve the model generalization ability. We theoretically prove
that ERGAN overcomes the model collapse and convergence problems in the original
GAN, and we conduct extensive experiments to empirically verify the effectiveness of
ERGAN over all the baselines and our ablated models. Details of this framework are
introduced in Chapter 7.

10 Introduction

1.5 Thesis Outline

We begin by discussing the preliminaries for entity resolution in Chapter 2. Then we review
the related work and background for ER, skyline queries, active learning, and machine learning
models in Chapter 3. In Chapter 4, we propose an active blocking scheme learning approach
which incorporates active learning techniques into the blocking scheme learning process while
preserving quality. In Chapter 5, based-on the active scheme learning algorithm, we propose
a scheme skyline approach w.r.t. different criteria. We also propose a learning-based active
learning approach which selects samples by learning instead of pre-defined rules in Chapter 6.
We finally propose a neural network based classification model, which contains a label gener-
ator and a discriminator forming an adversarial network to deal with the potentially overfitting
problem under powerful models and a limited number of labeled samples in Chapter 7. The
thesis finishes with a summary, followed by an outlook to possible extensions in Chapter 8.

Chapter 2

Preliminaries

This chapter presents the notations and the experimental setups used in this thesis.

2.1 Notations

Let R be a dataset consisting of records. Each record r ∈ R is associated with a set of attributes
A, and each attribute a ∈ A has a domain Dom(a). We use r.a to refer to the value of
attribute a in a record r. A blocking function h : Dom(a)× Dom(a) → {0, 1} takes a pair
of attribute values from Dom(a) as input and returns a value in {0, 1} as output. A blocking
predicate 〈a, h〉 is a pair of a blocking attribute a and a blocking function h. Given a pair of
records 〈ri, rj〉, a blocking predicate 〈a, h〉 returns true if h(ri.a, rj.a) = 1 and returns false if
h(ri.a, rj.a) = 0.

Example 2.1.1. Consider the dataset example in Table 2.1 and suppose that we have a block-
ing predicate 〈Authors, Same-soundex〉, where Authors refers to the attribute in the dataset,
and Same-soundex refers to the blocking function applied for this attribute. In Table 2.1, the
record r1 has “Gale” in the attribute Authors, while the records r2 and r3 have “Gaile” in the
attribute Authors. The soundex value of both “Gale” and “Gaile” is G4. The other records
r4 and r5 have “Johnson” in the attribute Authors and the soundex value of “Johnson” is
75. Hence, if we consider the pair of records 〈r1, r2〉, this blocking predicate returns true be-
cause Same-soundex(Gale, Gaile) = 1. However, for the pair of records 〈r1, r4〉, the blocking
predicate returns false because Same-soundex(Gale, Johnson) = 0.

Given a set of blocking predicates P, the blocking vector of a record pair 〈ri, rj〉 for block-
ing is defined as v = 〈v1, v2, ...v|P|〉, where each vk (k = 1, . . . , |P|) is a value of either 1 or 0,
describing whether the corresponding blocking predicate in P returns true or false, respectively.

A (blocking) scheme s is a disjunction of conjunctions of blocking predicates (i.e. in the
disjunctive normal form). Given a blocking scheme s, a blocking model can generate a set of
pairwise disjoint blocks Bs = {b1, . . . , b|Bs|}, where bk ⊆ R (k = 1, . . . , |Bs|),

⋃
1≤k≤|Bs| bk =

R and
∧

1≤i 6=j≤|Bs| bi ∩ bj = ∅. Moreover, for any two records ri and rj in a block bk ∈ Bs,
s must contain a conjunction of block predicates such that h(ri.ak) = h(rj.ak) holds for each
block predicate 〈ak, h〉 in this conjunction.

A blocking scheme is called a n-ary blocking scheme if it contains n distinct blocking
predicates. Given a blocking scheme s = s1 ∨ s2... ∨ sn, where each si (i = 1, . . . , n) is a

11

12 Preliminaries

Table 2.1: A bibliographic dataset example with three attributes: Title, Authors and Publica-
tionYear.

ID Title Authors PublicationYear
r1 An active learning ... Gale 2003
r2 An active learning ... Gaile 2003
r3 Entity resolution for ... Gaile 2006
r4 An active learning ... Johnson 2003
r5 Active learning blocking ... Johnson 2003

conjunction of blocking predicates, we can generate a set of pairwise disjoint blocks Bs =
{b1, . . . , b|Bs|}, where bk ⊆ R (k = 1, . . . , |Bs|),

⋃
1≤k≤|Bs| bk = R and

∧
1≤i 6=j≤|Bs| bi ∩ bj =

∅. Two records ri and rj are placed into the same block if there exists a conjunction of block
predicates si in the given blocking scheme s such that the feature vector x of 〈ri, rj〉 contains 1
for each blocking predicate in si. We say s(x) = true in this case; otherwise, s(x) = f alse.

Example 2.1.2. Given two blocking schemes s1 = 〈Authors, Same-soundex〉 ∧ 〈Title, Same-
value〉 and s2 = 〈Authors, Same-soundex〉 ∧ 〈 PublicationYear, Same-value〉, s = s1 ∨ s2 is
a 3-ary blocking scheme. This is because s contains three distinct blocking predicates, i.e.
〈Authors, Same-soundex〉, 〈 PublicationYear, Same-value〉, and 〈Title, Same-value〉.

By applying the blocking scheme s on the records in Table 2.1, a set of blocks Bs =
{{r1, r2}, {r3}, {r4, r5}} would be generated since s returns true for 〈r1, r2〉 as well as 〈r4, r5〉.

The feature vector of a record pair 〈ri, rj〉 for classification is a tuple 〈sim(ri.a1, rj.a1),
sim(ri.a2, rj.a2), ...sim(ri.a|A|, rj.a|A|)〉, where each sim(ri.ak, rj.ak) (k = 1, . . . , |A|) is a
value between 0 and 1, referring to the similarity of the corresponding attribute values, which
is measured by similarity functions used in the comparison step of the entity resolution process.
A sample, denoted as x, is defined as either (1) a blocking vector for blocking tasks or (2) a
feature vector for classification tasks. For each sample x, a human oracle ζ is used to provide
a label y ∈ {M, N}. If y = M, it indicates that 〈ri, rj〉 refers to the same entity (i.e. a
match), and analogously, y = N indicates that 〈ri, rj〉 refers to two different entities (i.e. a
non-match). The human oracle ζ is associated with a budget limit budget(ζ) ≥ 0, which
indicates the total number of labels ζ can provide. A training set T = (X, Y) consists of a
set of samples X = {x1, x2, ..., x|T|} and their labels Y = {y1, y2, ..., y|T|}, where X is the
sample set.

Example 2.1.3. By applying the 2-gram Jaccard similarity function on the records r1 and r2

in Table 2.1, the feature vector x = 〈1, 0.4, 1〉.

A summary of notations used in this thesis is presented in Table 2.6.

2.2 Experimental Setups

We will introduce the datasets and the measures used in this thesis. Additionally, all the algo-
rithms are implemented in Python 2.7.3, and running on a server with 6-core 64-bit Intel Xeon
2.4 GHz CPUs, 128 GBytes of memory.

§2.2 Experimental Setups 13

Table 2.2: Characteristics of datasets for entity resolution.

Dataset Cora DBLP-Scholar DBLP-ACM NCVoter

Attributes 4 4 4 18
Records 1,295 2,616 / 64,263 2,616 / 2,294 267,716 / 278,262
True Matches 17,184 2,360 2,224 6,122,579
Blocking Predicates 16 16 / 16 16 / 16 72 / 72
Class Imbalance Ratio 1 : 49 1 : 31,440 1 : 1,117 1 : 2,692

Table 2.3: Attributes of datasets.

Datasets Attributes

Cora authors, title, affiliation, publisher and year
DBLP-Scholar

title, authors, venue and year
DBLP-ACM

NCVoter

county id, county desc, voter reg num,
voter status desc, voter status reason desc,

absent ind, last name, first name, midl name,
full name rep, full name mail, reason cd,

status cd, house num, street name,
street type cd, res city desc and state cd

2.2.1 Datasets

We will use the following four datasets in the experiments to evaluate the performance of our
approaches:

• Cora 1 dataset contains bibliographic records of machine learning publications including
four attributes.

• DBLP-Scholar 1 dataset contains bibliographic records from the DBLP and Google
Scholar websites including four attributes.

• DBLP-ACM [95] dataset contains bibliographic records from the DBLP and ACM web-
sites including four attributes.

• North Carolina Voter Registration (NCVoter) 2 dataset contains real-world voter reg-
istration information of people from North Carolina in the USA. Two sets of records
including 18 attributes are collected in October 2011 and December 2011 respectively
are used in our experiments.

The characteristics of these datasets are summarized in Table 2.2, including the number of
attributes, the number of records (/ is used to separate the numbers for two datasets respec-
tively), the number of true matches, the number of blocking predicates used in the experiments

1Available from: http://secondstring.sourceforge.net
2Available from: http://alt.ncsbe.gov/data/

14 Preliminaries

Table 2.4: The notions tp, tn, f p, f n defined in blocking evaluation w.r.t. a blocking scheme s.

True Label
Record Pairs

In blocks Out of blocks
Match tp(s) f n(s)

Non-Match f p(s) tn(s)

and the class imbalance ratio. We need to note that, blocking algorithms take records from
one or two datasets as input, and classification algorithms take feature vectors being generated
from record pairs using comparison functions as input. These feature vectors are generated
based on 2-gram Jaccard similarity if not specified.

2.2.2 Measurements

We use the following measures in this thesis to evaluate the quality and efficiency of our ap-
proaches. Following the previous work, different quality measures are used for blocking and
classification tasks, respectively.

2.2.2.1 Quality Measurements

Blocking quality
We use the measures which are widely used [27] for blocking scheme evaluation in our

thesis, which are originally used in Information Retrieval (IR) [127; 105]. Ideally, a good
blocking scheme should yield blocks that minimize the number of record pairs to be compared,
while preserving true matches at a required level. Given a pair of records that are placed into
the same block, we call it a true positive if it refers to a match; otherwise, it is a false positive.
Similarly, a pair of records is called a false negative if it refers to a match but the records are
placed into two different blocks. For convenience, we use tp(s), tn(s), f p(s) and f n(s) to
denote the numbers of true positives, true negatives, false positives and false negatives in blocks
w.r.t. a blocking scheme s, respectively. These measures are defined in Table 2.4 using a two-
by-two contingency matrix. Based on the notions of these, we adopt the following measures to
evaluate blocking quality:

• Reduction Ratio (RR) of a blocking scheme s is one minus the total number of record
pairs generated by a blocking model in terms of s divided by the total number of record
pairs without blocks, which measures the reduction of compared record pairs. That is,
RR is calculated as:

RR = 1.0− tp(s) + f p(s)
tp(s) + f p(s) + tn(s) + f n(s)

(2.1)

• Pairs Completeness (PC) of a blocking scheme s is the number of true positives tp(s)
divided by the total number of true matches, i.e. tp(s) + f n(s), which measures the
accuracy, i.e. rate of matches remained in blocks, is calculated as:

PC =
tp(s)

tp(s) + f n(s)
(2.2)

§2.2 Experimental Setups 15

Table 2.5: The notions tp, tn, f p, f n defined in classification.

True Label
Predicted Class

Class = Positive Class = Negative
Match tp f n

Non-Match f p tn

• Pairs Quality (PQ) of a blocking scheme s is the number of true positives tp(s) divided
by the total number of record pairs that are placed into the same blocks, i.e. tp(s) +
f p(s), which measures the efficiency, i.e. rate of true positives in blocks, is calculated
as:

PQ =
tp(s)

tp(s) + f p(s)
(2.3)

• F-measure (FM) Both pairs completeness and pairs quality are essential to evaluate a
blocking approach, but the results may be conflict. That is to say, we may notice that
the value of PC will decrease when the value of PQ increases in the experiments, thus
we need to have a trade-off on PC and PQ. In this scenario, the definition of F-measure
was proposed, as the harmonic mean of PC and PQ. Given the value of PC and PQ, the
F-measure is calculated as:

F−measure =
2 ∗ PC ∗ PQ

PC + PQ
(2.4)

Classification quality
The measures we use to evaluate classification models are defined in Table 2.5 using a two-

by-two contingency matrix. The true positives are the pairs which are classified as positives
and are true matches. The false positives are the pairs which are classified as positives but are
true non-matches. Similarly, the true negatives are the pairs which are classified as negatives
and are true non-matches, and the false negatives are the pairs which are classified as negatives
but are true matches. We can have the following measures in terms of the above definitions.

• Accuracy: The fraction of the record pairs in the datasets that are correctly classified by
the classification model, which is calculated as:

Accuracy =
tp + tn

tp + tn + f p + f n
(2.5)

• Precision: The fraction of the number of record pairs classified as matches by the clas-
sification model that are true matches, which is calculated as:

Precision =
tp

tp + f p
(2.6)

• Recall: Recall is the fraction of the number of true matches in the datasets that are
correctly classified as matches by the classification model, which is calculated as:

Recall =
tp

tp + f n
(2.7)

16 Preliminaries

• F-measure (FM): F-measure, which is also called F-score, is equal to the harmonic
mean of Precision and Recall. Given the value of precision and recall, the F-measure is
calculated as:

F−measure =
2 ∗ Precision ∗ Recall

Precision + Recall
(2.8)

2.2.2.2 Efficiency Measurements

We use the following measures to evaluate the efficiency of entity resolution approaches.

• Run time: The computation efficiency of an algorithm can be estimated by the total
time required for the ER process.

• Memory size: The size of memory required during the entity resolution process.

• Label cost: The number of labels used in training a model during the ER process.

§2.2 Experimental Setups 17

Table 2.6: Notations in this Thesis.
Notation Definition

R, |R| Dataset and Size of the dataset
ak, A Attribute and set of attributes
ri.ak Value of attribute ak w.r.t. record ri

h Blocking function
〈ak, h〉 Blocking predicate

P Set of blocking predicate
T, |T| Training set and size of the training set
s, S Blocking scheme and set of schemes

bs, Bs Block and set of blocks generated by scheme s
str String (a value type)

dist(str1, str2) Distance of two strings
sim(str1, str2) Similarity of two strings

xi, X Sample and set of samples
wi Weighted value for a sample xi

f (xi)/g(xi) A function takes a sample xi as input
ŷi Predicted label of xi

yi, Y Label, Set of labels corresponding to xi and X
v ∈ {0, 1} Binary value

v Binary vector
G(xi) Label generator for sample xi

D(xi, yi) Discriminator for labeled sample (xi, yi)
p(X) Distribution of sample set X
` Differentialable loss function
l Loss of a function
ζ Human oracle

Budget(ζ) Label budget
ε ∈ [0, 1] error rate

Ω(f) Penalty for the complexity of function f
σ Output vector from a softmax function
Λ A learning-based model
α Balancing parameter

β(s, X) Balance rate of scheme s in X
Γ Regularizer for sample distribution
γ Batch sample size
∆ Batch sample set

tp(s) / f p(s) True / False positives in blocks Bs
tn(s) / f n(s) True / False negatives in blocks Bs

PC Pair Completeness
PQ Pair Quality
RR Reduction Ratio
FM F-Measure

18 Preliminaries

Chapter 3

Background and Related Work

This chapter provides the background and related work on entity resolution, especially on
scheme-based blocking approaches and machine learning-based classification models. This
chapter also gives a brief introduction to skyline queries, active learning techniques and ma-
chine learning models which are closely related to the research objectives.

3.1 Entity Resolution

Entity resolution aims to identify different records which refer to the same real-world entity. It
plays a more and more important role in many application areas such as linking census records
[96], public health [74], web search [75], comparison shopping [151], counter-terrorism [124],
and so on in recent years. For example, health researchers are interested in aggregating health
datasets from different organizations for quality health analysis such as epidemiological studies
and adverse drug reaction investigation. The health-related entity resolution can also be used
to develop health strategies in an efficient and effective way, compared with the traditional
survey method which is a time-consuming process [33]. Many business companies such as
price comparing agents and third-party on-line shopping companies take advantage of entity
resolution techniques for matching products from different websites in order to offer a fair
price for their products, such as eBay, Amazon. Entity resolution can also be applied to web
search areas, for example, identifying documents that belong to the same subject or are written
by the same author [114].

In this section, we introduce the procedure of entity resolution in two categories: (1) tradi-
tional entity resolution process [26] and (2) the entity resolution process using deep learning-
based models [44; 113].

3.1.1 Traditional Entity Resolution

Traditional entity resolution process is composed of four steps: blocking, comparison, classifi-
cation and clustering, with different techniques being applied in each step. Figure 3.1 outlines
these steps, together with the input and output for each step in entity resolution. Date cleaning
is a pre-processing step to clean the datasets. For example, if two or more datasets are used for
entity resolution, they may have different data structures and are not easy to be used directly,
e.g. different attribute names. In addition to this, records to be resolved may contain missing

19

20 Background and Related Work

Figure 3.1: The four general steps in entity resolution process with the input and output for each
step.

values and noisy data [128] and need to be cleaned. Some techniques of data cleaning for
entity resolution are discussed in [32; 26].

Generally speaking, blocking is used to reduce the comparison time of record pairs by
grouping those potentially matched pairs into the same block. Comparison is used to cal-
culate the similarity of a record pair using certain similarity functions, e.g. the similarity of
strings, q-gram, TF-IDF, geographical distance and so on. Furthermore, classification is nec-
essary to identify if a record pair is a match or not, which can be threshold-based, rule-based,
probabilistic-based or machine learning-based techniques [26]. Once all the matches are found,
they are grouped into different clusters, all the records within one cluster refer to the same real
world entity. Clustering can be solved by using the clustering techniques.

3.1.1.1 Blocking

Given two datasets D1 and D2, the total comparison time in entity resolution tasks without
blocking is |D1| ∗ |D2|, assuming there is no duplicate in each dataset (i.e., no more than two
records referring to the same entity in one dataset). Therefore, with the size of dataset’s grow-
ing, the comparison time increases quadratically. With the application of blocking techniques,
say, if all the records are grouped into k blocks, and the largest block contains |B1| and |B2|
records from each dataset, respectively, then the total comparison time in the comparison step
is no larger than k ∗ |B1| ∗ |B2|. Similarly, for a single dataset D, the comparison time is no
larger than k∗|B|2

2 , where B is the largest block containing |B| records. Consequently, blocking
is an essential step in entity resolution to improve the computational efficiency.

In blocking, attribute values are often used to group records into different blocks [26],
which is a straight forward way for the user to understand how the blocks are generated. If

§3.1 Entity Resolution 21

values from more than one attribute are used, they can be in the disjunctive normal form, which
refers to a disjunction of conjunctions. In real-world datasets, records may contain mistakes
such as typographical errors, and using attribute values for blocking becomes less accurate.
Normally, when it is hard to decide whether a similar record pair is a match or not, we would
prefer putting them into the same block. This is because, even though grouping records with
similar values may lead to placing some true non-matched records into the same block, these
records may still be teased out in the further comparison step. On the other hand, if we miss
out a true matched pair, it would not be back any more. Hence to avoid this, we use blocking
functions considering the similarity of records instead of comparing their exact values. For
example, phonetic functions such as soundex [117] can help to alleviate typographical errors,
and these functions can be used as blocking functions [27]. In addition to grouping records
into disjoint blocks, some approaches adopt a multi-block strategy such that a record can be
grouped into multiple blocks [26].

Blocking is regarded as an efficient way to reduce the computational time of the entity
resolution process. A number of blocking techniques for entity resolution have been proposed
in previous years which have been compared in several surveys [7; 27]. Here we summarise
three widely used types as follows.

• Scheme-based blocking: Scheme-based blocking approaches are the traditional ap-
proaches where each record is inserted into one block only, which is also called standard
blocking. In scheme-based blocking, all records that contain the same value referring
to the blocking scheme (e.g. same authors in a citation dataset) will be inserted into
the same block, and only the records within the same block will be compared in the
comparison step [47].

• Scheme-agnostic blocking: There are also some scheme-agnostic blocking approaches:
(1) Token based blocking, which is also called Q-gram based blocking, aims to group all
records containing the same token (e.g., string of length q) into the same block [7; 119].
Rather than generating blocks according to blocking schemes, these approaches can gen-
erate blocks w.r.t. tokens called sorting key values (SKVs), which are generally sub-
strings of records [65; 89]. (2) Clustering based blocking [120] aims to group a number
of records into the same block by pre-defined criteria using some computationally cheap
clustering techniques in an unsupervised manner. These criteria can be similarity thresh-
olds [107], a number of k nearest neighbors [28], a fixed blocking size [50] and so on
.

• Meta blocking: Different blocking approaches may generate various blocks. Generally
speaking, if the size of most of the blocks is large, the number of comparison is often
large; if the size of blocks is small, the completeness and quality of blocks can potentially
be low. Hence several methods have been proposed to improve the performance of
blocking by controlling the block size using meta blocking techniques [122; 121].

In the following, we will review some existing work of these types, respectively.

Scheme-based blocking

22 Background and Related Work

Scheme based blocking for entity resolution was first mentioned by Fellegi and Sunter
[47]. They are the first to use an 〈 attribute, blocking-function 〉 pair as a blocking predicate
to define blocks. For example, the soundex code of both names Gail and Gayle is “G4”, thus
records that contain either of the names are placed into the same block. However, a blocking
scheme, which is defined as a disjunction of conjunctions of block predicates, has to be chosen
by domain experts. Michelson has proposed a machine learning-based blocking scheme learn-
ing algorithm called Blocking Scheme Learner (BSL) [110]. This is the first algorithm to learn
blocking schemes instead of generating them by a domain expert. It uses the Sequential Cov-
ering Algorithm (SCA) to learn schemes aiming to achieve both high pairs completeness and
high reduction ratio. Later on, a number of scheme learning approaches have been proposed,
which generally fall into two categories: (1) supervised blocking scheme learning approaches
[108; 17], and (2) unsupervised blocking scheme learning approaches [84; 85; 86].

Suffering from the training samples with imbalanced classes, where non-matches are much
more than matches, Bilenko et al. [11] proposed two blocking scheme learning algorithms
called ApproxRBSetCover and ApproxDNF to learn disjunctive blocking schemes and DNF
(i.e., Disjunctive Normal Form) blocking schemes, respectively. A training set in this approach
contains two kinds of pairwise supervision training samples: positive record pairs and negative
record pairs. In the ApproxRBSetCover algorithm, given a set of candidate predicates, this
algorithm selects those predicates which can cover more than a given number of positive pairs
and can not ignore a given number of negative pairs. In the ApproxDNF algorithm, each
conjunction of predicates must match the above two criteria with one more constraint: the
length of the conjunction must be less than a specific length.

Additionally, one challenge in entity resolution is that obtaining the labels for all possible
record pairs is very expensive. To deal with this challenge, Cao et al. [17] used both labeled
and unlabeled samples in their approach to improve the label efficiency compared with other
works. Their algorithm can learn a blocking scheme using conjunctions of blocking predicates
to satisfy both minimum true-match coverage and minimum precision criteria.

Later on, in 2013, Kejriwal et al. [84] proposed an unsupervised algorithm for learning
blocking schemes. In this paper, a weak training set was considered. However, the labels of
record pairs (positive or negative) in a training set are not generated manually, but by calculat-
ing the similarity of record pairs in terms of their TFIDF statistics. A training set also contains
two parts: positive labeled pairs and negative labeled pairs. An algorithm called FisherScore
[11] is proposed to calculate the fisher score for each given attribute. In the main algorithm
called FisherDisjunctive, two criteria are used the same as in ApproxRBSetCover, and pred-
icates that match the criteria are sorted by their fisher scores in descending order. The first
predicate is selected as part of the blocking scheme, and if the later predicate can cover at least
one new positive pair in the training set, it will be selected in a disjunctive form. After all the
positive pairs are covered by the disjunction of predicates, the blocking scheme is learned.

Scheme-agnostic blocking
Hernandez et al. proposed sorted neighborhood blocking as a scheme-agnostic blocking

approach [65]. This approach uses a ‘sorting key’ to sort records according to the sorting key
value (SKV), over which a sliding window of fixed size is then used and candidate record
pairs are generated from records that are within the current window. The sorted neighborhood

§3.1 Entity Resolution 23

blocking approach is not suitable if the first character of a SKV contains errors. Q-gram
based blocking has been proposed to overcome this drawback by generating variations of each
attribute value using q-grams (sub-strings of length q), and inserting record identifiers into
more than one block [89; 97; 144]. Suffix array based blocking has been also proposed to
overcome the issue of errors and variations at the first character of a SKV by generating suffix
substrings of blocking predicate values, which are called suffixes [1]. The suffixes of a string
are sub-strings with one or more characters at the beginning removed. Additionally, string-
Map based blocking aims to map SKVs to objects in a multi-dimensional Euclidean space
while preserving the similarities (distances) between blocking predicate values [77].

Some existing work has formulated blocking as an unsupervised clustering problem, where
similar records are placed into the same cluster. The Canopy clustering technique for blocking
is based on the idea of using a computationally effective and efficient clustering technique
to create high-dimensional overlapping clusters, from which candidate record pairs can be
generated [35; 153]. The state-of-the-art blocking technique in this line was proposed by Fisher
et al. [50].

Meta blocking
Whang et al. [152] proposed an iterative blocking framework where blocks are iteratively

processed until no block contains any more matching records, i.e., if one record appears in
a block, all its matched records will be presented in the same block. In this framework, two
algorithms called Lego and Duplo have been proposed, while the second one was used for large
scale datasets which have to be stored in disk instead of memory.

Papadakis et al. proposed an unsupervised meta-blocking framework [122] which aimed to
extract the most similar pairs of records from blocks. This framework first generates a blocking
graph based on existing blocks. In such a graph, each node represents a record, and a weighted
edge between two nodes refers to the similarity of the corresponding records. Then, four
algorithms have been proposed to prune unnecessary edges and nodes based on edge weights.
Weight Edge Pruning and Cardinality Edge Pruning are two algorithms to prune edges in
order to change record pairs from positives (predicted as matches) to negatives (predicted as
non-matches). The former algorithm uses the minimum edge weight as a threshold, while the
latter algorithm reserves top-k highest edge weights. Weight Node Pruning and Cardinality
Node Pruning are two local pruning algorithms to discard edges of a specific node based on
the edge weights between this node and its neighbors. The former algorithm uses the local
minimum edge weight as a threshold, while the latter algorithm reserves top-k nearest nodes
for this specific node, i.e., k nodes with highest edge weights.

Since the unsupervised meta-blocking framework proposed in [122] can not provide a qual-
ity guarantee, which can be either conservative (i.e., fail to discard unnecessary record pairs) or
aggressive (i.e., discard necessary record pairs), Papadakis et al. proposed another supervised
meta-blocking framework [121]. This framework aims to learn an optimal classifier to decide
the best k-value for cardinality pruning and the edge weight threshold for weight pruning.

3.1.1.2 Comparison

Comparison is an essential step in the entity resolution process to compare the similarity for
each record pair. A number of comparison techniques have been proposed based on measuring

24 Background and Related Work

different kinds of distances of two records whose values are regarded as two strings. Some
of the widely applied comparison techniques are listed as below, where str1, str2 refers two
strings corresponding to two records r1 and r2.

Exact Comparison: A simplest method to compare a record pair 〈r1, r2〉 is to consider two
records as two strings 〈str1, str2〉 and check whether they are the same. The comparison result
of a record pair is considered as 1 if two strings are identical, otherwise it is 0. The exact
comparison function is:

simexact(str1, str2) =

{
1 if str1 = str2

0 if str1 6= str2
(3.1)

Truncate Comparison: If the string value of a record is too long or contains some errors in
some substrings (this is because a string may contain several attribute values corresponding
to a record, and some values may contain errors), we can truncate the string and use only the
beginning or ending characters. If the first i characters of a string with n characters are denoted
with str[1 : i] and the last j characters are denoted with str[j : n], then a truncate function can
be described as:

simtrun begin(i)(str1, str2) =

{
1 if str1[1 : i] = str2[1 : i]
0 if str1[1 : i] 6= str2[1 : i]

(3.2)

simtrun end(j)(str1, str2) =

{
1 if str1[j : n] = str2[j : n]
0 if str1[j : n] 6= str2[j : n]

(3.3)

These functions, i.e., Functions 3.1, 3.2 and 3.3, are proposed based on the exact record
values, thus they are also called binary comparison techniques. However, in real-world datasets
for entity resolution, records are not “clean” to generate reliable feature vectors based on their
exact values. To deal with such real-world datasets, we apply approximate comparison tech-
niques which present how similar two records are by calculating the distance between them.
Such approximate comparison techniques using similarity functions can return a normalized
similarity value sim ∈ [0, 1], where 0 means that two records are totally different and 1 means
that two records are exactly the same.

Levenshtein Edit Distance String Comparison: The basic edit distance is also called Lev-
enshtein edit distance [78; 115]. The Levenshtein edit distance of a record pair is defined as
the minimum number of edit operations one string str1 need to convert into the other string
str2. Here, an edit operation is an single character operation including deletion, insertion and
substitution. The record pair similarity based on Levenshtein edit distance can be presented as:

simLevenshtein(str1, str2) = 1− distLevenshtein[str1, str2]

max(|str1|, |str2|)
(3.4)

For the first i characters in str1 and the first j characters in str2:
If str1[i] = str2[j], then

distLevenshtein[i, j] = distLevenshtein[i− 1, j− 1]

§3.1 Entity Resolution 25

If str1[i] 6= str2[j], then

distLevenshtein[i, j] = minimum


distLevenshtein[i− 1, j] + 1 a deletion,
distLevenshtein[i, j− 1] + 1 an insertion, or
distLevenshtein[i− 1, j− 1] + 1 a substitution.

(3.5)

Example 3.1.1. The Levenshtein edit distance between kitten and sitting is 3: (1) starting
with kitten, we first replace k by s, obtaining sitten; (2) then the 5-th character e is replaced
by i, obtaining sittin; (3) finally, an insertion operation of g is used at the end of the string,
obtaining sitting.

Smith-Waterman Edit Distance String Comparison: Another edit distance based approxi-
mate comparison technique is called Smith-Waterman edit distance [115], which calculates the
record pair similarity as:

simSmith Waterman(str1, str2) =
bsSmith Waterman

divSmith Waterman ×msm
(3.6)

where msm is one of five scores representing five basic character operations, including exact
match (score of 5), approximate match (score of 2), non-match (score of -5), missing value start
(score of -5), and missing value continuation (score of -1). divSmith Waterman can be decided by
one of the three values: min(|str1|, |str2|), max(|str1|, |str2|), or |str1|+|str2|

2 . bsSmith Waterman
uses the same matrix for calculating deletion, insertion or substitution as in Equation 3.5, but
it uses the maximal value instead of the minimum value among them.

These functions, i.e., Function 3.4 and 3.6, are distance-based, where we calculate the
distance between two records by regarding them as strings. The similarity is 1 minus the
distance between them. Three main properties of distance functions should be noticed that:
(1) all distance values must be non-negative; (2) the distance between two strings i and j is
symmetric, i.e., dist(i, j) = dist(j, i); (3) the distance between i and j must no larger than the
combined distance between them via a third object k, i.e., dist(i, j) ≤ dist(i, k) + dist(k, j),
which is also called the triangular inequality property.

Q-gram based String Comparison: We discuss how q-gram based techniques are used for
record comparison. We split a record pair to be compared into two sets of sub-strings, one
set for one record, and each sub-string contains q characters, for example, 3-gram sub-strings
of “elizabeth” are {“eli”, “liz”, “iza”, “zab”, “abe”, “bet”, and “eth”}. The similarity of two
records can be calculated by the following comparison functions:

simoverlap(str1, str2) =
|str1 ∩ str2|

min(|str1|, |str2|)
(3.7)

simJaccard(str1, str2) =
|str1 ∩ str2|
|str1 ∪ str2|

(3.8)

simdice(str1, str2) =
2× |str1 ∩ str2|
|str1|+ |str2|

(3.9)

26 Background and Related Work

These three functions calculate the overlap similarity, Jaccard similarity and Dice similarity
[26] of a record pair.

Monge-Elkan String Comparison: This comparison technique has been proposed specif-
ically to calculate the similarity of strings of words such as business names, addresses and
personal names that are not standardized and segmented [111]. This comparison technique
works as follows: first two records are split into two sets A and B of word tokens, then each
token in one set is compared with all the tokens in the other set in terms of a similarity function
(where it is called the secondary similarity function to distinguish the one for Monge-Elkan
similarity). Finally, the maximal similarity value of each token in set A corresponding to all
the tokens in set B is selected to calculate to Monge-Elkan similarity.

SoftTFIDF String Comparison: Since the TF-IDF (Term Frequency and Inverse Document
Frequency) technique has been widely used for document analysis, Cohen et al. introduced
it as a comparison technique in entity resolution [34]. The concept of term frequency is used
to identify relevant terms which have a high frequency, and the inverse document frequency
is used to identify terms that can distinguish documents with low frequency. In the record
comparison, a word token is regarded as a term.

3.1.1.3 Classification

A number of classification approaches for entity resolution have been proposed in the literature
[25; 66; 26]. Traditional classification techniques can be grouped into the following categories:

• Threshold-based techniques: With the vectors of record pairs obtained as the output of
the comparison step, we can set a threshold to classify all the record pairs into two cate-
gories: match and non-match. The record pairs whose vector values are higher than the
threshold are regarded as matches. In some cases, an upper threshold as well as a lower
threshold are used, and record pairs whose vector values are above the upper thresh-
old, between two thresholds or below the lower threshold are considered as matches,
potential matches or non-matches, respectively [25].

• Probability techniques: The probability techniques are similar to the threshold-based
techniques in that we also need to set one or two thresholds. However, the difference is
that we need to calculate the probability of being considered as a match or non-match
for each record pair in terms of its vector values [51; 66].

• Cost-based techniques: There are two kinds of errors when we consider if a record
pair is a match or non-match, i.e., a record pair referring to the same real-world entity is
classified as a non-match, or a record pair referring to different real-world entities is clas-
sified as a match. The probability techniques consider these two types of errors equally
important. However, we can still weight different types of probabilities by adding a cost
for each probability [145]. For example, we can add a higher cost to the probability of
classifying a true non-match pair as a match, or we can add a lower cost to the probability
of classifying a true match pair as a potentially match.

§3.1 Entity Resolution 27

• Rule-based techniques: The above techniques consider each vector as a whole when
they classify the corresponding record pair as a match or non-match. However, with the
application of rule-based techniques [150; 46], we can consider each value in a vector
separately by adding rules with different thresholds for each vector value we need. For
example, we have vectors of n values (sim1, sim2, ..., simn), and we define the classifi-
cation rules as (sim1 ≥ 0.8 ∧ sim2 ≤ 0.2 ∧ sim4 ≥ 0.4) or

(
(sim1 ≥ 0.6 ∨ sim2 ≤

0.4)∧ (sim4 ≥ 0.4∨ sim6 ≥ 0.75)
)
. Such hand-crafted rules require certain thresholds

to define similarity or dissimilarity of records [25; 137].

Additionally, learning-based techniques are widely used which adopt a machine learning
model to classify whether a feature vector of a record pair refers to the same entity. In the
literature, there are three main categories: (1) Supervised learning approaches, which train a
model with labeled samples so that it can predict unlabeled samples. The most recent work
is Magellan [92], which considered learning models including Decision Tree, Random Forest
and Support Vector Machine (SVM). Some work also studied ensemble learning approaches
by building a strong learner based on a set of weak learners [52]. A widely used ensemble
classifier is extreme gradient boosting (XGBoost) [19], which used the sparsity-aware algo-
rithm and the weighted quantile sketch for approximate learning. (2) Unsupervised learning
approaches, which do not consider any ground truth labels, but assign labels to samples based
on prior knowledge such as record similarity [10; 79]. One approach for entity resolution is
called two-steps (2S) [24]. It first labeled a number (e.g. 10 percents of a dataset) of the
most similar and dissimilar record pairs, respectively, and then trained an SVM in the second
step. A recent work in this line was proposed by Jurek et al. [79], which considered both
ensemble learning and automatic self-learning for classification based on training labels which
are automatically generated w.r.t. different similarity measure schemes. A graph-based un-
supervised approach for entity resolution was proposed by Zhang et al. [158] which has two
components: Iterative Term-Entity Ranking (ITER) and CliqueRank for record graph construc-
tion. (3) Semi-supervised learning approaches, which sit between supervised and unsupervised
learning in that they take a limited number of real labeled samples and sufficient unlabeled sam-
ples for training. The state-of-the-art semi-supervised learning approach for entity resolution
is an ensemble learning-based approach using Adaboost [129] for label prediction based on
seed samples that have real labels [87].

3.1.1.4 Clustering

Once we obtain the predicated labels for all the record pairs, i.e., matches and non-matches,
we can resolve entities with corresponding records, where each matched pair refers to exact
one real-world entity. However, what is the efficient way to find the entity if we have three
records 〈r1, r2, r3〉, where 〈r1, r2〉 and 〈r1, r3〉 are matches, but 〈r2, r3〉 is a non-match? What
about more than three records referring to the same entity? We need clustering techniques.
Many clustering techniques are developed by researchers from statistics, data mining and ma-
chine learning domains, and they use different heuristics to guide the clustering process [64].
Clustering techniques in entity resolution group records into different entity clusters, and each
cluster contains records corresponding to the same entity [148; 147]. Clusters may be small, or

28 Background and Related Work

even contain one record, which means only one record in the dataset(s) referring to this entity
[147].

Lokhande et al. [104] proposed a correlation-clustering based approach. In this approach,
the clustering problem is first treated as a Minimum Weighted Set Packing (MWSP) problem
for optimization. Furthermore, the MWSP problem is tackled using Column Generation (CG),
which targets at solving an Integer Linear Programming (ILP) of the MWSP by constructing a
small sufficient subset of samples. Additionally, the Flexible DOIs (F-DOIs) has been proposed
based on the accelerated CG using Dual Optimal Inequalities (DOIs) technique, which helps
to reduce the search space of the LP problem.

3.1.2 Entity Resolution with Deep Learning

In recent years, motivated by the success of deep learning techniques in computer vision
[60; 59], natural language processing [39] and so on, several attempts have been made to
design deep learning solutions for entity resolution tasks [30]. In such approaches, traditional
comparison and classification steps are merged into one: the representations of records are first
learned, then they are compared and aggregated in a sequence, and finally a model is used to
predict the labels corresponding to the record pairs, i.e., matches or non-matches [116].

Representation learning and comparison. Ebraheem et al. proposed DeepER, which used
bi-directional Recurrent Neural Networks (RNNs) with Long Short Term Memory (LSTM)
units to learn a distributed representation for each record [44]. Mudgal et al. studied how to
use deep learning techniques developed in natural language processing to handle the problems
of attribute embedding, attribute summarization and attribute comparison [113]. A recent work
proposed by Nie et al. [116] used an align-compare-aggregate framework for a token level
sequence-to-sequence entity resolution which aimed to solve the heterogeneous and dirty data
problems, specifically, it learned the representations of tokens, captured the semantic relevance
between tokens, and aggregated matching evidence for accurate entity resolution decisions in
an end-to-end manner. In deep learning approaches, the comparison step of traditional entity
resolution is replaced by a comparison layer. However, there is no specific measure for record
comparison. Fu et al. [56] proposed an end-to-end multi-perspective entity matching model,
which can adaptively select optimal similarity measures for heterogeneous attributes by jointly
learning and selecting similarity measures in an end-to-end way.

Deep learning under limited labels. Several approaches have been proposed to deal with the
problem of insufficient labels in entity resolution. Taking the advantages of transfer learning
techniques, Zhao and He [159] proposed Auto-EM, which leverages pre-trained entity reso-
lution models from large scale, production knowledge bases. In this model, for each entity
type in the knowledge base, such as people and location, the synonymous names of known
entities are used for pre-training, thus models for each type are trained using a hierarchical
neural network architecture. Additionally, with little or no training data, i.e., either fine-tuning
or using the pre-trained entity resolution directly, a target entity resolution task can be solved.
Kasai et al. also proposed an entity resolution solution with both trasfer learning and active
learning [81]. However, the well-known limitations of transfer learning are that (1) it needs a
pre-trained model before applying to a target task, and (2) a prior assumption on the correlation
between the source and target tasks is also required, which restrict its practical applicability for

§3.2 Skyline Queries 29

entity resolution problems in real-world applications. Some more approaches are reviewed by
Christophides et al. [30]. The state-of-the-art unsupervised approach is called ZeorER, which
is proposed by Wu et al. based on the insight that the feature vectors of matches are different
from those of non-matches [154]. This approach is built based on a generative model w.r.t.
Gaussian Mixture Models to learn the distribution of matches and non-matches. Additionally,
since samples used to train the model are not labeled manually, but based on feature vectors,
to avoid the extreme cases for feature overfitting, e.g. dis-similar vectors may be considered as
matches by the model, an adaptive regularization technique is proposed. Finally, the transitivity
property is used in the generative model for performance improvement.

Deep learning for unstructured data. While some of the approaches are limited to resolve
entities under specific data structures, i.e., schema-specific, taking the advantage of pre-trained
language models such as BERT [39], Teong et al. [142] proposed a scheme-agnostic model.
This model is first pre-trained as a language model, i.e., BERT and then fine-tuned by the
labeled entity resolution dataset. Li et al. [102] proposed an entity matching system based on
pre-trained transformer-based language models called DITTO by fine-tuning and casting EM
as a sequence-pair classification problem to leverage such models.

Deep graph-based entity resolution. Li et al. [99] is the first to deal entity resolution tasks
in the token-centric manner, i.e., to present and compare records based on their token val-
ues, using an entity record graph. It helps to overcome some shortages of attribute-centric
approaches. These shortages can be the semantic sparsity and information dilution problem
of attribute representations, the inflexible comparison problem from hard attribute alignment
and the difficulty in handling heterogeneous attributes. The proposed model called GraphER
is composed of four layers. The ER-GCN layer is built based on Graph Convolutional Net-
works (GCNs) to capture both the semantic and structural information of attribute values, and
embed them into token representations. The comparison layer yields comparison vectors by
comparing the representations of record pairs. Then the aggregation layer is used to find the
important matching features. Finally the prediction layer is used to predict the final labels for
record pairs.

3.2 Skyline Queries

Skyline queries normally refer to finding a set of objects that are useful to a user, where these
objects belong to a multi-dimensional space. Typically, there exist trade-offs between these
dimensions, so that there is no unique object to be the best [88]. A good number of approaches
on skyline queries have been studied in the context of database in the literature [21; 103; 141;
131]. It can be regarded as the queries of value-for-money problem [80], which provides a
set of options representing the optimal combinations of the characteristics of a database, for
example, the location and price of all the hotels in a city. Existing approaches primarily focused
on learning representative skylines, such as top-k RSP (representative skyline points) [103], k-
center (i.e., choose k centers and one skyline point for each center) [141] and threshold-based
preference [131].

From an algorithmic perspective, a naive algorithm for skyline queries (e.g., nested-loop
algorithm) has the time complexity O(n2d), where n is the number of records and d is the

30 Background and Related Work

number of attributes in a given database. Later on, several algorithms have been proposed
to improve the efficiency of skyline queries based on different properties which have been
previously ignored. In the early days, Borzsony et al. [13] proposed the BNL (block nested-
loop) algorithm based on the transitivity of a dominance relation (e.g. if a dominates b and
b dominates c, then a dominates c). Then, Chomicki et al. [22; 23] proposed an SFS (sort-
filter-skyline) algorithm with the improvements: progressive and optimal comparison times.
Sheng and Tao proposed an EM (external memory) model based on an attribute order [13].
Morse et al. proposed the LS-B (lattice skyline) algorithm based on the low cardinality of
some attributes (e.g. the rating of a movie is an integer within a small range of [1, 5]) [112].
Papadias et al. proposed the BBS (branch-and-bound skyline) algorithm based on the index of
all input records by an R-tree [123].

Existing work on skyline queries aims to efficiently tease out a skyline of queries over a
database in which records and attributes are known. In contrast, our study has shifted the focus
to learning a skyline of blocking schemes in terms of a given number of selected criteria but the
actual values w.r.t. these criteria are not directly available in a database. Particularly, in many
real-world applications, only a limited number of labels are allowed to be used for assessing
blocking schemes. Thus, how to efficiently and effectively learn a skyline of blocking schemes
is a difficult task. In this thesis, different from previous works on blocking schemes and skyline
queries, we consider to leverage active learning techniques for finding informative samples
and improving the performance of learning, and propose novel algorithms to efficiently learn
skylines of blocking schemes .

3.3 Active Learning

In this section, we first briefly introduce the general active learning techniques which are shown
to be efficient in reducing the label usage and overcoming the class imbalance problem (i.e.,
two main issues in entity resolution). Then we introduce some entity resolution approaches
that have adopted the active learning techniques and how the state-of-the-art learning-based
active learning technique is developed.

Active learning in general. Active learning has been extensively studied in the past [134].
The goal of active learning is to enable a machine learning-based model, where large amounts
of training samples are normally required, to achieve better performance with relatively fewer
but representative training samples, especially when the labels are expensive and very hard
to obtain. These samples may be selected from an unlabeled dataset by posing queries and
then asking labels from an oracle [133]. Dasgupta and Hsu have analyzed sampling bias and
proposed a clustering-based active learning approach for hierarchical sampling with proved
statistical properties [37]. An algorithm called Cluster-adaptive active learning was proposed
in this active learning approach. This algorithm first randomly selects several samples; then, it
selects samples whose probability belongs to a specific range, where such samples are assumed
not to be pruned. The probability is calculated by an active learning rule which helps to reduce
sampling size. After each cluster is generated by the active learning sampling algorithm, this
algorithm finds the observed majority label in each cluster, and assigns this label to all samples
in this cluster. This approach is proved to be statistically consistent and have lower label

§3.3 Active Learning 31

complexity than supervised learning by selecting biased samples for training. General active
learning techniques have been extensively reviewed in [133].

Uncertainty sampling and diversity sampling. Among various active learning techniques,
uncertainty sampling is one of the widely used, which was first proposed by Lewis and Gale
[98]. Normally, uncertainty sampling approaches select samples by measuring their uncer-
tainty, such as probabilistic confidence [36], fisher information [133], entropy [68] and so on.
This technique is usually associated with a probabilistic learning model in order to infer labels
with the highest probability [90; 126]. A common issue of uncertainty sampling approaches,
although computationally efficient and simple to use, is that they do not consider the diversity
of data, for example, data with imbalanced class distribution [45]. Furthermore, most of ex-
isting uncertainty sampling techniques have the limitation that a sample can be an uncertain
sample to one class but a certain sample to another class [72].

Diversity sampling is also a useful technique in active learning [16; 156], which aims to
select representative samples according to the data distribution. In practice, while uncertain
samples are often similar to each other [157], diversity sampling requires samples to be dis-
similar in certain features. Thus, samples from different groups or classes are more preferred.
In this thesis, we adopt the l2,1 norm [76] as a measure for diversity sampling.

Active learning for the class imbalanced problem. One of the critical issues in entity resolu-
tion is the class imbalanced problem, where there are more true non-matches than true matches
for resolving datasets [26; 49]. Ertekin et al. [45] showed that active learning can provide al-
most the same or even better results in solving the class imbalance problem, in comparison
with the oversampling and/or undersampling approaches which also aim to alleviate the class
imbalanced problem in entity resolution [18].

In 2013, Ferdowsi et al. proposed an active learning approach to deal with the imbalance
class problem [48], which used an unsupervised score called Mean Score on the Unlabeled set
(MSU) to switch between different candidate Instance Selection Strategies (ISS) for classifica-
tion in imbalanced datasets. The MSU score is obtained based on the mean score of top k%
ranked examples from the unlabeled pool where k varies according to the evaluation metric.
The authors have a hypothesis that if a classifier gets better, the MSU calculated based on the
top k% samples will increase on average. Thus, the score may change during each iteration of
the active learning process and the best will be selected. Finally it selects the best ISS in each
iteration according to the values of the MSU score.

Learning-based active learning. Despite a large number of studies on developing active
learning approaches, it is still difficult for a specific task to determine its best-suited one. Thus,
meta-learning algorithms have attracted much attention in recent years, driven by the desire to
automate the selection process of active learning approaches. These approaches are also called
learning-based active learning approaches, which were proposed to deal with such limitation
when pre-defined heuristics become less useful during the model training process [69; 93]. In
these approaches, the estimated performance of a current model is used as heuristics instead of
pre-defined heuristics for sampling. Two kinds of learning-based active learning approaches
have been proposed in the literature: One learns to select active learning strategies for a given
dataset [69]; The other builds a machine learning model to rank samples for selection [93].

Hsu and Lin [69] proposed Active Learning by Learning (ALBL) which relates active

32 Background and Related Work

learning with a multi-armed bandit learner. This approach aims to learn from the performance
of a set of active learning strategies (e.g. algorithms) adaptively so as to decide which is the
best. Specifically, it actively selects samples iteratively in terms of their voting scores from
a set of active learning algorithms by solving the multi-armed bandit (MAB) problem, where
each arm is an active learning algorithm. Furthermore, the voting score of a sample in a given
iteration is the sum of the probabilities of selecting this sample by each algorithm times the
weight vector of each algorithm. Thus, it can be calculated in two steps. Firstly, the weight
vector of each algorithm is calculated, which can be analogized as the reward for bandits in
MAB. Secondly, the probability of selecting a sample and querying its label for each algorithm
is calculated. Chu and Lin extended this work by using LinUCB (Linear Upper-Confidence-
Bound) as a measure instead of IW-ACC to calculate the rewards for different active learning
strategies. LinUCB is a state-of-the-art technique in balancing the exploration and exploitation,
i.e., the estimated reward of using a strategy and the uncertainty of using this strategy. This
extension can also transfer the experience on active learning strategies from one dataset to
different datasets [31].

The key idea of a recent work called Learning Active Learning (LAL) [93] is to train a
regressor which can predict the generalization error reduction of each unlabeled sample and
greedily select one with highest error reduction for labeling. This regressor can be trained
as follows: First, given two training sets differing in only one sample, a pair of classifiers is
trained, and the corresponding error reduction value of the sample is obtained. Second, the
parameters from different pairs of classifiers and the corresponding error reduction values are
collected using the Monte Carlo method [63] to train the regressor.

There are several other approaches named with “learning to sample”. For example, Li et
al. [100] proposed a generative adversarial network (GAN) based sampling approach which
learns to generate synthesized samples by learning likelihood ratios. This approach can also
learn to draw samples from an un-normalized distribution via a reference distribution or using
Markov Chain Monte Carlo (MCMC). Jamshidi et al. [73] proposed a transfer learning-based
approach, which learns the changing of each environment repeatedly for sample selection in
configurable software systems. Dovrat et al. [42] proposed an approach to simplify 3D point
clouds by matching them to a fixed size of samples via a learned deep network. However, all
these approaches do not specifically focus on developing active learning techniques.

In summary, existing work still has the limitations that: (1) When the training samples
are not sufficient, they use synthetic data with simple features to train a regressor for entropy
prediction, not real data. (2) They only consider the uncertainty of samples and focus on deal-
ing with binary classification problems. Particularly, as reported in [157], uncertain samples
are often similar to each other, i.e., the neighbours of an uncertain sample are also of high
uncertainty. Additionally, none of the existing work aims to solve entity resolution tasks using
learning-based active learning techniques.

§3.4 Ensembling Techniques for Classification 33

3.4 Ensembling Techniques for Classification

Bagging [15] is a parallel ensembling technique which refers to bootstrap aggregation based
on bootstrap sampling technique:

f (x) =
1
M

M

∑
m=1

fm(x)

Where M is the number of classifiers fm(x). The training data for each classifier is a subset
of the whole training set using bootstrap sampling (drawn with replacement). The final output
of a bagging model is a voting score for classification or the averaging score for regression.
Random forest [67; 140] can be regarded as an extension of bagging, which uses not only a
random subset of training data, but also a random subset of features for each classifier. Thus
it can reduce both variance and bias w.r.t. the bagging technique and the CART (Classification
And Regression Tree) [14] structure.

Boosting is a sequential ensembling technique which refers to a family of algorithms that aim
to build a strong classifier w.r.t. a set of weak classifiers sequentially. In boosting, weights
are assigned to samples or trees iteratively during the process of training weak classifiers by
re-weighting. The final output of a boosting model can be a weighted majority vote for clas-
sification or a weighted sum values of each individual classifier for regression. A number of
boosting techniques have been proposed which use a set of weak learners (e.g. decision tree
and SVM) to create a single strong learner [83]. Freund developed the first boosting algorithm
[52]. Later on, the first adaptive boosting approach, called AdaBoost, was proposed [54], in
which the parameters of a model can be self-adjusted based on the actual performance in each
iteration, including weights for samples and weights for additive learners. Compared with Ad-
aBoost, which favors on dealing with classification tasks, Gradient Boosting [55] approaches
were proposed to solve both classification and regression problems by reducing the loss of a
model in a gradient descent manner.

For example, AdaBoost with additive model aims to minimize the exponential loss:

f (x) =
M

∑
m=1

am fm(x)

Specifically, in boosting algorithms such as Adaboost and Gradient boosting, a general way
to minimize the loss is to train each additive function fi(x) which aims to reduce the residuals
y−∑i−1

m=1 fm(x) of the predictions from previous functions as its objective.

The state-of-the-art and widely used gradient boosting approach is XGBoost [19]. With the
use of the sparsity-aware algorithm and the weighted quantile sketch for approximate learning,
XGBoost can deliver results more accurately and efficiently than previous work. There are
also some other boosting models in the literature: Light GBM [82] performs well when the
dataset is extremely large, which uses a leaf-wise tree growth strategy instead of level-wise
tree growth in other models; CatBoost [41] targets at handling high dimensional data, such as
large numbers of categorical variables that need to be one-hot encoded.

34 Background and Related Work

3.5 Generative Adversarial Networks

Generative adversarial network (GAN) was proposed by Goodfellow et al. [60]. The key idea
of GAN is that two networks, a generator and a discriminator, play a minimax game so that
they converge gradually to an optimal solution. The generator aims to generate fake samples to
“fool” the discriminator by simulating the distribution of real samples, while the discriminator
targets to distinguish fake samples (generated by the generator) from real samples. Due to
the success of GAN in generating realistic images, a large number of studies have extended
GAN to dealing with various tasks such as sample classification with semi-supervised learning
[138; 130], labeled sample generation [109] and label generation [38]. Various techniques
have also been proposed to improve GAN’s performance by alleviating the mode collapse and
convergence problems [130; 5].

The objective function of the original GAN plays a minimax game as:

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ex∼pz(z)[1− logD(G(z))]

where pdata(x) refers to the distribution of real samples, and pz(z) refers to the distribution of
generated samples.

Later on, a fixed objective function using “-log D trick” was proposed [59], where the loss
of the discriminator is not relied on the generator:

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ex∼pz(z)[−logD(z)]

There are also some other techniques and tricks used to improve GANs performance, such
as feature mapping [130]. Although GAN-based techniques are exploding, they cannot be
directly used in solving entity resolution tasks for three reasons: (1) entity resolution datasets
are often highly imbalanced, which aggravates the need of sufficient labeled training data,
and may cause the mode collapse problem during the training process; (2) Most of the GAN-
based approaches, including the ones designed for semi-supervised learning [138], have not
considered the case of training with an extremely limited number of real labeled samples; (3)
Traditionally, the generator in GANs is designed to generate new samples; however, for entity
resolution tasks, classifying all unlabeled samples is the ultimate goal. In this thesis, we build
ERGAN which will be presented in Chapter 7 to fill in this gap.

Chapter 4

Active Blocking Scheme Learning for
Entity Resolution

4.1 Introduction

Blocking is an important process in entity resolution which helps to improve the time efficiency
by grouping potentially matched records into the same block at the beginning of the entity
resolution tasks. In this chapter, we study the problem of how to learn a blocking scheme
efficiently under a limited number of labeled samples with quality guarantees.

In recent years, both supervised and unsupervised approaches have been proposed for
blocking scheme learning, such as Blocking Scheme Learner (BSL) which targeted at auto-
matically learning effective blocking schemes [108] and Fisher which used similarity based
labels for record pairs to build a training set w.r.t. the TF-IDF measure, and a blocking scheme
can then be learned from a training set [84]. However, these existing approaches on blocking
scheme learning still have some limitations:

• It is expensive to obtain ground-truth labels in real-life applications. Particularly, match
and non-match labels in entity resolution are often highly imbalanced [146], which is
called the class imbalance problem and aggravates the cost of labels in blocking scheme
learning. For example, given a dataset with two tables, each table containing 1,000 non-
duplicate records, the total number of record pairs will be 1,000,000, but the number
of true matches is no more than 1,000. The class imbalance ratio of this dataset is thus
at most 1:1,000. This indicates that the probability of randomly selecting a matched
pair from this dataset is 0.1%. Existing supervised learning approaches use random
sampling to generate blocking schemes, which can only guarantee the blocking quality
when sufficient training samples are available [108].

• Blocking quality is hard to be guaranteed in unsupervised approaches. These approaches
obtain the labels of record pairs based on the assumption that the more similar two
records are, the more likely they can be a match. However, this assumption does not
always hold [147]. As a result, the labels may not be reliable and no blocking quality
can be promised.

• The search space for all possible blocking schemes is huge. As will be discussed in

35

36 Active Blocking Scheme Learning for Entity Resolution

Section 4.4, if a blocking scheme is composed of at most n different blocking predicates,
the number of all possible blocking schemes can be O(2(

n
[n/2])) asymptotically.

A question arising is: Can we learn a blocking scheme with blocking quality guaranteed
and the cost of labels reduced? To answer this question, we propose an active blocking scheme
learning approach which incorporates active learning techniques [37; 49] into the blocking
scheme learning process. With a limited label budget, our approach can learn a blocking
scheme to generate high quality blocks w.r.t. a pre-defined error rate such as pair completeness
or pair quality. Two strategies called active sampling and active branching are proposed to
select samples and generate blocking schemes actively and efficiently. Specifically, given a set
of blocking predicates, the active sampling strategy aims to alleviate the class imbalance prob-
lem of entity resolution by selecting informative training samples w.r.t. different combination
of blocking predicates; the active branching strategy determines whether a further combina-
tion (in either conjunction or disjunction form) of blocking predicates should be generated.
Besides, compared with existing work, our approach can generate blocking schemes with the
conjunctions or disjunctions of an arbitrary number of blocking predicates, instead of limiting
at most k predicates to be used in conjunctions [11; 84]. We experimentally verify that our
approach yields high quality blocks within a specified error rate and a limited budget of labels,
and it outperforms several baseline approaches including the state-of-the-art approaches over
four real-world datasets.

Dataset

Record Author Title Venue

r1 Andrew Mining KDD

r2 Gale Mining CIKM

r3 Andrew Mining KDD

r4 Gaile Mining CIKM

r5 Andrew Fast CIKM

Blocks Blocks

Block 1

r1 , r3

… …

Block 2

r2 , r4

Blocking

Model

Training Set

(<Feature Vector>,Label)

(<0, 1, …, 1, 1>, M)

(<0, 0, …, 1, 0>, N)

(<1, 0, …, 0, 1>, N)

Active Scheme Learner

Candidate

Schemes

Optimal

Scheme

Active Sampler

Human Oracle

Figure 4.1: Overview of the active blocking scheme learning approach.

Fig. 4.1 illustrates our proposed approach, which works as follows: Given a dataset R, an
active sampler selects samples from R based on a set of candidate schemes, and asks a human
oracle for labels. Then an active scheme learner generates a set of refined candidate schemes,
enabling the active sampler to adaptively select more samples. Within a limited label budget
and an error rate, an optimal scheme will be selected from the candidate schemes.

The rest of this chapter is structured as follows. We first formulate our learning task as an
active scheme learning problem in Section 4.2. Two strategies proposed to solve the problem,

§4.2 Problem Formulation 37

together with our active scheme learning algorithm ASL, are presented in Section 4.3. In Sec-
tion 4.4, we theoretically analyze our approach in both search complexity and time complexity.
Some experimental results are shown in Section 4.5. This chapter is concluded in Section 4.6.

4.2 Problem Formulation

We formulate our blocking scheme learning task as follows:

Definition 1. Given a human oracle ζ, and an error rate ε ∈ [0, 1], the active scheme learning
problem is to learn a blocking scheme s in terms of the following objective function, through
actively selecting a training set T:

minimize | f p(Bs)|

subject to
| f n(Bs)|
|tp(Bs)|

≤ ε, and |T| ≤ budget(ζ) (4.1)

4.3 Active Scheme Learning Framework

In our active scheme learning framework, we develop two complementary and integrated
strategies to adaptively generate a set of blocking schemes and learn the optimal one based
on actively selected samples. These two strategies are introduced in Section 4.3.1 and Sec-
tion 4.3.2, respectively. The algorithm we propose is called Active Scheme Learning (ASL) and
described in Section 4.3.3.

4.3.1 Active Sampling

To deal with the active scheme learning problem, we need both match and non-match samples
for training. However, one of the well-known challenges in entity resolution is the class im-
balance problem [149]. That is, if samples are selected randomly, there are usually much more
non-matches than matches.

Previously, it has been reported that training data with imbalanced classes has impeded the
performance of learning approaches in entity resolution [11; 17; 84]. Although the ratio of non-
matches and matches may vary in different datasets, using random sampling can almost always
generate much more non-matches than matches in training data, as illustrated in Fig. 4.2. With
random sampling, there are far more non-matches than matches selected w.r.t. the similarity
of attributes title and authors in the dataset Cora. However, samples selected using our active
sampling strategy contain more matches compared with random sampling. To effectively learn
blocking schemes, it is thus important to have a training set where matches and non-matches
are balanced.

In the following, we propose an active sampling strategy, aiming to generate a balanced
training set by using only a small amount of labels. We observe that the correlation between
the similarity of features (i.e., how similar the features of two records are) and the labels (i.e.,
{M, N}) can be leveraged to reduce the imbalance of matches and non-matches in sampling.

38 Active Blocking Scheme Learning for Entity Resolution

0 0.5 1.0
Similarity of title

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y
of

 a
u
th
or
s

(a)Random Sampling

0 0.5 1.0
Similarity of title

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y
of

 a
u
th
or
s

(b)Active Sampling

Figure 4.2: A comparison on the sample distribution of 100 samples from Cora dataset: (a)
random sampling, and (b) active sampling, where a red circle indicates a matched sample and a blue
star indicates a non-matched sample.

More specifically, this observation is based on two empirical facts: (1) the more similar two
records are, the higher probability they can be a match, as reported in previous works [3; 8];
(2) the similarity of some features may correlate more closely with matches than the similarity
of other features. For example, in a bibliographic dataset, if we have 10 record pairs whose
title are the same and another 10 record pairs whose publication year are the same, then it is
likely that the former pairs refer to more matches in comparison with the latter pairs. Hence, by
virtue of the correlation between the similarity of features and the match and non-match labels,
a balanced set of similar and dissimilar records likely represents a training set with balanced
matches and non-matches. To formulate this observation, we define the notion of balance rate
in the following.

Definition 2. Let s be a blocking scheme and X a non-empty sample set of blocking vectors,
the balance rate of X in terms of s, denoted as β(s, X), is defined as:

β(s, X) =
|{xi ∈ X|s(xi) = true}| − |{xi ∈ X|s(xi) = f alse}|

|X| (4.2)

Conceptually, the balance rate describes how balance or imbalance of the samples in X
by comparing the number of similar samples to that of dissimilar samples in terms of a given
blocking scheme s. The range of balance rate is [−1, 1]. If β(s, X) = 1, there are all similar
samples in X with regard to s, whereas β(s, X) = −1 means all the samples are dissimilar
samples. In these two cases, X is highly imbalanced. If β(s, X) = 0, there is an equal number
of similar and dissimilar samples, indicating that X is balanced.

Based on the notion of balance rate, we convert the class imbalance problem into the bal-
anced sampling problem as follows:

§4.3 Active Scheme Learning Framework 39

Definition 3. Given a set of blocking scheme S and a label budget n ≤ budget(ζ), the bal-
anced sampling problem is to select a training set T = (X, Y), where |X| = n, in order to:

minimize ∑
si∈S

β(si, X)2 (4.3)

For two different blocking schemes s1 and s2, they may have different balance rates over
the same sample set X, i.e., β(s1, X) 6= β(s2, X) is possible. The objective here is to find
a training set that minimizes the balance rates in terms of the given set of blocking schemes.
This process is called Active Sampling. The optimal case is β(si, X) = 0, ∀si ∈ S according
to the objective function above, but sometimes it is impossible to achieve this in real world
applications.

Example 4.3.1. Consider the dataset example in Table 2.1 again, and let X refer to the set
of all possible pairs of records from this table. Then, for a blocking scheme s1 = 〈Title,
Same-value〉, there are three similar samples out of all possible samples: 〈r1, r2〉, 〈r1, r4〉 and
〈r2, r4〉. That is, β(s1, X) = 0.4. For another blocking scheme s2 = 〈Authors, Same-soundex〉
described in Example 2.1.1, we have four similar samples: 〈r1, r2〉, 〈r1, r3〉, 〈r2, r3〉 and
〈r4, r5〉, i.e., β(s2, X) = 0.2.

4.3.2 Active Branching

Given n blocking predicates, we have 2n possible blocking schemes which can be constructed
upon n blocking predicates in the form of only conjunctions or disjunctions. Thus, the number
of all possible blocking schemes which can be constructed through arbitrary combinations of
conjunction and disjunction of blocking predicates is more than 2n. To efficiently learn block-
ing schemes, we therefore propose a hierarchical blocking scheme learning strategy called
active branching to avoid enumerating all possible blocking schemes and reduce the number
of candidate blocking schemes to n(n+1)

2 .
For a blocking scheme s, there are two types of branches through which we can extend s

with another blocking predicate: conjunction and disjunction. Let s1 and s2 be two blocking
schemes. We have the following lemmas.

Lemma 4.3.1. For the conjunction of s1 and s2, the following holds:

| f p(Bsi)| ≥ | f p(Bs1∧s2)|, where i = 1, 2 (4.4)

Proof. For any true negative record pair tn /∈ Bs1 , we have tn /∈ Bs1∧s2 , which means
|tn(Bs1)| ≤ |tn(Bs1∧s2)|. Since the sum of true negatives and false positives is a constant
for a given dataset, we have | f p(Bs1)| ≥ | f p(Bs1∧s2)|. �

Lemma 4.3.2. For the disjunction of s1 and s2, the following holds:

| f n(Bsi)|
|tp(Bsi)|

≥ | f n(Bs1∨s2)|
|tp(Bs1∨s2)|

, where i = 1, 2 (4.5)

Proof. For any true positive record pair tp ∈ Bs1 , we have tp ∈ Bs1 ∪ Bs2 = Bs1∨s2 . This is,
the number of true positives generated by s1 cannot be larger than that generated by s1 ∨ s2 ,

40 Active Blocking Scheme Learning for Entity Resolution

i.e., |tp(Bs1)| ≤ |tp(Bs1∨s2)|. Since the sum of true positives and false negatives is constant,
we have | f n(Bs1)| ≥ | f n(Bs1∨s2)|. �

Based on Lemmas 4.3.1 and 4.3.2, we develop an active branching strategy as follows.
First, a locally optimal blocking scheme is learned from a set of candidate schemes. Then, by
Lemma 4.3.1, the locally optimal blocking scheme is extended. If no locally optimal blocking
scheme is learned, according to Lemma 4.3.2, the active branching strategy selects the one
with minimal error rate and extends it in disjunction with other blocking predicates to reduce
the error rate. The extended blocking schemes are then used as a set of candidate schemes for
active sampling to select more samples. Based on more samples, the active branching strategy
adaptively refines the locally optimal scheme. This process iterates until the label budget is
used out.

4.3.3 Algorithm Description

We present the details for our proposed algorithm called Active Scheme Learning (ASL) used
in our framework. A high-level description is shown in Algorithm 1. Let S be a set of blocking
schemes, where each blocking scheme si ∈ S is a blocking predicate at the beginning. The
budget usage is initially set to zero, i.e., n = 0. A set of blocking vectors is selected from the
dataset as seed samples (lines 1 and 2).

After initialization, the algorithm iterates until the number of samples in the training set
reaches the budget limit (line 3). At the beginning of each iteration, the active sampling strat-
egy is applied to generate a training set (lines 4 to 10). For each blocking scheme si ∈ S,
the samples are selected in two steps: Firstly, the balance rate of this blocking scheme si is
calculated (lines 5 and 7). Secondly, a blocking vector to reduce this balance rate is selected
from the dataset (lines 6 and 8). Then the samples are labeled by the human oracle and stored
in the training set T. The usage of label budget is increased, accordingly (lines 9 and 10).

A locally optimal blocking scheme s is searched among a set of blocking schemes S over
the training set, according to a specified error rate ε (line 11). If the blocking scheme s is
found, new blocking schemes are generated by extending s to a conjunction with each of the
blocking schemes in Sprev (lines 12 and 13). Otherwise a blocking scheme with the minimal
error rate is selected and new schemes are generated using disjunctions (lines 14 to 16).

4.4 Theoretical Analysis

In this section, we discuss the search complexity and the time complexity for learning blocking
schemes.

Search complexity. We first discuss about the search complexity of the optimal blocking
schemes among the number of all possible blocking schemes compared with our algorithm
w.r.t. a given number of blocking predicates. We have at most 2n blocking schemes composed
of n blocking predicates in conjunctions. Furthermore, if a blocking scheme is composed of
at most n different blocking predicates (i.e. n-ary blocking scheme) in disjunction of con-
junctions, we can regard them as the monotonic boolean functions, which are defined to be

§4.4 Theoretical Analysis 41

Algorithm 1: Active Scheme Learning (ASL)
Input: Dataset: R

Error rate ε ∈ [0, 1]
Human oracle ζ
Set of blocking predicates P
Sample size k

Output: A blocking scheme s
1 S = Sprev = P, n = 0, T = ∅, X = ∅
2 X = X ∪ RANDOM SAMPLE(R)
3 while n < budget(ζ) do
4 for each si ∈ S do // Begin active sampling
5 if β(si, X) ≤ 0 then
6 X = X ∪ SIMILAR SAMPLE(R, si, k)

7 else
8 X = X ∪ DISSIMILAR SAMPLE(R, si, k)

9 n = |X| // End active sampling

10 T = T ∪ {(xi, ζ(xi))|xi ∈ X} // Add labeled samples into T
11 s = FIND OPTIMAL SCHEME(S, T, ε); Sprev = S // Begin active

branching
12 if FOUND(s) then
13 S = {s ∧ si|si ∈ Sprev}
14 else
15 s = FIND APPROXIMATE SCHEME(S, T, ε)
16 S = {s ∨ si|si ∈ Sprev} // End active branching

17 Return s

42 Active Blocking Scheme Learning for Entity Resolution

expressions combining the inputs (which may appear more than once) using only the opera-
tors conjunction and disjunction (in particular ”not” is forbidden) [91]. Hence, the searching
complexity for all possible blocking schemes can be O(2(

n
[n/2])) asymptotically, which is also

known as the Dedekind Number. Learning a blocking scheme by considering all possible
blocking schemes may yield high accuracy. However, it would be space-consuming and label-
inefficient, especially when the number of blocking predicates is large.

For our algorithm, given n blocking predicates with a sufficient label budget, in the worst
case, we can learn a n-ary blocking scheme as output. During the learning process, we first
need to search for all n blocking schemes. Then based on the locally optimal one, we need
to search for n − 1 blocking schemes of 2-ary, and then, n − 2 blocking schemes of 3-ary.
Accordingly, the search complexity of our algorithm is O(n2).

Time complexity. We further discuss the time complexity of sampling in our algorithm. To
tackle the class imbalance problem, we select both similar and dissimilar samples w.r.t. a given
blocking scheme s. However, as explained in Section 4.3.1, there may exist a high imbalance
ratio between similar and dissimilar samples. In the worst case, we have to traverse the whole
dataset to obtain one sample. Hence the time complexity to generate k samples is O(|R| × k)
for one blocking predicate, where R is a dataset and k is the sample size for the blocking
scheme learning.

To avoid traversing an entire dataset to find samples (in the worst case) and make our al-
gorithm efficient under a large k, we have implemented index tables for traditional blocking
predicates as defined in the previous works [11; 84]. This implementation helps the algorithm
to easily select the samples it needs and choose a similar or dissimilar sample in linear time in-
stead of traversing the dataset under a given blocking predicate. Therefore, the time complexity
is reduced to O(|R|+ k) for a blocking predicate.

Example 4.4.1. Let us consider 〈Authors, Same-soundex〉 which is a blocking predicate previ-
ously discussed in Example 2.1.1. We can place all records into at most 26× 7 buckets, where
each bucket represents a soundex value such as G4. Hence, a match can be easily selected
from the same bucket or a non-match can be selected from two different buckets. In this case,
the time complexity is O(|R|+ k).

In our work, block predicates are chosen by users. If a user chooses similarity-based
blocking predicates, where the records need to be compared in pairs, and thus the index value
for a single record is not unique, then the time complexity of selecting k samples will remain
|R| × k for such a blocking predicate.

4.5 Experiments

We have conducted experiments to empirically verify our skyline learning algorithms, aiming
to answer the following questions:

(1) How do the error rate ε and the label budget affect the learning results in our approach?

(2) What are the accuracy and efficiency of our active scheme learning approach compared
with the state-of-the-art approaches?

§4.5 Experiments 43

4.5.1 Experimental Setup

Datasets. We have used four datasets in the experiments: (1) Cora, DBLP-Scholar, DBLP-
ACM and North Carolina Voter Registration (NCVoter). The characteristics of these data sets
are summarized in Table 2.2.

Blocking functions. Blocking functions are widely used in scheme-based blocking ap-
proaches. For example, a person called Michael always writes his name as Mike, and a person
called Gaile is recorded as Gale by the phone since they have similar pronunciation. When the
name-related attribute is applied for the blocking scheme to decide whether two records are a
positive pair or not, we have no knowledge about if such cases will present. In order to avoid
classifying true match pairs as negative ones, blocking functions, each of which is associated
with an attribute, are used in blocking schemes. We have used the following blocking functions
to generate blocking predicates in our experiments:

• Exact-match: This function regards each pair of input attribute values as strings, and
compares the characters one by one, if all the characters are the same, i.e., the pair of
strings is exactly match, the function will return an “1” as match, otherwise it returns a
“0” as non-match.

• Soundex: Soundex is one of the best-known and widely used phonetic encoding func-
tions, which converts each attribute value (a string) into codes made of one letter and
several digits. The main steps are as below: (1) Keep the first letter of a string. (2)
Remove all the following characters from the string: a, e, i, o, u, y, h, w. (3) Replace all
consonants from position 2 onwards with digits using these rules: b, f, p, v→ 1; c, g,
j, k, q, s, x, z → 2; d, t → 3; l → 4; m, n → 5; r → 6. Hence we have several digits
transferred from the letters. Furthermore, we have defined the length of the converted
code as 4, i.e., if length of a code is less than 4, we add zeros; if it is longer, we truncate
it at length 4.

• Double-Metaphone: Even Soundex is widely used, a major drawback is that it is specif-
ically aimed at English names when it was designed. Therefore, it is not suitable for
datasets that contain names from different languages. The Double-Metaphone function
attempts to accomplish this by providing two possible codes instead of one for each in-
put string. For example, the Polish name “Kuczewski” will be encoded as “kssk” and “
kxfsk”.

• Substring: Substring function aims to convert a pair of input strings into the specific
(e.g. first two characters, last three characters) substrings, and compare the characters
one by one contained these substrings as the process of Exact-match.

These blocking functions have been applied to all attributes in the datasets depicted in
Table 2.3, which accordingly leads to 16 or 72 different blocking predicates for datasets as
shown in Table 2.2.

Baseline approaches. Since no active learning approaches have been proposed on blocking
scheme learning, we have compared our approach (ASL) with the following three baseline
approaches:

44 Active Blocking Scheme Learning for Entity Resolution

Table 4.1: Comparison on label cost by ASL and RSL over four real datasets.

Error rate Cora DBLP-Scholar DBLP-ACM NCVoter
0.8 600 500 300 300
0.6 400 350 200 350
0.4 450 250 150 250
0.2 550 300 200 200
0.1 500 250 300 250

RSL 8,000 10,000+ 2,500 10,000+

• Fisher [84]: this is the state-of-the-art unsupervised scheme learning approach proposed
by Kejriwal and Miranker. Details of this approach have been outlined in Chapter 3.

• TBlo [47]: this is a traditional blocking approach based on expert-selected attributes.
In the survey [27], this approach has a better performance than the other approaches in
terms of the F-measure results.

• RSL (Random Scheme Learning): this approach uses random sampling, instead of
active sampling, to build the training set and learn blocking schemes. We run the RSL
ten times, and present the average results of blocking schemes it learned.

Measurements. Reduction Ratio (RR), Pairs Completeness (PC), Pairs Quality (PQ) and
F-measure (FM) are widely used in entity resolution, which are introduced in Section 2.2.2.
Additionally, constraint satisfaction CS = Ns

N is defined to show the stability of our approaches
under different hyper-parameters, e.g. error rates, where Ns is the times of learning an optimal
blocking scheme by an algorithm and N is the total times the algorithm runs.

4.5.2 Results and Discussion

Now we present our experimental results in terms of the label cost, constraint satisfaction,
blocking quality and blocking efficiency.

4.5.2.1 Label Efficiency

Label cost. In order to compare the label cost required by ASL and RSL for achieving the
same block quality, we present the numbers of labels needed by our approach to generate a
blocking scheme with CS=100% under different error rates, and compare them with the labels
required by RSL in Table 4.1. In our experiments, the label budget for ASL under a given
error rate starts with 50, and then increases by 50. The label budget for RSL starts with 500,
and increases by 500 each time. Both ASL and RSL algorithms terminate when the learned
blocking schemes remain the same in ten consecutive runs. We can see that, running our ASL
approach over different datasets need different label cost to achieve a certain error rate. For a
specific dataset, the minimum label cost varies w.r.t. different error rate. However,

Observation 1. Our ASL approach using active sampling strategy can use significantly less
labels compared with random sampling strategy under different error rates.

§4.5 Experiments 45

0 20 50 100 150 200 300 400 500
Sample budget

0.0

0.2

0.4

0.6

0.8

1.0
Co

ns
tra

in
t s

at
isf

ac
tio

n
(a) Cora

0 20 50 100 150 200 300 400 500
Sample budget

0.0

0.2

0.4

0.6

0.8

1.0
(b) DBLP-Scholar

0 20 50 100 150 200 300 400 500
Sample budget

0.0

0.2

0.4

0.6

0.8

1.0

Co
ns

tra
in

t s
at

isf
ac

tio
n

(c) DBLP-ACM

0 20 50 100 150 200 300 400 500
Sample budget

0.0

0.2

0.4

0.6

0.8

1.0
(d) NCVR

ǫ=0.8

ǫ=0.6

ǫ=0.4

ǫ=0.2

ǫ=0.1

RSL

Figure 4.3: Comparison on constraint satisfaction by Active Scheme Learning (ASL) and Ran-
dom Scheme Learning (RSL) under different label budgets and different error rates over four
datasets.

Constraint satisfaction. We have conducted experiments to evaluate the constraint satisfac-
tion. In Fig. 4.3, the results are presented under different error rates ε ∈ {0.1, 0.2, 0.4, 0.6, 0.8}
and different label budgets ranging from 20 to 500 over four real datasets. We use the total la-
bel budget as the training label size for RSL to make a fair comparison on active sampling and
random sampling. Our experimental results show that random sampling with a limited label
sizes often fails to produce an optimal blocking scheme. Additionally, both error rate and label
budget can affect the constraint satisfaction. As shown in Fig. 4.3(a)-(d), when the label budget
increases, the CS value goes up. In general, when ε becomes lower, the CS value decreases.
This is because a lower error rate is usually harder to achieve, and thus no scheme that satisfies
the error rate can be learned in some cases. However, if the error rate is set too high (e.g. the
red line), it could generate a large number of blocking schemes satisfying the error rate, and
the learned blocking scheme may vary depending on the training set.

Observation 2. Our ASL approach with active sampling strategy can use much less labels
to achieve the same or even better constraint satisfaction compared with random sampling
strategy. However, the best performance varies w.r.t. the datasets and the PC thresholds.

4.5.2.2 Blocking Quality

We present the experimental results of four measures (i.e. RR, PC, PQ, and FM) for our
approach and the baseline approaches. In Fig. 4.4(a), all the approaches yield high RR values

46 Active Blocking Scheme Learning for Entity Resolution

Cora DBLP-Scholar DBLP-ACM NCVoter0.0

0.2

0.4

0.6

0.8

1.0

Re
du

ct
io

n
ra

tio

(1) RR

ASL
Fisher
TBlo
RSL

Cora DBLP-Scholar DBLP-ACM NCVoter0.0

0.2

0.4

0.6

0.8

1.0
Pa

irs
 c

om
pl

et
en

es
s

(b) PC

Cora DBLP-Scholar DBLP-ACM NCVoter0.0

0.2

0.4

0.6

0.8

1.0

Pa
irs

 q
ua

lit
y

(c) PQ

Cora DBLP-Scholar DBLP-ACM NCVoter0.0

0.2

0.4

0.6

0.8

1.0

F-
m

ea
su

re

(d) FM

Figure 4.4: Comparison on blocking quality by different blocking approaches over four datasets
using the measures: (a) RR, (b) PC, (c) PQ, and (d) FM.

§4.6 Summary 47

Table 4.2: Comparison on the number of record pairs generated by different approaches.

TBlo Fisher ASL RSL
Cora 2,945 67,290 29,306 17,974

DBLP-Scholar 6,163 1,039,242 3,328 3,328
DBLP-ACM 25,279 69,037 3,043 17,446

NCVoter 932,239 7,902,910 634,121 634,121

over four datasets. In Fig. 4.4(b), the PC values of our approach are not the highest over the
four datasets, but they are not much lower than the highest one (i.e. within 10% lower except
in DBLP-Scholar). However, out approach can generate higher PQ values than all the other
approaches, from 15% higher in NCVoter (0.9956 vs 0.8655) to 20 times higher in DBLP-ACM
(0.6714 vs 0.0320), as shown in Fig. 4.4(c). The FM results are shown in Fig. 4.4(d).

Observation 3. Our ASL approach outperforms all the baselines over all the datasets w.r.t.
RR and FM, and has a trade-off between PC and PQ.

4.5.2.3 Blocking Efficiency

Since blocking aims to reduce the number of pairs to be compared in entity resolution, we eval-
uate the efficiency of blocking schemes by the number of record pairs each approach generates.
As shown in Table 4.2, TBlo generates the minimal number of record pairs in Cora. This is due
to the scheme that is manually selected by domain experts. Fisher targeted to learn disjunctive
schemes, which can lead to large blocks, thus the number of record pairs is the largest over
four datasets. ASL considers a trade-off between PC and PQ, and the number of record pairs
is often small. In RSL, we use the same label size as ASL; thus it may learn a blocking scheme
that is different from the one learned by RSL, and accordingly generates different numbers of
record pairs for some datasets such as Cora and DBLP-ACM. When a sufficient number of
samples is used, the results of ASL and RSL would be close.

Observation 4. Our ASL approach highly reduces the non-matches for blocking while keeps
high pair quality and pair completeness at the same time.

4.6 Summary

In this chapter, we have used active learning techniques to develop a blocking scheme learning
approach. Our approach overcomes the weaknesses of existing works in two aspects: (1) Pre-
viously, supervised blocking scheme learning approaches require a large number of labels for
learning a blocking scheme, which is an expensive task for entity resolution; (2) Existing un-
supervised blocking scheme learning approaches generate training sets based on the similarity
of record pairs, instead of their true labels, thus the training quality can not be guaranteed. Our
experimental results show that the proposed approach outperforms the baseline approaches
under a specific error rate with a sample budget.

48 Active Blocking Scheme Learning for Entity Resolution

Chapter 5

Skyblocking for Entity Resolution

5.1 Introduction

As we have shown, Active Scheme Learning (ASL) approach can learn the optimal blocking
scheme with only a small number of labeled samples. However, a proper error rate may not
be able to obtain in real world scenarios. Additionally, one may prefer different criteria for
blocking, such as PC and PQ.

Consequently, the question that naturally arises is: can we efficiently identify all possible
most preferred blocking schemes in terms of a given set of selected criteria? To answer this
question, we may consider, one blocking scheme is preferred than another if it has as good or
better performance in all criteria (e.g. PC, PQ) and has better performance in at least one crite-
rion. Hence we propose a scheme skyline learning framework for blocking, called skyblocking,
which incorporates skyline techniques into an active learning process of blocking schemes on
the skyline. The target of skyblocking is to find a range of blocking schemes (as shown in
Fig. 5.1) under different user preferences and within a limited label budget, and each of such
blocking schemes is optimal with respect to one or more selection criteria.

Traditionally, skyline techniques have been widely used for database queries, called sky-
line queries [80; 21; 131]. The result of a skyline query consists of multi-dimensional points
for which there is no one point having better values in all the dimensions [20]. However, ap-
plying skyline querying technique to learning scheme skylines is a non-trivial task. Different
from skyline queries in a database [21], in which the dimensions of a skyline correspond to
attributes and the points correspond to records, scheme skylines in our work have the dimen-
sions corresponding to selection criteria for blocking, and points corresponding to blocking
schemes in this multi-dimensional space, called scheme space. Learning scheme skylines be-
comes challenging, due to the following unique characteristics of blocking schemes.

• It is hard to obtain labels in real-world entity resolution applications. Particularly, it
is well-known that match and non-match labels for entity resolution are often highly
imbalanced, called the class imbalance problem [49; 29; 149]. Although active learning
techniques help to reduce the label cost in learning one blocking scheme w.r.t. ASL
[135], far more labels are needed if we want to learn all the blocking schemes to draw the
scheme skyline. Additionally, to find scheme skylines effectively, we need a training set
that contains a sufficient number of matches. Hence, the first challenge we must address
is how to select more matched samples within a limited label budget for blocking scheme

49

50 Skyblocking for Entity Resolution

Blocking
PC PQ

scheme
s1 0.13 0.76
s2 0.31 0.99
s3 0.58 0.76
s4 0.84 0.40
s5 0.86 0.50
...

0 0.2 0.4 0.6 0.8 1.0
PC

0

0.2

0.4

0.6

0.8

1.0

PQ

Scheme Skyline

Figure 5.1: An example for scheme skyline where schemes on the skyline refer to the points in the
red line. The blocking schemes (green points) are presented in a 2-dimensional space of PC and PQ,
and their corresponding values are shown in the table (left).

learning in a scheme space.

• A scheme space can be very large, making an exhaustive search for blocking schemes
on a skyline computationally expensive. If a blocking scheme is composed of at most
n different blocking predicates, the number of all possible blocking schemes can be
O(2(

n
[n/2])) asymptotically. Nevertheless, only a small portion of these blocking schemes

are on a skyline. Thus, the second challenge we need to act on is how to design effi-
cient skyline algorithms to explore a large scheme space efficiently for finding blocking
schemes on a skyline. Enumerating through the entire scheme space by checking a
blocking scheme each time is obviously not efficient in practice, and even infeasible for
large datasets with hundreds or thousands of attributes.

To overcome the above challenges, in this work, we formulate a novel scheme skyline
learning problem for entity resolution, which hierarchically learns a scheme skyline based on
blocking predicates to avoid enumerating all possible blocking schemes. Solving this problem
would lead to generating a range of optimal blocking schemes with respect to different block-
ing criteria and thus enable users to choose their preferred blocking schemes. We propose three
novel scheme skyline learning algorithms to efficiently learn scheme skylines within a limited
label budget. In these algorithms, we tackle the class imbalance problem by first converting
this problem into the balanced sampling problem and then developing an active sampling strat-
egy to actively select informative samples. We also develop a scheme extension strategy for
efficiently identifying schemes that are possibly on a skyline in order to reduce the search space
and label cost used in the learning process. We have evaluated the efficiency and effectiveness
of our scheme skyline learning algorithms over five real-world datasets. The experimental
results show that our algorithms outperform the baseline approaches in all of the following
aspects: label efficiency, time efficiency and blocking quality.

The rest of this chapter is structured as follows. Section 5.2 introduces the notations used

§5.2 Problem Formulation 51

in the chapter and how we formulate the scheme skyline learning under a limited number of
labels. Three skyline algorithms for learning scheme skylines are presented in Section 5.3, and
then Section 5.4 analyzes the search complexity and the time complexity of our algorithms.
Section 5.5 discusses our experimental results. We conclude the chapter in Section 5.6.

5.2 Problem Formulation

Given a dataset R and a set of blocking schemes S over R, a scheme space is a d-dimensional
space consisting of points in [0, 1]d. Each point, denoted as p(s), is associated with a blocking
scheme s ∈ S such that p(s) = (p1.s, p2.s, . . . , pd.s), where each pi.s indicates the value of s
in the i-th dimension of this scheme space and i ∈ [1, d]. For example, in Fig. 5.1, each green
point is associated with a blocking scheme in a 2-dimensional space.

Definition 4. (Dominance) Given two blocking schemes s1 and s2, we say s1 dominates s2,
denoted as s1 � s2, iff ∀i ∈ [1, d], pi.s1 ≥ pi.s2 and ∃j ∈ [1, d], pj.s1 > pj.s2.

Here, pi.s1 ≥ pi.s2 indicates that the value of s1 is larger than that of s2 in the i-th dimen-
sion. Based on the notion of dominance between two blocking schemes, we define the notion
of scheme skyline.

Definition 5. (Scheme skyline) Given a dataset R and a set of blocking schemes S, a scheme
skyline S∗ over S is a subset of S, where each scheme s ∈ S∗ is not dominated by any other
blocking scheme in S, i.e., S∗ = {s ∈ S : @s′ ∈ (S− S∗), s′ � s}.

Without loss of generality, we will discuss a scheme space with d = 2 in the rest of this
chapter: one dimension indicates the PC values of blocking schemes and the other dimension
indicates the PQ values of blocking schemes. Note that, it is possible to extend the dimensions
of a scheme space by taking into account other measures for blocking schemes, such as reduc-
tion ratio (RR) and run time (RT) [94]. We will further discuss the properties of such measures
later in Section 5.3.

We now define the problem of scheme skyline learning, which allows us to select desired
blocking schemes from a scheme space depending upon which blocking criteria we prefer.

Definition 6. (Scheme skyline learning problem) Let ζ be a human oracle, R be a dataset
and S be a set of blocking schemes over R. Then the scheme skyline learning problem is to
learn a scheme skyline S∗ over S through actively selecting a training set T from R, such that
|T| ≤ budget(ζ) holds.

5.3 Scheme Skyline Learning Framework

We now propose three different algorithms to solve the scheme skyline learning problem. To
tackle the class imbalance problem under a limited number of labeled samples, we adopt the
two strategies introduced in Chapter 4, to make efficient usage of samples. Following the active
sampling strategy defined in Definition 2 and Definition 3, we can build a nearly balanced
sample set. Additionally, since one of the key challenges faced by scheme skyline learning is

52 Skyblocking for Entity Resolution

to efficiently search for blocking schemes in a skyline from a large scheme space, we will first
discuss an efficient scheme extension strategy based on Section 4.3.2. Then, we will introduce
three skyline learning algorithms, and discuss their advantages and disadvantages. Finally, we
will formally analyze the search and time complexity of our skyline learning algorithms.

5.3.1 Scheme Extension Strategy

Given a blocking scheme s, there are two kinds of possible extensions: conjunction and dis-
junction. Although iterating all the possible extensions is theoretically feasible, it is not ef-
ficient. Hence, one would expect that, if a conjunction or disjunction can be decided before
extension, the searching space would be at least reduced by half. In line with this, we explore
the monotonic property of measures for blocking. Let si and sj be two blocking schemes. We
have the following lemma.

Lemma 5.3.1.
PC(si) ≤ PC(si ∨ sj) (5.1)

PC(si) ≥ PC(si ∧ sj) (5.2)

Proof. Suppose that x is a true positive in Bsi , then we would have x ∈ Bsi ∪ Bsj = B(si∨sj).
This is to say, true positives generated by either si or sj must also be generated by si ∨ sj, and
must contain all true positives generated by si ∧ sj. Since we know the sum of true positives
and false negatives is constant, which refers to the total number of matched pairs in a dataset,
by the definition of PC, the lemma is proven.

This lemma implies that, if a scheme generates blocks with a low PC value, we can extend
it with disjunction in order to increase the PC value. On the contrary, if extending this scheme
by conjunction, the PC value will be decreased.

Generally, if a measure of blocking [118] has a monotonic property in terms of the con-
junction and disjunction of blocking schemes, then it can be used as a dimension for scheme
skylines in a scheme space and our scheme extension strategy can be applied. For example,
reduction ratio (RR) has the following monotonic property, which is opposite to the mono-
tomic property of PC, i.e., RR(si) ≥ RR(si ∨ sj) and RR(si) ≤ RR(si ∧ sj). Consequently,
an extension of conjunction helps increase RR values, but an extension of a disjunction can
lead to lower RR values than before. Similarly, run time (RT) also has a monotonic property
because it is monotonously increasing in terms of extensions, regardless whether an extension
is a conjunction or a distinction, i.e., RT(si) ≤ RT(si ∨ sj) and RT(si) ≤ RT(si ∧ sj).

5.3.2 Naive Skyline Learning

A naive way to learn skyline blocking schemes is to learn optimal blocking schemes under
different thresholds in all dimensions. Then, based on these optimal blocking schemes, a
scheme skyline can be obtained. In the following, we formulate the notion of optimal blocking
scheme.

§5.3 Scheme Skyline Learning Framework 53

Definition 7. (Optimal blocking scheme) Given a human oracle ζ, and a PC threshold ε ∈
[0, 1], an optimal blocking scheme is a blocking scheme sε,ζ w.r.t. the following objective
function, through selecting a training set T:

maximize PQ

subject to PC ≥ ε, and |T| ≤ budget(ζ) (5.3)

Let S be a subset of all possible blocking schemes. Then a blocking scheme s is called a
locally optimal blocking scheme from S if s ∈ S and it satisfies Eq. 5.3. Algorithm 2 describes
a procedure of learning locally optimal blocking schemes using the active sampling strategy
and the scheme extension strategy discussed in Section 5.3.1.

Algorithm 2: Active Scheme Learning Plus(ASL+) Procedure
Input: Dataset: R

PC threshold ε ∈ (0, 1]
Human oracle ζ with budget(ζ)
Set of blocking predicates P
Sample size k

Output: A blocking scheme s
1 S = Sprev = P, n = 0, T = ∅, X = ∅
2 X = X ∪ RANDOM SAMPLE(R)
3 while n < budget(ζ) do
4 for each si ∈ S do
5 if β(si, X) ≤ 0 then
6 X = X ∪ SIMILAR SAMPLE(R, si, k)

7 else
8 X = X ∪ DISSIMILAR SAMPLE(R, si, k)

9 n = |X|
10 T = T ∪ {(xi, ζ(xi))|xi ∈ X}
11 s = FIND OPTIMAL SCHEME(S, T, ε); Sprev = S
12 if FOUND(s) then
13 S = {s ∧ si|si ∈ Sprev}
14 else
15 s = FIND APPROXIMATE SCHEME(S, T, ε)
16 S = {s ∨ si|si ∈ Sprev}

17 Return s

This algorithm is designed based on Algorithm 1 introduced in Chapter 4, and here we
call it the Active Scheme Learning Plus (ASL+) procedure. Different from that in Chapter 4,
a locally optimal blocking scheme s is learned from S over the training set, according to a
specified PC threshold rather than a specific error rate (input and line 11). Then the scheme
extension strategy is applied to determine whether a conjunction or disjunction form of this

54 Skyblocking for Entity Resolution

0 0.5 1.00

0.5

1.0
s2

0.3

(a) Parallel Step

0 0.5 1.00

0.5

1.0

s6

0.7 0 0.5 1.0
PC

0

0.5

1.0

PQ

s0 s1

s2−4

s5

s6

s7

s8

s9

Skyline

(b) Merging Step

Skyline
Opt scheme
2-ary scheme
1-ary scheme

Figure 5.2: An illustration of the Naive Skyline Learning (Naive-Sky) algorithm. The optimal
blocking schemes are learned in parallel as shown in (a), and the scheme skyline is depicted in (b).

optimal blocking scheme and other blocking schemes will be used based on Lemma 5.3.1 (lines
12-16). If a locally optimal blocking scheme is found, new blocking schemes are generated
by extending s to a conjunction with each of the blocking schemes in Sprev, so that the PQ
values of new blocking schemes may be further increased (lines 12 and 13). Otherwise a
blocking scheme with the maximum PC value is selected and new schemes are generated using
disjunctions, so that the PC values of new schemes can be further increased (lines 14 to 16).

The Naive Skyline Learning (Naive-Sky) algorithm uses the ASL+ procedure to learn op-
timal blocking schemes under different PC thresholds. A high-level description for this algo-
rithm is described in Algorithm 3. The input that a user needs to specify is the label budget,
the maximal ary of schemes in scheme skylines, and the size ∆ of threshold interval, i.e., the
difference of two consecutive thresholds. For example, if ∆ is set to be 0.1, there will be in
total 10 thresholds used, i.e., 0.1, 0.2, ..., 1.0, to learn at most 10 optimal blocking schemes. It
is possible that the same blocking scheme is learned under two different thresholds. As shown
in Algorithm 3, after initialization (line 1), this approach consists of two steps:

• Parallel step: Optimal blocking schemes are learned in parallel under different thresh-
olds using the ASL+ procedure (lines 2-5).

• Merging step: All optimal blocking schemes are merged and dominance between them
is checked, leading to generating a scheme skyline (line 6).

Note that, in our Naive-Sky algorithm, the sample size k is uniformly decided by the total
label budget budget(ζ), the threshold interval ∆, and the number of predicates |P|. Fig. 5.2(a)
illustrates how two optimal blocking schemes are learned in parallel, where their thresholds
are set to 0.3 and 0.7, respectively. In Fig. 5.2(b), optimal schemes that are learned under the

§5.3 Scheme Skyline Learning Framework 55

0.0 0.5 1.0
PC

0.0

0.5

1.0

PQ

s1
PC threshold

0 0.5 1.0
PC

0

0.5

1.0 s1 s2−4
∆ +PC(s1)

PC Scaled

0 0.5 1.0
PC

0

0.5

1.0 s1 s2−4 s5∆ +PC(s2−4)

Figure 5.3: An illustration of the Adaptive Skyline Learning (Adap-Sky) algorithm. This algo-
rithm can choose the PC threshold adaptively, based on the same example as in Fig. 5.2.

thresholds 0.1, 0.2, . . . , 1.0 are merged, and a scheme skyline is generated. In Fig. 5.2, s7 is
dominated by the skyline, and s2 − s4 are the same scheme shown as s2−4.

Algorithm 3: Naive Skyline Learning (Naive-Sky)
Input: Dataset: R

Human oracle ζ with budget(ζ)
Set of blocking predicates P
Size of threshold interval ∆
Sample size k

Output: Scheme skyline S∗

1 ε = ∆, S∗ = ∅, S = ∅
2 while ε ≤ 1 do

// Parallel step
3 s = ASL(R, ε, ζ, P, k)
4 S = S ∪ {s}
5 ε+ = ∆

6 S∗ = SKYLINE SCHEMES(S) // Merging step
7 Return S∗

5.3.3 Adaptive Skyline Learning

Although the Naive-Sky algorithm offers the advantage of learning blocking schemes in paral-
lel, it still has some limitations. For example, how to choose an appropriate threshold interval?
If ∆ is set too high, blocking schemes in a scheme skyline will be sparse and thus lack of ac-
curacy. On the contrary, if ∆ is set too low, users may have a large number of iterations being
involved in learning blocking schemes under different thresholds, and some of them are redun-
dant. This leads to unnecessary computational costs. A question arising naturally is whether
the threshold interval ∆ can be adjusted adaptively to improve the efficiency of algorithms but
without sacrificing the accuracy of learned scheme skylines.

In our experiments with the Naive-Sky algorithm, we have noticed that the PC threshold
specified by a user may not be (or even far from) the actual PC value of an optimal blocking

56 Skyblocking for Entity Resolution

scheme being learned.

Example 5.3.1. Let us consider Fig. 5.2 again. In Fig. 5.2(a), when the threshold is set to
0.3, the actual PC value of the learned optimal blocking scheme is 0.53. Moreover, when the
threshold is set to 0.4 and 0.5, e.g. ∆ = 0.1, the learned optimal blocking schemes remain
unchanged, i.e., corresponding to the same point s2−4 shown in Fig. 5.2(b).

Based on this observation, we propose another algorithm for learning scheme skylines,
called Adaptive Skyline Learning (Adap-Sky), which can adaptively learn a scheme skyline
even for a small ∆. The following lemma formulates the property behind this observation.

Lemma 5.3.2. Let sε and sε′ be two optimal schemes learned using ASL+ under the PC thresh-
olds ε and ε′, respectively, and under the same label budget. The following property holds:

sε′ = sε, ∀ε′ ∈ [ε, PC(sε)] (5.4)

where ε′ is a threshold from the range [ε, PC(sε)].

Proof. Given a threshold ε and a set of blocking schemes S (∀s ∈ S, PC(s) > ε), we have
sε ∈ S. Given any threshold ε′, s.t. ε < ε′ ≤ PC(sε), and a set of blocking schemes S′

(∀s′ ∈ S′, PC(s′) > ε′), we thus have sε ∈ S′ and sε′ ∈ S′. Based on Definition 7, the
optimal blocking scheme is unique. This means sε = sε′ .

A high-level description of the Adap-Sky algorithm is presented in Algorithm 4. By
Lemma 5.3.2, the Adap-Sky algorithm can adaptively select the next PC threshold based on
the PC value of the current optimal blocking scheme (line 5).

Example 5.3.2. Consider an illustration of the Adap-Sky algorithm shown in Fig. 5.3. In the
leftmost plot, if ∆ = 0.1, the threshold ε = 0.1 at the beginning, and the optimal blocking
scheme is marked as s1. In the middle plot, the new threshold is set to be PC(s1) + ∆, and the
optimal blocking scheme is marked as s2−4. This is different from Algorithm 3 which would
take ε = 0.1+∆ as the new threshold. In the rightmost plot, which indicates the third iteration
of the algorithm, the new threshold is PC(s2−4) + ∆.

5.3.4 Progressive Skyline Learning

The Adap-Sky algorithm has reduced the number of iterations needed in Naive-Sky. However,
it still requires to construct a training set in each iteration, and these training sets are con-
structed independently. We notice that some samples used in one ASL+ procedure may also
be used in other ASL+ procedures in different iterations. For example, if a sample is selected
twice when PC is set to 0.3 and 0.7, its label is counted twice. This gives rise to a new question:
can we further eliminate duplicate samples occurring in the iterative process of constructing a
training set so as to reduce the label cost?

To address the above question, we propose a Progressive Skyline Learning (Pro-Sky) al-
gorithm. This algorithm can learn a scheme skyline without iteratively applying the ASL+
procedure. Instead, it learns a n-ary scheme skyline progressively, i.e., it starts by learning a
1-ary scheme skyline, then by learning a 2-ary scheme skyline, and finally by learning a n-ary

§5.3 Scheme Skyline Learning Framework 57

Algorithm 4: Adaptive Skyline Learning (Adap-Sky)
Input: Dataset: R

Human oracle ζ with budget(ζ)
Set of blocking predicates P
Size of threshold interval ∆
Sample size k

Output: Scheme skyline S∗

1 ε = ∆, S∗ = ∅, S = ∅
2 while ε ≤ 1 do
3 s = ASL(R, ε, ζ, P, k)
4 S = S ∪ {s}
5 ε = PC(s) + ∆

6 S∗ = SKYLINE SCHEMES(S)
7 Return S∗

0 0.5 1.0
PC

0

0.5

1.0

PQ

(a) 4 Partitions in Scheme Space

Dominated Space
Scheme Skyline Space
Dominating Space

0 0.5 1.0
PC

0

0.5

1.0
(b) 1-ary Scheme Skyline

Skyline
1-ary Schemes
Schemes in Skyline

0 0.5 1.0
PC

0

0.5

1.0
(c) 2-ary Scheme Skyline

Skyline
Prev. Coverage
2-ary Schemes
Schemes in Skyline

0 0.5 1.0
PC

0

0.5

1.0
(d) 3+-ary Scheme Skyline

Skyline
Previous Coverage
3+-ary Schemes
Schemes in Skyline

Figure 5.4: An illustration of the Progressive Skyline Learning (Pro-Sky) algorithm: (a) shows
three different spaces w.r.t. a blocking scheme at the crossing; (b) - (d) illustrate how our Pro-Sky
algorithm may learn a scheme skyline progressively.

58 Skyblocking for Entity Resolution

scheme skyline, as illustrated in Fig 5.4. A user does not need to pre-define a threshold interval
∆.

As shown in Fig. 5.4(a), given a blocking scheme at the crossing, we can partition a scheme
space into four parts. Any blocking schemes mapped in the green area, called Dominated
Space, are dominated by the given blocking scheme. The blocking schemes mapped in the red
area, called Scheme Skyline Space, may possibly appear in a skyline. If a blocking scheme is
mapped in the blue area, called Dominating Space, it will replace the given blocking scheme in
the skyline. Therefore, our objective for progressive skyline learning is: given a scheme skyline
S∗, we try to extend each s ∈ S∗ by discarding schemes in its dominated space, verifying
schemes in its scheme skyline space, and finding schemes in its dominating space.

A high-level description for the Pro-Sky algorithm is described in Algorithm 5. The sam-
pling steps (lines 1-11) remain the same as in the ASL+ procedure. However, when extending
a scheme, this algorithm takes the property illustrated in Fig. 5.4(a) into consideration. Each
scheme in a skyline is extended with all the predicates that are not contained by the scheme
(lines 12-13). By conducting both conjunctions and disjunctions, we obtain both PC and PQ
values of the new schemes, and select ones with incremental PC or PQ values (line 14). That
is to say, if a new scheme falls into the red area as shown in Fig. 5.4(a), we would add this
scheme into the candidate set. If it appears in the blue area, we would replace the previous one
by this new scheme. If it appears in the green area, we would discard it.

Algorithm 5: Progressive Skyline Learning (Pro-Sky)
Input: Dataset: R

Human oracle ζ with budget(ζ)
Set of blocking predicates P
Ary of schemes l

Output: Scheme skyline S∗

1 S = P, n = 0, T = ∅, X = ∅, k = budget(ζ)
2l×|P|

2 X = X ∪ RANDOM SAMPLE(R)
3 while n < budget(ζ) do
4 for each si ∈ S do // Begin sampling
5 if β(si, X) ≤ 0 then
6 X = X ∪ SIMILAR SAMPLE(R, si, k)

7 else
8 X = X ∪ DISSIMILAR SAMPLE(R, si, k)

9 n = |X| // End sampling

10 T = T ∪ {(xi, ζ(xi))|xi ∈ X} // Add samples
11 S∗ = SCHEME SKYLINE(S); S = ∅
12 for sj ∈ S∗ do
13 for pi ∈ P do
14 SELECT SCHEMES(pi, sj, S)

15 Return S∗

§5.4 Theoretical Analysis 59

5.4 Theoretical Analysis

In this section, we discuss the search complexity and the time complexity for learning a scheme
skyline.

Search complexity. To analyze the search complexity of the algorithms Naive-Sky and Adap-
Sky, we first analyze the complexity of ASL, which is O(n2) as has been discussed in Sec-
tion 4.4. Hence, for a given ∆, the search complexity of Naive-Sky is O(n2

∆), and in the worst
case, the search complexity of Adap-Sky is the same as O(n2

∆). Nonetheless, the search com-
plexity of the algorithm Pro-Sky is different. If we use |Opti| to describe the number of i-ary
schemes being selected, then the search complexity of Pro-Sky will be ∑n

i=1 |Opti| × 2|P|,
where 2 indicates both conjunction and disjunction of schemes. In the worst case that all
schemes are in the skyline, this is the same as Dedekind Number. However, if we further intro-
duce a ∆ in this algorithm, i.e., there should be at least a distance of ∆ between two schemes
in a skyline, the search complexity of Pro-Sky will be reduced to n2

∆ (1
∆ ≤ n) in the worst case.

Time complexity. Since for all the three algorithms in skyblocking, we adopt active sam-
pling strategy proposed in Section 4.3.1, the time complexity for sampling is O(|R|+ k) for a
blocking predicate.

In our experiments (will be further discussed in Section 5.5), we notice that blocking pred-
icates are sufficient to conduct blocking efficiently and effectively for most datasets. Only
for Amazon-GoogleProducts, similarity-based blocking predicates may bring some benefits
by trading off efficiency to certain degree. This also suggests that, by relaxing the definition
of blocking predicate, our framework can be generalized to learn scheme skylines not only for
blocking, but also for entity resolution itself, over various datasets.

5.5 Experiments

We have conducted experiments to empirically verify our skyline learning algorithms, aiming
to answer the following questions:

(1) Given a limited label budget, how does our skyline learning approach perform w.r.t. the
running time under different threshold intervals and different PC thresholds?

(2) How does our skyline learning approach perform compared with the baselines w.r.t. PC,
PQ, RR and FM?

(3) How does our skyline learning approach perform in reducing label budgets while still
achieving the same level of quality for blocking as the baseline methods?

5.5.1 Experimental Setup

In the following, we present the datasets, blocking predicates, baseline approaches, and mea-
sures used in our experiments.

Datasets. We have used five datasets in our experiments: Cora, DBLP-Scholar, DBLP-ACM,
NCVoter and Amazon-GoogleProducts [95]. The characteristics of the first four datasets are

60 Skyblocking for Entity Resolution

introduced in Table 2.2, and the referring attributes are summarized in Table 2.3. Addition-
ally, Amazon-GoogleProducts dataset contains product entities from the online retailers Ama-
zon.com and the product search service of Google accessible through the Google Base Data
API. It contains 1,363 and 3,226 records, respectively with the number of true matches 1,291,
with a class imbalance ratio of 1 : 3,405. We use 20 blocking predicates for this dataset corre-
sponding to 4 attributes.

Blocking predicates. We have used five blocking functions in our experiments. four blocking
functions are described in Section 4.5.1 to obtain 16 or 72 different blocking predicates for
Cora, DBLP-Scholar, DBLP-ACM and NCVoter. Additionally, we use the blocking function
Top-similarity for the dataset Amazon-GoogleProducts to obtain a total number of 20 blocking
predicates due to the following two reasons: (1) it has a higher time complexity since it needs
to compare the similarity of two records rather than compare the string values of two records,
and (2) it has little effects on the performance of the other datasets. This blocking function
takes two strings as input and returns 1 if one string is most similar to the other; otherwise,
return 0.

Baselines. We have used the following approaches as the baselines: (1) Fisher [84], which
is the state-of-the-art unsupervised scheme learning approach proposed by Kejriwal and Mi-
ranker. (2) TBlo [47], which is a blocking approach based on expert-selected attributes. In the
survey [27], this approach has a better performance than the other approaches in terms of the F-
measure results. (3) RSL (Random Scheme Learning), which is an algorithm that has the same
structure of the ASL+ procedure except that random sampling is used to build a training set,
instead of active sampling. In each experiment, we have run the RSL ten times. We present the
average results of the blocking schemes it has learned. As reported in [84], Fisher has shown
a better performance compared with the supervised blocking scheme learning approach [11].
We thus do not consider this supervised learning approach as a baseline.

Measures. The measures we use in the experiments for this chapter include Pairs Com-
pleteness (PC), Pairs Quality (PQ), F-measure and Constraint Satisfaction (CS), which are
introduced in Section 2.2.2 and Section 4.5.1 in details.

5.5.2 Results and Discussion

In this section, we will discuss the experimental results of our skyline algorithms, and compare
the performance of our algorithms with the baseline approaches.

5.5.2.1 Label Efficiency

We have first conducted experiments to evaluate the label efficiency of our algorithms.

Label costs. The label costs of our proposed algorithms, namely Naive-Sky for Algorithm 3,
Adap-Sky for Algorithm 4 and Pro-Sky for Algorithm 5, are shown in Table 5.1, where the
label costs of these algorithms for learning scheme skylines of five datasets with CS = 90%
are recorded. We consider two variants of Naive-Sky: sequential Naive-Sky and parallel Naive-
Sky.

§5.5 Experiments 61

• Sequential Naive-Sky iteratively computes optimal blocking schemes with the PC thresh-
old being increased by ∆ in each iteration.

• Parallel Naive-Sky computes a number of optimal blocking schemes in parallel, where a
range of thresholds from 0 to 1 with interval ∆ are assigned to these parallel computa-
tions (one threshold for each computation).

We set ∆ = 0.1 and ∆− 0.05 for all datasets. For example, if ∆ = 0.1, sequential Naive-
Sky iterates 10 times with the PC threshold being increased by 0.1 at each time, and parallel
Naive-Sky takes 10 parallel computations, each computation deals with the ASL+ procedure
once with a PC threshold ranging from 0.1 to 1. Furthermore, for Naive-Sky and Adap-Sky,
the label budget begins with 50, and increases by 50 for each run of ASL. The total label cost
is accumulated when the PC threshold increases. For Pro-Sky, the label budget begins with
500, and increases by 500. This is to ensure a fair comparison with Naive-Sky and Adap-Sky
because, when ∆ is set to 0.1, Naive-Sky needs exactly ten iterations to reach 1 from 0.1, and
Adap-Sky needs at most ten iterations to reach 1 from 0.1. Thus, the total label consumption
of these two algorithms is 50× 10 = 500 in the worst case. Since Pro-Sky does not involve
iterations, we set its sample size to 500. The label cost is recorded when its CS value reaches
90% in ten consecutive runs. Table 5.1 shows that Adap-Sky uses less labels than Naive-Sky;
nonetheless, Pro-Sky can reduce the label cost from one third to a half of the label cost of
Adap-Sky.

Observation 1. Our Pro-Sky algorithm takes the smallest number of labels compared with
Naive-Sky and Adap-Sky to learn the scheme skyline under specific threshold intervals.

62 Skyblocking for Entity Resolution

Ta
bl

e
5.
1:

C
om

pa
ri

so
n

on
th

e
la

be
lc

os
ts

an
d

ru
n

tim
es

(in
se

co
nd

s)
of

th
re

e
sk

yl
in

e
al

go
ri

th
m

s
ov

er
fiv

e
da

ta
se

ts
.

∆
re

fe
rs

to
th

e
th

re
sh

ol
d

in
te

rv
al

an
d

R
T

re
fe

rs
to

th
e

ru
n

tim
e

in
se

co
nd

s.
C

or
a

D
B

L
P-

Sc
ho

la
r

D
B

L
P-

A
C

M
N

C
Vo

te
r

A
m

az
on

-G
oo

gl
eP

ro
du

ct
s

B
ud

ge
t

∆
R

T
B

ud
ge

t
∆

R
T

B
ud

ge
t

∆
R

T
B

ud
ge

t
∆

R
T

B
ud

ge
t

∆
R

T
3

N
ai

ve
-S

ky
60

00
0.

1
18

.7
4

50
00

0.
1

96
.7

1
30

00
0.

1
76

.9
5

35
00

0.
1

22
5.

08
50

00
0.

1
98

.3
(S

eq
ue

nt
ia

l)
0.

05
21

.5
5

0.
05

13
3.

25
0.

05
90

.8
0.

05
26

7.
85

0.
05

12
0.

47
N

ai
ve

-S
ky

60
00

0.
1

12
.1

9
50

00
0.

1
35

.5
1

30
00

0.
1

50
.6

35
00

0.
1

83
.9

2
50

00
0.

1
72

.1
7

(P
ar

al
le

l)
0.

05
18

.3
3

0.
05

40
.5

0.
05

73
.5

1
0.

05
11

0.
81

0.
05

93
.6

8

A
da

p-
Sk

y
42

00
0.

1
12

.4
8

35
00

0.
1

56
.2

8
12

50
0.

1
33

.2
3

14
00

0.
1

11
8.

4
16

00
0.

1
48

.9
3

0.
05

14
.6

8
0.

05
60

.7
3

0.
05

34
.5

5
0.

05
12

2.
16

0.
05

60
.3

6

Pr
o-

Sk
y

25
00

0.
1

5.
6

20
00

0.
1

32
.5

6
10

00
0.

1
11

.3
8

10
00

0.
1

63
.0

9
10

00
0.

1
17

.3
3

0.
05

6.
27

0.
05

38
.0

9
0.

05
13

.2
8

0.
05

70
.5

6
0.

05
20

.1

§5.5 Experiments 63

Table 5.2: Comparison on the label costs of ASL+ and RSL with CS = 90%.

PC Threshold Cora
DBLP- DBLP-

NCVoter
Amazon-

Scholar ACM GoogleProducts
0.2 600 500 300 300 400
0.4 400 350 200 350 400
0.6 450 250 150 250 250
0.8 550 300 200 200 200
0.9 500 250 300 250 300

RSL 7,900 10,000+ 2,200 10,000+ 5,000

Label efficiency analysis. We have also analyzed the factors that may affect the label
costs. First, as explained before, both extremely high and low PC thresholds may require
more labels than in other cases. Second, datasets of a smaller size (i.e., containing a smaller
number of record pairs) often need less labels. Furthermore, datasets with more attributes have
a larger number of blocking predicates and thus need a higher label budget in order to be able to
consider all blocking predicates in sampling. The quality of a dataset may also affect the label
costs. Generally, the cleaner a dataset is, the less labels it requires. For example, although
Cora has the smallest number of attributes and records, it still needs the largest number of
labels because it contains many fuzzy values (e.g. mis-spelling names, first name and last name
being swapped and etc.). On the contrary, NCVoter needs a lower label budget although it has
more attributes and records than several other datasets. The cleanness of a dataset also affects
the distribution of label costs under different thresholds. For example, with a PC threshold
ε = 0.2, we need only 200 labels for NCVoter but 550 labels for Cora to generate blocking
schemes with CS = 90%.

Observation 2. Our skyline learning approach using active sampling strategy can use much
less labels to achieve a target constraint satisfaction compared with random sampling strategy.

5.5.2.2 Time Efficiency

Table 5.1 shows Run Time (RT) of our three algorithms over five datasets, in relation to dif-
ferent label budgets. Two threshold intervals are used, i.e., ∆ = 0.05 and ∆ = 0.1. Generally
speaking, the RT values depend on two factors: (1) the size of a dataset and (2) the number of
samples. With the increase of the label budget and the number of records in a dataset, the RT
value increases. We can also see that, for these three algorithms, the threshold interval ∆ does
affect the run time, but not significantly.

We also present the RT values of Naive-Sky in two different settings: running sequentially
and running in parallel. The parallel method can reduce the run time considerably, varying from
30% to 70%. Especially, for the DBLP-Scholar and NCVoter datasets, Naive-Sky running in
parallel can even outperform Adap-Sky.

Observation 3. Our skyline learning approach is quite efficient for all the datasets under a
limited number of label budgets.

3A pre-calculated similarity matrix is used for searching most similar records; hence, RT does not consider the
time consumption of similarity computation.

64 Skyblocking for Entity Resolution

0
0.

2
0.

4
0.

6
0.

8
1.

0
0

0.
2

0.
4

0.
6

0.
8

1.
0

PQ
(a

1)
 C

or
a

Sk
yl

in
e

Le
ng

th
-1

1-
ar

y
Sc

he
m

es

0
0.

2
0.

4
0.

6
0.

8
1.

0
0

0.
2

0.
4

0.
6

0.
8

1.
0

PQ

(a
2)

1-
ar

y
Sk

yl
in

e
2-

ar
y

Sk
yl

in
e

2-
ar

y
Co

nj
un

ct
io

n
2-

ar
y

Di
sj

un
ct

io
n

0
0.

2
0.

4
0.

6
0.

8
1.

0
PC

0

0.
2

0.
4

0.
6

0.
8

1.
0

PQ

(a
3)

2-
ar

y
Sk

yl
in

e
3+

-a
ry

 S
ky

lin
e

3+
-a

ry
Fi

sh
er

TB
lo

0
0.

2
0.

4
0.

6
0.

8
1.

0
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

(b
1)

 D
BL

P-
Sc

ho
la

r

0
0.

2
0.

4
0.

6
0.

8
1.

0
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

(b
2)

0
0.

2
0.

4
0.

6
0.

8
1.

0
PC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b
3)

0
0.

2
0.

4
0.

6
0.

8
1.

0
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

(c
1)

 D
BL

P-
AC

M

0
0.

2
0.

4
0.

6
0.

8
1.

0
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

(c
2)

0
0.

2
0.

4
0.

6
0.

8
1.

0
PC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c
3)

0
0.

2
0.

4
0.

6
0.

8
1.

0
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

(d
1)

 N
CV

ot
er

0.
99

5
0.

99
6

0.
99

7
0.

99
8

0.
99

9
1.

0
0.

0

0.
2

0.
4

0.
6

0.
8

1.
0

(d
2)

0.
99

5
0.

99
6

0.
99

7
0.

99
8

0.
99

9
1.

0
PC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d
3)

0
0.

2
0.

4
0.

6
0.

8
1.

0
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e
1)

 A
m

az
on

-G
oo

gl
eP

ro
du

ct
s

0
0.

2
0.

4
0.

6
0.

8
1.

0
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e
2)

0
0.

2
0.

4
0.

6
0.

8
1.

0
PC

0

0.
2

0.
4

0.
6

0.
8

1.
0

(e
3)

Fi
gu

re
5.
5:

A
n

ill
us

tr
at

io
n

of
th

e
pr

og
re

ss
iv

e
pr

oc
es

s
fo

r
le

ar
ni

ng
sc

he
m

e
sk

yl
in

es
by

Pr
o-

Sk
y

ov
er

fiv
e

da
ta

se
ts

.
T

he
th

re
e

ro
w

s
fr

om
to

p
to

bo
tto

m
sh

ow
th

e
re

su
lts

of
1-

ar
y,

2-
ar

y
(i

n
bo

th
co

nj
un

ct
io

n
an

d
di

sj
un

ct
io

n)
an

d
3-

ar
y

bl
oc

ki
ng

sc
he

m
es

,r
es

pe
ct

iv
el

y.

§5.5 Experiments 65

5.5.2.3 Blocking Quality

Now we discuss how the blocking quality of our skyline algorithms may be affected by the
choice of n-ary blocking schemes, as well as PC thresholds. We also compare the quality of
blocks generated by our skyline algorithms with the quality of blocks generated by the baseline
approaches.

0 0.2 0.4 0.6 0.8 1.0
PC Threshold

0.0

0.2

0.4

0.6

0.8

1.0

PC

(a)

Cora
DBLP-Scholar
DBLP-ACM
NCVoter
Amazon-
GoogleProducts

0 0.2 0.4 0.6 0.8 1.0
PC Threshold

0.0

0.2

0.4

0.6

0.8

1.0

PQ

(b)

Figure 5.6: Comparison on blocking quality using Pro-Sky under different PC thresholds over
five datasets: (a) PC and (b) PQ.

Under different number of aries. The experimental results of the Pro-Sky algorithm under
different number of aries are presented in Fig. 5.5. We have also tested on Naive-Sky and Adap-
Sky with ∆ = 0.05 and ∆ = 0.10. However, because the blocking schemes in the scheme
skylines learned by these algorithms are the subsets of the scheme skyline generated by Pro-
Sky in which no ∆ is defined, we thus omit the results for Naive-Sky and Adap-Sky. Fig. 5.5
illustrates how Pro-Sky can progressively generate the scheme skylines using blocking schemes
from 1-ary to 3+-ary over five datasets. We do not present the further process of 3+-ary, as the
scheme skylines have already been generated within 3-ary and they would remain the same.
In the plots (d2) and (d3) of Fig. 5.5, we present the scheme skylines with PC ∈ [0.995, 1]
because most of the schemes on the skyline for NCVoter dataset are located in this range.

The Pro-Sky algorithm can detect a number of 1-ary schemes and generate the scheme
skylines as shown in the plots (a1), (b1), (c1) and (d1) of Fig. 5.5, although some of the learned
blocking schemes are not on the skylines. When considering 2-ary blocking schemes in both
conjunction and disjunction, we notice that disjunction schemes have higher PC values but
lower PQ values compared with conjunction ones. Some 2-ary blocking schemes have better
performance than 1-ary blocking schemes in the scheme skylines but some are not. Hence,
a scheme skyline can be updated with some segments remaining the same, e.g. PC values
from 0.4 to 0.63 in the plot (b2). The third row of the figure shows 3+-ary blocking schemes.
The scheme skylines (red dashed lines) do not change much compared with the 2-ary scheme

66 Skyblocking for Entity Resolution

skylines (blue dashed lines). We also show the results of the baseline approaches, where Fisher
normally generates the blocking schemes with high PC values, but TBlo schemes are not in a
skyline in the most cases.

Cora DB-Sch DB-ACM NCVoterAmazon-
GoogleProducts

0.0
0.2
0.4
0.6
0.8
1.0

Pa
irs

 c
om

pl
et

en
es

s

(b)

ASL
Fisher
TBlo

Cora DB-Sch DB-ACM NCVoterAmazon-
GoogleProducts

0.0
0.2
0.4
0.6
0.8
1.0

Pa
irs

 q
ua

lit
y

(c)

Cora DB-Sch DB-ACM NCVoterAmazon-
GoogleProducts

0.0
0.2
0.4
0.6
0.8
1.0

F-
m

ea
su

re

(a)

Figure 5.7: Comparison on blocking quality by using different blocking approaches over five
datasets and using the measures: (a) FM, (b) PC, and (c) PQ.

Observation 4. With the increasing of number of aries, the scheme skyline becomes higher,
which means the schemes under smaller numbers of aries are dominated by the ones under
larger numbers. That is to say, we can find blocking schemes with better performance with the
increment of aries.

Under different PC thresholds. To make a detailed comparison with the baseline approaches,
we have conducted experiments based on the ASL+ procedure under different PC thresholds.
We have monitored the blocking schemes learned by the ASL+ procedure as well as their PC
and PQ values under different PC thresholds ε ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 1.0}. The results are
presented in Fig. 5.6. We can see that the PC and PQ values may vary because the learned
blocking schemes are different when the PC thresholds increase. The label budget is ensured
to be sufficient in these cases.

With the increment of the PC thresholds, the blocking schemes we learn generate lower PC
values and higher PQ values. However, there are still some overlapping points. This indicates
that under certain thresholds, the Pro-Sky algorithm learns the same blocking scheme. On the
other hand, this also provides further evidence showing the efficiency of Adap-Sky compared
with Naive-Sky. For example, the performance of Pro-Sky for NCVoter dataset is consistent
with both high PC and PQ values, whatever the PC threshold is. On the contrary, for other
datasets such as Cora, a lower PC threshold allows the Pro-Sky algorithm to seek for blocking
schemes that can generate higher PQ values, but the PC values decrease. We also notice that,
for DBLP-ACM and NCVoter datasets, blocking schemes with both high PC and PQ values are
learned with a low threshold (e.g. ε = 0.4), but for DBLP-Scholar, no blocking schemes can
be learned with high PQ values (i.e., higher than 0.6). In the figure, the blocking schemes with
the PC threshold 1.0 are normally hard to learn, hence we present the maximum PC values of
the blocking schemes learned by our algorithms.

Observation 5. With the increasing of PC values as threshold, the PC value of the learned
blocking scheme increases, while the PQ value of the learned blocking scheme decreases.

Compared with baselines. Existing work largely focuses on learning a single blocking
scheme, while our algorithms aim to learn a scheme skyline, which is a set of blocking

§5.5 Experiments 67

schemes. Hence we first conduct experiments to show that, in a 2-dimension space of PC
and PQ, the blocking schemes learned by the baselines TBlo and Fisher are dominated by or
contained in our scheme skylines over five datasets. The experimental results are shown in the
plots (a3), (b3), (c3), and (d3) of Fig. 5.5.

Table 5.3: Comparison on blocking quality.

PC PQ
TBlo ASL+ TBlo ASL+

Cora 0.3296 0.3167 0.6758 0.9898
DBLP-Scholar 0.7492 0.7492 0.2869 0.2869
DBLP-ACM 0.2801 0.8826 0.4387 0.8854

NCVoter 0.9981 0.9979 0.6558 0.9640
Amazon-

0.5285 0.5665 0.0118 0.4627
GoogleProducts

PC PQ
Fisher ASL+ Fisher ASL+

Cora 0.9249 0.9249 0.2219 0.2219
DBLP-Scholar 0.9928 0.9928 0.0320 0.0320
DBLP-ACM 0.9661 0.9686 0.0522 0.6714

NCVoter 0.9990 0.9990 0.0774 0.0774
Amazon-

0.5792 0.7244 0.0059 0.1892
GoogleProducts

To make a fair point-to-point comparison with the baseline approaches, we have further
conducted experiments which take the baseline PC values as the PC thresholds for the ASL+
procedure. Table 5.3 presents the PC and PQ values in the experimental results. Here, we set
the PC threshold as the PC values used in the baseline approach. Compared with TBlo, our
Pro-Sky algorithm can generate blocks with much higher PQ values (i.e., from 50% to 101%)
while remaining similar PC values, except in DBLP-Scholar where the results are the same.
Compared with Fisher, in the most cases, the results are the same, except in DBLP-Scholar,
the results generated by our Pro-Sky algorithm have a 12 times higher PQ value. In general,
our Pro-Sky algorithm can generate results as good as or better than the baseline approaches
under the same thresholds and with a sufficient label budget.

We also present blocking schemes with the highest f-measure values learned by our algo-
rithms and the baselines, and compare their FM, PC and PQ values. The FM results are shown
in Fig. 5.7(a) in which our Pro-Sky algorithm outperforms all the baseline approaches over all
the datasets. Since all the approaches yield high RR values over five datasets, the RR values
are not presented in the figure. In Fig. 5.7(b), the PC values of our Pro-Sky algorithm are not
the highest ones over the five datasets, but they are not much lower than the highest ones (i.e.,
within 10% lower except in DBLP-Scholar). Moreover, our Pro-Sky algorithm can generate
higher PQ values than all the other approaches, from 15 percents higher in NCVoter (0.9956
vs 0.8655) to 20 times higher in DBLP-ACM (0.6714 vs 0.0320), as shown in Fig. 5.7(c).

68 Skyblocking for Entity Resolution

Observation 6. Our skyline learning approach achieves better blocking quality compared
with the baselines under a 3+-ary blocking schemes.

5.6 Summary

In this chapter, we have proposed a scheme skyline learning framework called skyblocking,
which integrates skyline query techniques and active learning techniques into learning a set
of optimal blocking schemes under different constraints and a limited label budget. We have
tackled the class imbalance problem by solving the balanced sampling problem. We have also
proposed the scheme extension strategy to reduce the searching space and label costs. We have
further developed three algorithms for efficiently learning scheme skylines. Our algorithms
overcome the weaknesses of existing blocking scheme learning approaches in two aspects: (1)
Previous supervised blocking scheme learning approaches require a large number of labels for
learning a blocking scheme, which is an expensive task for entity resolution; (2) Existing un-
supervised blocking scheme learning approaches generate training sets based on the similarity
of record pairs, instead of true labels, thus the training quality can not be guaranteed.

Chapter 6

Learning-To-Sample for Entity
Resolution

6.1 Introduction

In entity resolution, a machine learning-based classifier is normally used to categorize entity
resolution samples into matches and non-matches. During this process, sampling is a funda-
mental technique for acquiring training data. However, obtaining large amounts of manually
labeled samples is often expensive or simply infeasible in practice. To alleviate this challenge,
active learning has been extensively studied in the past decades [133], which aims to select
fewer labeled samples to train a machine learning model as effectively as possible, achieving
similar or even better accuracy. At its core, active learning seeks for the most representative
or informative samples to be labeled for training by leveraging observations from previously
labeled samples, such as uncertainty samples and diversity samples [40; 106; 38].

As in the literature, one limitation of most of the existing approaches is that the sampling
strategies are pre-defined by humans [69]. For example, selecting samples which lie closest to
the SVM’s dividing hyperplane for SVM based active learning [132; 45]; Selecting samples
by ranking such as estimated entropy [68]. These strategies are inflexible and need to be
individually defined for different tasks [93]. Meta-learning algorithms for active learning are
emerging as a promising paradigm for learning the “best” active learning strategy. However,
current learning-based active learning approaches still require sufficient training data so as to
generalize meta-learning models for active learning [69; 93]. This is contrary to the nature
of entity resolution and active learning which typically starts with a small number of labeled
samples. The unavailability of large amounts of labeled samples for training meta-learning
models would inevitably lead to poor performance (e.g., instabilities and overfitting).

In this chapter, we aim to propose a learning-based active learning framework to enable a
unified sampling process for selecting representative and informative samples under a limited
number of labeled samples to solve entity resolution tasks. Different from the previous active
learning approaches, we ground our work on the following observations: (1) Although uncer-
tainty sampling is one of the widely used active learning techniques [98], this strategy alone
tends to select samples that are similar to each other, i.e., samples being selected from a sam-
ple space often have similar features [157]. (2) Diversity sampling targets to select samples of
different kinds (e.g., samples with different features), which is complementary to uncertainty

69

70 Learning-To-Sample for Entity Resolution

Uncertainty Sampling

Random Sampling
(active)

Random Sampling
(non-active)

Pe
rf

o
rm

an
ce

Cold Start
of labels

Converge Point

Figure 6.1: An illustration of Learning-To-Sample (LTS) for entity resolution in relation to uncer-
tainty sampling and random sampling, where random sampling (active) indicates that random samples
are gradually selected during the iterations of active learning, and random sampling (non-active) indi-
cates that all samples are randomly selected in a one-off manner (i.e., no active learning).

sampling. Thus, the obstacle of uncertainty sampling can be circumvented by combining un-
certainty sampling and diversity sampling into a unified sampling process. (3) To find the
“best” way to integrate these two sampling strategies, meta-learning is a powerful tool, which
can optimize this integration process by learning hints from the chosen machine learn models
and datasets.

Based on the above observations, we design a novel learning-based active learning frame-
work, called Learning-To-Sample (LTS). In a nutshell, the LTS framework consists of two
key components: a sampling model G and a boosting model F, which can dynamically learn
from each other in iterations for improving the performance of each other. As illustrated in
Fig. 6.1, the goal of this LTS framework is to help machine learning-based entity resolution
models achieve better performance with less training data by providing a learning-based active
learning process. The design of the LTS framework, especially the sampling model, incorpo-
rates the uncertainty and diversity aspects of sampling into a unified process for optimization.
This allows us to actively select samples based on the joint impacts of probabilities of being
mis-classified by a boosting model and the distribution of samples in a sample space and cir-
cumvent the cold start problem at the same time [38; 93]. The experimental results show that
our active learning approach significantly outperforms all the baselines when the label budget
is limited, especially for those datasets with highly imbalanced classes. It also shows that our
approach can effectively tackle the cold start problem.

The rest of this chapter is structured as follows. Section 6.2 introduces the formulation of
our classification task for entity resolution. Section 6.3 introduces our Learning-To-Sample

§6.2 Problem Formulation 71

framework, which includes a boosting model and a sampling model. Section 6.4 presents how
the sampling model actively selects samples w.r.t. their uncertainty and diversity, and how
some hyper-parameters are decided in the algorithm. Section 6.5 analyzes the reason that LST
can alleviate the cold start problem. Then Section 6.6 discusses our experimental results. We
conclude the chapter in Section 6.7.

6.2 Problem Formulation

Our task is to tackle the entity resolution classification problem with active learning as below.

Definition 8. Let X ⊆ Rd contain |X| samples and budget(ζ) be a budget on the total number
of samples that can be labeled by a human oracle. A training set T = {(xi, yi)}|T|i=1, where
xi ∈ X and yi ∈ R, consists of a set of samples from X and their labels from R. The Learning-
To-Sample problem is to actively select a set of samples forming a training set T, and train a
model Λ that can predict the labels ŷ for samples w.r.t.

maximize E(Λ)

subject to |T| ≤ budget(ζ) (6.1)

where E(Λ) = ∑
x∈X∧ŷ=y

1

Intuitively, E(Λ) refers to the total number of samples whose labels are correctly classified
by Λ, and the size of training samples should be no more than the budget.

6.3 The Learning-To-Sample Framework

In this section, we present our learning-based active learning framework, called Learning-To-
Sample (LTS). As illustrated in Figure 6.2, the LTS framework has two key components: a
boosting model F and a sampling model G. Accordingly, there are two learning processes that
are closely coupled: (1) learning the boosting model F, and (2) learning the sampling model
G. Specifically, a boosting model F aims to create a strong learner based on a set of weak
learners. Thus, we have designed an incrementally built training set by adding a sequence of
subsets, so that new functions can also be trained and added into the boosting model F for
performance improving. Samples in these training sets are actively selected by the sampling
model G which is dynamically learned from the performance of the boosting model F during
its iterative training process. In the following, we discuss them in detail.

It is worth noting that, technically, the boosting model F can be replaced by any classifi-
cation model and the regressors in the sampling model G can be replaced by any regression
model. Thus, the LTS framework is indeed not restricted to specific machine learning models
used for classification and regression.

72 Learning-To-Sample for Entity Resolution

Figure 6.2: Overview of the LTS framework. The boosting model is highlighted in green and the
sampling model is highlighted in blue.

6.3.1 Boosting Model

To actively select a set of training samples, we have built a training set T that is incrementally
built as the boosting model interacts with the sampling model, i.e., a sequence of training
subsets 〈T(1), . . . , T(n)〉 such that T(1) ⊆ T(2) ⊆ · · · ⊆ T(n), T(n) = T, and |T(n)| ≤
budget(ζ), where T(t) for t ∈ [1, n] is a training subset being used for training the boosting
model at the t-th iteration.

A boosting model F trains a sequence of functions 〈 f (1), . . . , f (n)〉 in an additive manner,
where f (t) for t ∈ [1, n] is a function being added into F at the t-th iteration. More specifically,
the individual results of the first t-1 functions are combined to predict the label of a sample at
the (t-1)-th iteration such that:

ŷ(t−1)
i =

t−1

∑
k=1

f (k)(xi). (6.2)

Then, the t-th function f (t) is trained on the actively selected training subset T(t) by minimizing

§6.3 The Learning-To-Sample Framework 73

the following objective function:

∑
(xi ,yi)∈T(t)

`1(ŷ
(t−1)
i + f (t)(xi), yi) + Ω1(f (t)) (6.3)

where `1 is a differentiable loss function and Ω1(f (t)) is the penalty for the complexity of f (t).
After the t-th function f (t) is learned, the boosting model F sends its feedback to the

sampling model G via a softmax layer. This allows the sampling model G to leverage hints
from the prediction results of 〈 f (1), . . . , f (t)〉 and actively select the most informative samples
as new samples for the next iteration, leading to T(t+1). We use the Softmax function [139]
to obtain probabilities of being mis-classified for training samples. Specifically, in the t-th
iteration, the softmax layer takes l(t) = 〈`(ŷ(t)1 , y1), . . . , `(ŷ(t)q , yq)〉 as input, where q = |T(t)|
and each `(ŷ(t)j , yj) in l(t) refers to the loss of a training sample xj from T(t), then generates

z(t) = 〈z(t)1 , . . . , z(t)q 〉, i.e.,

z(t)i = Softmax(l(t)i), (6.4)

where Softmax(l(t)i) = el(t)i / ∑
q
j=1 el(t)j and l(t)i = `(ŷ(t)i , yi).

6.3.2 Sampling Model

Let XL(t) = {xi ∈ X|(xi, yi) ∈ T(t)} be the set of labeled samples and XU(t) = X − XL(t)

be the set of unlabeled samples in the t-th iteration. A sampling model G aims to select a
set ∆(t) of the most informative samples from unlabeled samples at the t-th iteration such
that XL(t+1) = XL(t) ∪ ∆(t) and XU(t+1) = XU(t) − ∆(t). Consequently, T(t+1) = T(t) ∪
{(xi, yi)|xi ∈ ∆(t)} is generated and sent to the boosting model F for training the function
f t+1.

The question arising here is: how to actively select a set ∆(t) of the most informative sam-
ples at the t-th iteration? In the LTS framework, two kinds of samples are primarily targeted:
(1) samples that are likely to be mis-classified by the boosting model; (2) samples that have
diverse features in the sample space. They relate to the uncertainty and diversity aspects of
sampling, respectively. Hence, at the t-th iteration, the sampling model G learns to select a set
∆(t) of most informative samples by maximizing the following objective:

maximize
k

∑
i=1

vig(t)(xi) + α× Γ(v)

subject to ||v||1 = |∆(t)|
(6.5)

where k = |XU(t)|, v = (v1, ..., vk)
T ∈ {0, 1}k is a binary vector, and each vi is associated

with a sample xi ∈ XU(t). When vi = 1, it indicates that xi is selected as a sample, and
conversely, vi = 0 indicates that xi is not selected. The term g(t)(xi) indicates the uncertainty
score of a sample xi which is predicated by a regressor g(t), and the regularization term Γ(v)
controls the distribution of selected samples in order to ensure their diversity in the sample

74 Learning-To-Sample for Entity Resolution

x
c

x
c

x
c

c x
c

(a) Entire Data Distribution (b) Random Sampling

(c) Uncertainty Sampling (d) Diversity Sampling
(4 groups)

Figure 6.3: Comparison of different sampling strategies. 24 samples are selected in each sub-figure
of (b), (c) and (d).

space. α is a parameter used for balancing the impacts of uncertainty and diversity on samples,
i.e., α > 1 indicates that diverse samples are preferred, while α < 1 indicates that samples
with high probabilities of being mis-classified are preferred. Further details for our sampling
model will be discussed in the next section.

6.4 Sampling Strategies

In the following, we discuss how the sampling model G handles the uncertainty and diversity
aspects of samples. We first present an uncertainty sampling strategy by training a regressor
g(t) in each iteration, then describe how the regularization term Γ(v) is used to deal with
diversity sampling.

Fig. 6.3 illustrates our sampling strategies, i.e., uncertainty sampling and diversity sam-
pling, in comparison with random sampling. Figure 6.3.(a) describes a real data distribution
with two classes (red and blue). Figure 6.3.(b) shows that random sampling can only select
very few samples from the minority class (red). Figure 6.3.(c) shows using uncertainty sam-
pling leads to samples that are similar. Figure 6.3.(d) shows that diversity sampling can evenly
select samples from different groups in the sample space.

6.4.1 Uncertainty Sampling

In the LTS framework, we predict the uncertainty of samples by learning from the performance
of the boosting model, i.e., the training loss. We dynamically construct a training dataset to
train a regressor for predicting the uncertainty in each iteration.

§6.4 Sampling Strategies 75

Formally, a training subset T(t)
A for the sampling model G is constructed at the t-th iteration

such that T(t)
A = {(xi, z(t)i)|(xi, yi) ∈ T(t), z(t)i ∈ [0, 1]}, where z(t) = 〈z(t)1 , . . . , z(t)q 〉 is

generated by the softmax layer of the boosting model F and q = |T(t)| as shown in Eq. 6.4.
Thus, each training subset T(t)

A contains the same set of samples as in T(t), but the labels

of these samples in T(t)
A are different from the labels in T(t). Furthermore, each label z(t)i

represents the probability of being mis-classified of a sample xi after the first t iterations. We
then predict the uncertainty score g(t)(xi) of an unlabeled instance xi ∈ XU(t) in Eq. 6.5 by
solving a regression problem, i.e., training g(t) to minimize the following objective in the t-th
iteration:

∑
(xi ,z

(t)
i)∈T(t)

A

w(t)
i `2(g(t)(xi), z(t)i) + Ω2(g(t)) (6.6)

where `2 is also a differentiable loss function, Ω2(g(t)) is the penalty for the complexity of
g(t), and w(t)

i is a weighted value for xi and is dynamically adjusted during the iterations. The

intuition behind w(t)
i is to give higher weighted values to samples that are uncertain in more

iterations, rather than samples that are uncertain in fewer iterations. For example, if a sample is
mis-classified by the boosting model several times, it will be assigned a higher weighted value
than another sample which is mis-classified only once. We will present a method of assigning
dynamic weighted values in Section 6.4.3.

6.4.2 Diversity Sampling

In the LTS framework, we deal with the diversity of samples by partitioning the sample space
into a number of different groups such that samples in the same group are more similar than the
samples in different groups. Then we use the regularization term Γ(v) in Eq. 6.5 to regulate
the sampling model, i.e., selecting samples from each group evenly.

Suppose that unlabeled samples in X(t) are partitioned into a set of groups {X(t)
1 , . . . , X(t)

b }
alike in certain features. Then we define the regularization term Γ(v) over {X(t)

1 , . . . , X(t)
b }

using a l2,1-norm function as:

Γ(v) = ||v||2,1 =
b

∑
i=1
||vi||2 (6.7)

where b is the total number of groups associated with XU(t), v is partitioned into {v1, . . . , vb}
where Σb

i=1|vi| = |v|, vi ∈ {0, 1}m, m = |X(t)
i | and i ∈ [1, b]. That is, ||vi||2 is the l2-norm

of vi that is a binary vector whose elements correspond to samples in group X(t)
i .

It is known that the l2,1-norm favors on selecting samples with diversity [76]. When the
value of the l2,1-norm is small, non-zero entries of v are concentrated in a small number of
groups, i.e., the distribution of samples is limited to a small number of groups and accordingly
the diversity of samples is low. On the contrary, when maximizing the l2,1-norm in Eq. 6.5,
there is a counter-effect on the distribution of samples, i.e., non-zero entries of v are widely
distributed w.r.t. as many groups as possible and thus the diversity of samples is high.

Example 6.4.1. Consider Fig. 6.3(d) in which the sample space is partitioned into four groups

76 Learning-To-Sample for Entity Resolution

and a number of 24 samples will be selected. If we select 6 samples from each group, ||vi||2 =√
6, we have Γ(v) = ∑4

i=1 ||vi||2 =
√

6× 4 = 9.8. If we select 24 samples from only one
group, ||vi||2 =

√
24, then Γ(v) = ∑1

i=1 ||vj||2 =
√

24 = 4.9.

6.4.3 Algorithm Description

In this section, we propose an algorithm for the LTS framework and discuss several important
aspects of this algorithm which may influence the effectiveness of sampling.

Algorithm 6: Learning-To-Sample (LTS)

Input: X with k groups, i.e., ∑k
i=1 X(0)

i = X; label budget budget(ζ);
Balancing parameter α; Number of iterations n;

Output: A boosting model F
1 Initialize T(0) = ∅
2 Select a set of seed samples ∆(0) from k groups to maximize Γ(v) , where

|∆(0)| = budget(ζ)
n

3 for t = 1, . . . , n do
4 Update T(t) = T(t−1) + ∆(t−1)

5 Train an additive function f (t) by minimizing the objective in Eq. 6.3 using T(t)

6 Generate a training set T(t)
A

7 Train a regression function g(t) by minimizing the objective in Eq. 6.6 using T(t)
A

8 Update X(t)
i = {x ∈ X(t−1)

i |x /∈ ∆(t−1)}, where i = 1, . . . , k

9 Select a set of samples ∆(t) from ∑k
i=1 X(t)

i by maximizing the objective in

Eq. 6.5, with |∆(t)| = budget(ζ)
n

A high-level description of the algorithm is presented in Algorithm 6. This algorithm takes
a k-grouped dataset, a label budget and the number of iterations as input. The first step is to
initialize the training set T0 and select a set of seed samples from k groups using our diversity
sampling strategy (Lines 1-2). Then the algorithm iterates to train a boosting model by actively
selecting samples (Lines 4-9). For each t-th iteration, we first update the training set T(t) by
adding newly selected samples ∆(t−1) into the previous training set T(t−1) (Line 4). Then an
additive function f (t) is trained for the boosting model F (Line 5). After that, a new training
set T(t)

A is generated for the sampling model G based on the output of the current F (Line
6), and a regressor is trained for uncertainty prediction (Line 7). We then update the groups
{X(t)

1 , . . . , X(t)
k by excluding the previous selected samples in ∆(t−1), and select a new set of

samples ∆(t) based on Eq. 6.5 Eq. 6.5 (Lines 8 - 9). The algorithm finally yields a trained
boosting model as output.

In the following, we first focus on discussing three important aspects of the algorithm: (i)
How to decide dynamic weighted values for samples? (ii) How to partition a sample space into
different groups? (iii) How to distribute a given label budget across iterations? Then, we will
discuss the softmax function used in our algorithm.

§6.4 Sampling Strategies 77

How to decide dynamic weighted values for samples?
During the training process of the boosting model, some samples in the training set may

have high training losses in a number of iterations. Such samples are often informative for pre-
dicting uncertainty. Thus, a dynamic weighted value w(t)

i is assigned to each sample xi to indi-
cate its importance, as shown in Eq. 6.6. By extending the work by Freund and Schapire [53],
we develop the following method of assigning dynamic weighted values in the LTS framework.
In each iteration, dynamic weighted values of samples are updated in two steps:

(1) Initialization: For each new sample xi at the t-th iteration, i.e., a sample in ∆(t−1), we
have:

w(t−1)
i =

1
|∆(t−1)|

. (6.8)

(2) Adjustment: Then, the weighted value for each sample xi in T(t)
A is re-calculated as:

w(t)
i = w(t−1)

i × e−
1
2 ln(1−ε(t−1)

ε(t−1))g(t−1)(xi)z
(t−1)
i

Zt
, (6.9)

where ε(t−1) = ∑i z(t−1)
i

|T(t−1)| and Zt is a normalization factor ensuring that the sum of all

weighted values of samples in T(t)
A equals to 1.

In our algorithm, a regressor g(t) is iteratively trained by minimizing the objective in
Eq. 6.6, in which dynamic weighted values are updated using the above method in each it-
eration.

How to partition a sample space into groups?
A key challenge of diversity sampling is: how to partition a sample space into groups such

that samples in the same group are more similar than samples in different groups? In many
real-world applications, samples that have same features are likely to be more similar than
samples that have different features. Thus, we consider to partition a sample space based on
available features of samples. This can also avoid common issues of sampling based on a data
distribution, such as selecting too many similar samples from high density areas. In doing so,
diversity sampling in our algorithm can select samples that are complementary to ones being
selected by uncertainty sampling.

Formally, given a sample space with d features, a label budget budget(ζ) and a number n

of iterations, we partition the sample space into k groups where k = d d
√

budget(ζ)
n e

d
and d e

indicates the ceiling function. For example, if we have budget(ζ) = 600, n = 20 and d = 4,

then k = d 4
√

600
20 e

4
= d2.34e4 = 81, i.e., 81 groups. Each of such groups corresponds to an

area in the sample space and samples from the same area have some common features.

How to distribute label budget across iterations?
Under a given label budget budget(ζ), when more samples are selected at the begin-

ning of the training process, it implies that less samples can be used in the later iterations
to leverage hints from observed samples for improving performance. For example, when

78 Learning-To-Sample for Entity Resolution

|∆(1)| = budget(ζ), i.e., all samples are used in the first iteration, the training process in
the LTS framework would be the same as in the traditional training process. On the other hand,
if allocating more samples to the later iterations, the boosting model F would have higher vari-
ance in the early iterations, but a better chance to ”bias” samples for active learning in the later
iterations.

In our algorithm, we distribute a label budget equally over all iterations, i.e., |∆(t)| =
budget(ζ)/n for any t ∈ [1, n] (Line 2 of Algorithm 6). An alternative is to distribute samples
in an exponentially decreasing manner over iterations, i.e., |∆(t)| = budget(ζ)/2t. As will be
discussed in our experiments later, the former approach outperforms the latter one in almost
all cases.

Softmax function. In general, the softmax function is used to map a d-dimensional vector v
of arbitrary real values to a d-dimensional vector σ(v) of real values, where each value is in
the range (0, 1), and all the values add up to 1. It can be expressed as:

σ : Rd →
{

σ ∈ Rd|0 ≤ σi ≤ 1,
d

∑
i=1

σi = 1
}

(6.10)

where,

σi =
evj

∑d
k=1 evk

f or j = 1, ..., d (6.11)

In our approach, we only use the softmax function for a 2-dimensional vector, i.e., v =

(y(t)i , ŷ(t)i) for a sample xi. Then we select the larger value of σi, i.e., max{σ1, σ2}.

6.5 Theoretical Analysis

As reported in the previous works [38; 93], the cold start problem often occurs in active learn-
ing because only a small amount of labeled samples is available in early iterations. Essentially,
this is due to the inability of making reliable predictions by a machine learning model if train-
ing data is not sufficient. When a dataset has highly imbalanced classes (i.e., the number of
samples from a majority class is much more than the number of samples from a minority class),
the cold start problem can be further aggravated. Treating samples of all classes equally often
leads to selecting samples that are likely to be similar or highly correlated, and thus are not
representative [76; 157].

In the LTS framework, the uncertainty of samples is measured using a regressor that is
dynamically trained on samples labeled with their losses from the boosting model. If we select
samples by only taking the uncertainty of samples into consideration, the cold start problem
would also occur in our work. Since one of the reasons underlying the cold start problem
is that training data is too small to be representative, we thus partition a sample space into a
number of groups based on similarity of features and introduce the regularization term Γ(v) to
ensure that more representative samples are selected from such a k-grouped sample space. Our
experiments show that this approach works effectively for addressing the cold start problem
(the experimental results will be discussed later in Section 6.6).

§6.6 Experiments 79

6.6 Experiments

We have conducted experiments to empirically verify our LTS approach, aiming to answer the
following questions:

(1) Given a limited label budget, how does our LTS approach perform in comparison with
other sampling methods?

(2) How effectively can our LTS approach deal with the cold start problem and the class
imbalance problem?

(3) How does the balancing parameter α affect the performance of our LTS approach?

(4) How do two sampling distribution methods perform, i.e., equal distribution vs exponen-
tially decreasing distribution?

(5) How does our LTS approach perform in reducing label budgets while still achieving the
same level of quality for classification as other sampling methods?

6.6.1 Experimental Setup

We evaluate our LTS framework on widely used entity resolution datasets [135], and the results
are shown in Section 6.6.2. Additionally, to test the generalization of our approach, we evaluate
LTS on two additional datasets, for multi-class image classification and salary level (binary
classification) prediction tasks, respectively, and the results are shown in Section 6.6.3

Datasets. Four datasets are used in our experiments: Cora, DBLP-Scholar, DBLP-ACM
and North Carolina Voter Registration (NCVoter). Details of these datasets are introduced in
Section 2.2. The datasets are highly imbalanced, i.e., the number of samples from the majority
class (non-match) is much more than the number of samples from the minority class (match)
in these datasets.

Baselines. We use the following machine learning-based baseline methods:

• CART [14], short for Classification And Regression Tree, is a decision tree approach.

• XG [19], short for eXtreme Gradient Boosting, is a widely used and state-of-the-art
boosting approach for decision trees.

• XG+RS, refers to applying XG on training sets built using the random sampling strategy.

• XG+US, refers to applying XG on training sets built only using the uncertainty sampling
strategy, i.e., α = 0 in our LTS framework.

• XG+DS, refers to applying XG on training sets built only using the diversity sampling
strategy, i.e., α→ ∞ in our LTS approach.

Our LTS approach is denoted as XG+LTS. To evaluate how the exponentially decreasing
distribution of samples may affect performance, we denote a variant of XG+LTS as XG+LTS(E)

80 Learning-To-Sample for Entity Resolution

which only differs from XG+LTS in distributing samples in an exponentially decreasing man-
ner. By default, we set α = 1 for XG+LTS and XG+LTS(E), unless otherwise stated. For XG,
the maximum depth of each tree is 5, and other parameters are set as default as used in [19].

Measures. We use precision, recall and f-measure as measures for entity resolution instead of
accuracy. Details of these measures are introduced in Section 2.2.2.

Label budgets. In our experiments, for each dataset X, we specify a label budget in terms of
a certain percentage of the size of the dataset (|X|). For example, when using 1% as the label
budget for the dataset NCVoter, i.e., 1% of |X|, we have 100,000 samples because NCVoter
contains 10M samples in total. We also set n = 20 (i.e., 20 iterations), and distribute a label
budget as follows:

• For the methods CART and XG, a label budget is used in the first iteration to randomly
select all samples within the given label budget for training.

• For the methods XG+RS, XG+US, XG+DS and XG+LTS, a given label budget is evenly
divided over 20 iterations. For example, given a label budget 1% for NCVoter, 5,000
samples are used in each iteration for 20 iterations.

• For the method XG+LTS(E), a given label budget is divided over 20 iterations in an
exponentially decreasing manner.

6.6.2 Results and Discussion

We discuss our experimental results to answer the aforementioned questions at the beginning
of this section.

6.6.2.1 Performance Comparison

F-measure results under different label budgets. The f-measure results under different label
budgets are presented in Table 6.3. Generally, for all the datasets, all the methods converge,
except CART, when the label budget is sufficient, e.g. 5% in Cora. XG+LTS outperforms
all the baselines over all the datasets. The balancing parameter α for the best performance
varies, depending on label budgets and datasets. For example, when the label budget is 5%,
XG+LTS with α = 1 performs best in Cora and XG+LTS with α = 0.5 performs best in
DBLP-ACM. When the label budget is relatively small, e.g. less than 1%, XG+DS achieves
a better performance than XG+US in all datasets. When the label budget is larger, e.g. in the
range 1% to 10%, XG+US performs better than XG+DS. In all cases, CART has the worst
performance among all the methods, which is followed by XG+RS.

Additionally, the baselines CART, XG, XG+RS and XG+US have no result when the label
budget is small, e.g. 0.01% in Cora and NCVoter, 0.1% in DBLP-ACM and DBLP-Scholar.
However, both XG+LTS and XG+DS achieve good performance, even when the label budget
is small.

Specifically, for DBLP-ACM dataset, budget(ζ) ranges from 0.5%× |X| to 10%× |X|.
Again, our XG+LTS algorithm outperforms all the baselines. However, different from Cora

§6.6 Experiments 81

dataset, XG + US performs the worst when budget(ζ) is small, i.e., no result generated until
2% of the dataset is used for training. For DBLP-Scholar dataset, budget(ζ) ranges from
0.01% to 10% of the entire dataset. Our XG+LTS approach has the best performance until
budget(ζ) is 10% of the dataset. Similar to Cora dataset, uncertainty sampling performs well
in this dataset and the best in the case of budget(ζ) = 10%× |X|. This is because a large
number of samples in this dataset have high uncertainty. For NCVoter dataset, our approach
performs the best and, particularly, outperforms other baselines significantly when budget(ζ)
is small, i.e., less than 1%× |X|. We notice that XG+US performs worse. The reason is that
samples in the majority class are similar and the uncertainty sampling fails to select samples
in the minority class, i.e., having the cold start problem.

Observation 1. From Table 6.3, we draw the following conclusions: (1) Both uncertainty
sampling and diversity sampling contribute to the improvement of the performance. (2) When
the label budget is limited, diversity sampling can select informative samples more effectively.
However, when the label budget is sufficient, diversity samples are less informative than un-
certainty samples.

Cold start problem and class imbalance problem. Now we discuss the experimental results
of our approach on dealing with the cold start problem and the class imbalance problem.

As shown in Table 6.3, when the label budget is small, i.e., 0.01% and less in Cora, 0.5%
and less in NCVoter and DBLP-ACM, and 0.1% and less in DBLP-Scholar, the methods CART,
XG, XG+RS and XG+US have the cold start problem (i.e, the FM values are zero). Compared
with these methods, XG+LTS only has the cold start problem in the case that the label budget
is 0.1% in DBLP-ACM. More interestingly, XG+DS does not have the code start problem in
all settings of our experiments over all datasets. Since XG+DS is a special case of XG+LTS,
this indicates that, when the label budget is small, we can handle the cold start problem by
choosing a high value for the parameter α.

Since the datasets used for entity resolution are highly imbalanced. We can see from Ta-
ble 6.3 that XG+DS outperforms all the other methods when the label budget is small, while all
the baselines have no result. When a dataset is highly imbalanced, samples from the majority
class are likely to be selected and samples from the minority class are often ignored, which
aggravates the cold start problem.

Observation 2. Our LTS framework helps to alleviate the cold start problem and the class
imbalanced problem in entity resolution tasks.

6.6.2.2 Impact of Parameters

Performance under different values of balancing parameter α. Table 6.3 shows that we
have conducted experiments on different values of α (i.e., α ∈ {0, 0.5, 1, 2, 5, ∞}) over all six
datasets. When the value of α increases, the XG+LTS approach biases more on the diversity.
When the label budget increases, the XG+LTS approach achieves better performance with a
smaller value of α. When the budget is low, e.g. less than 0.1% in Cora dataset, a larger α has a
better performance. It indicates that diversity sampling contributes more when the label budget
is smaller. On the other hand, when the budget is relatively high, e.g. larger than 5% in DBLP-
ACM and DBLP-Scholar, a smaller α can achieve better performance, and the f-measure results

82 Learning-To-Sample for Entity Resolution

Figure 6.4: Comparison of f-measure results for the LTS approach under two different sampling
distributions.

from high α is much smaller, e.g. in DBLP-ACM, the performance of α = 5 is about 10%
less than that of α = 0.5. It indicates that uncertainty sampling contributes more when the
label budget is relatively large. The f-measure results in NCVoter are not distinguishable under
various values of α when the label budget is greater than 1%, since all the f-measure results are
similar, i.e., larger than 0.99.

Observation 3. The balancing parameter α affects the model performance, and it varies w.r.t.
different datasets and the number of labels used.

Performance under different sampling distribution methods. Now we discuss the exper-
imental results of the LTS approach when using two different sampling distribution methods,
i.e., XG+LTS and XG+LTS(E). The experimental results are presented in Fig. 6.4. We can see
that XG+LTS obtains better f-measure results in almost all cases, except for two settings where
the label budgets are very small: 0.01% in Cora and 0.1% in DBLP-Scholar. This is due to
that diversity sampling contributes more in these cases. Therefore, in our LTS approach, we
choose equal sampling distribution rather than exponentially decreasing sampling distribution.

Furthermore, in Fig. 6.4, comparing two sampling distribution strategies, i.e., equally dis-
tributed (denoted as XG+LTS) and exponentially decreasing distributed (denoted as XG+LTS(E)),

§6.6 Experiments 83

we find that XG+LTS gains more stable performance than XG+LTS(E) when the label budget
is small. Especially in the NCVoter dataset, a limited number of samples may lead to no result
as output, e.g. budget(ζ) < 0.05%. However, when the label budget is large, e.g. 2% of
Cora dataset, XG+LTS(E) obtains more stable performance, which is 0.045 vs 0.018, but the
difference is not relatively significant. The SD values converge to zero when the label budget
is sufficiently large. The reason is that in the early stage, the number of samples is smaller than
the number of groups. Although the samples are selected from each group, it is still likely to
select samples with less informative. Since seed sample plays a very important role in active
learning, generally speaking, an equally distributed number of samples for each iteration is
enough in our framework when the sample size is limited.

Observation 4. The equal distribution strategy works better in most of the datasets under
different label budget. It is the reason why we choose this strategy as the default strategy in
our experiments.

Table 6.1: Comparison of label budgets w.r.t. classification results with desired FM values, where
XG+LTS has α = 1.

Dataset Cora DBLP-ACM DBLP-Scholar NCVoter
CART 5% 10% 10% 3%
XG 4% 8% 2% 2%
XG + RS 5% 12% 5% 2%
XG + US 2% 7% 2% 7%
XG + DS 3% 10% 2% 0.03%
XG + LTS 0.5% 4% 0.9% 0.03%
FM values 0.9 0.9 0.8 0.9

6.6.2.3 Label Efficiency

Table 6.1 presents our experimental results on the label cost under the same performance.
We set the desired FM value as 0.9 for each dataset, except for the dataset DBLP-Scholar.
This is because the dataset DBLP-Scholar is noisy and a classification result with the FM
value 0.9 can hardly be achieved. Therefore, we set the desired FM value 0.8 for this dataset.
Then we record the amount of label budgets required by each method in order to achieve the
desired F-measure values. From Table 6.1, we can see that, our XG+LTS method (α = 1)
requires the smallest number of samples for each of these datasets, in comparison with the
other baseline methods. Especially, for the dataset NCVoter, our XG+LTS approach requires
a significantly smaller number of samples for achieving the same performance, in comparison
with the baseline methods CART, XG, XG+RS and XG+US. Although XG+DS requires a
comparable label budget as our XG+LTS method for the dataset NCVoter, it requires at least a
double amount of label budgets for the other three datasets.

Observation 5. Our LTS framework can reduce the label cost significantly for all datasets
while still remaining a comparable performance w.r.t. all the baselines.

84 Learning-To-Sample for Entity Resolution

6.6.3 Supplementary Experiments on Classification Tasks

Table 6.2: Datasets for Classification Tasks.
Classification Tasks Datasets # Attributes # Samples (|X|) Types of Labels
Image classification Mnist 28× 28 60,000 10 digits (i.e., 0-9)

Salary level prediction Adult 14 48,842 {> 50k, ≤ 50k}

In this section, we conduct more experiments on traditional classification tasks, i.e., image
classification and salary level prediction to show that our model is not limited for ER tasks.

Two datasets are used in the experiments, details are shown in Table 6.2: (1) Mnist1 dataset
contains 28× 28 images, and each image corresponds to a handwritten digit. The task is to
classify the images into ten categories, i.e., from 0 to 9. (2) Adult2 dataset contains adults’
personal information. The task is to predict if a person’s salary income is more than 50k.

Fig. 6.5 presents the performance (accuracy) of our approach and the baseline methods.
For the dataset Mnist, both XG+US and XG+LTS obtain better results than the others. The
reason why XG+DS does not perform well is due to the large feature space of Mnist. There are
in total 784 features in this dataset. Thus, the number of groups is much larger than the number
of samples being selected in each iteration, which leads to suboptimal performance. For the
dataset Adult, XG+DS performs better than XG+US when the label budget is limited, e.g. less
than 0.2%. However, XG+US achieves better performance when the label budget increases,
e.g. more than 1%.

6.7 Summary

In this chapter, we have proposed a novel learning-based active learning framework called
Learning-To-Sample. This framework is composed of a sampling model G and a boosting
model F. The boosting model contains a dynamic training set. A subset of samples are added
into this training set in each iteration. These additional samples are selected iteratively by the
sampling model which can learn from the performance of the boosting model through a unified
process for two sampling strategies: uncertainty sampling (US) and diversity sampling (DS).
The experimental results show that our approach outperforms all the baselines, particularly
when the number of samples is limited. In addition to this, our framework can handle the cold
start problem and the class imbalance problem.

1Available from: http://yann.lecun.com/exdb/mnist/
2Available from: https://archive.ics.uci.edu/ml/datasets/adult

§6.7 Summary 85

0.
1

0.
2

0.
3

0.
5 1 2 3 5 10 20 30 50

Label budget %

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

(a) Mnist

0.
1

0.
2

0.
3

0.
5 1 2 3 5 10 20 30 50

Label budget %

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

(c) Mnist

0.
1

0.
2

0.
5 1 2 3 5 10 20 30 50

Label budget %

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84
(b) Adult

CART

XG

XG+RS

XG+US

XG+LTS

XG+DS
0.

1
0.

2

0.
5 1 2 3 5 10 20 30 50

Label budget %

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84
(d) Adult

α→∞
α=5

α=2

α=1

α=0.5

α=0

Figure 6.5: Comparison of accuracy results for image classification and salary level prediction
tasks under different label budgets.

86 Learning-To-Sample for Entity Resolution

Table
6.3:C

om
parison

off-m
easure

resultsfor
entity

resolution
tasksunder

differentlabelbudgets.

D
ataset

L
abelB

udgetbudget(ζ)
C

A
R

T
X

G
X

G
+R

S
X

G
+

U
S

X
G

+LT
S

X
G

+
D

S
X

G
+

LT
S(E

)
(%

of|X
|)

α
=

0
α
=

0.5
α
=

1
α
=

2
α
=

5
α
→

∞
α
=

1

C
ora

0.01
0

0
0

0
0.637

0.857
0.861

0.867
0.878

0.862
0.05

0.741
0.763

0.750
0.827

0.851
0.864

0.870
0.883

0.885
0.867

0.1
0.788

0.796
0.787

0.823
0.863

0.862
0.873

0.887
0.886

0.870
0.5

0.848
0.835

0.835
0.873

0.893
0.900

0.895
0.895

0.893
0.890

1
0.868

0.878
0.880

0.870
0.896

0.902
0.904

0.898
0.894

0.896
5

0.878
0.897

0.892
0.907

0.912
0.915

0.913
0.902

0.898
0.904

N
C

Voter

0.01
0

0
0

0
0.403

0.324
0.403

0.752
0.875

0.571
0.05

0
0

0
0

0.903
0.954

0.989
0.993

0.991
0.934

0.1
0

0
0

0
0.989

0.994
0.993

0.993
0.993

0.993
0.5

0
0

0
0

0.993
0.994

0.993
0.993

0.991
0.994

1
0.334

0.379
0.398

0
0.993

0.993
0.993

0.992
0.994

0.993
5

0.993
0.993

0.994
0.993

0.993
0.997

0.993
0.994

0.993
0.994

0.1
0

0
0

0
0

0
0

0
0.397

0
0.5

0
0

0
0

0.382
0.702

0.720
0.651

0.632
0.679

D
B

L
P-

1
0.348

0.347
0.279

0
0.813

0.878
0.778

0.730
0.721

0.793
A

C
M

2
0.599

0.767
0.680

0.403
0.851

0.884
0.867

0.789
0.783

0.854
5

0.870
0.850

0.803
0.874

0.935
0.931

0.889
0.837

0.833
0.891

10
0.903

0.911
0.890

0.926
0.983

0.981
0.937

0.893
0.899

0.933
0.1

0
0

0
0

0.586
0.723

0.733
0.741

0.731
0.727

0.5
0.378

0.54
0.498

0.555
0.764

0.773
0.794

0.790
0.780

0.781
D

B
L

P-
1

0.562
0.669

0.659
0.738

0.793
0.804

0.808
0.793

0.792
0.794

Scholar
2

0.772
0.806

0.771
0.807

0.810
0.815

0.813
0.799

0.801
0.811

5
0.773

0.822
0.803

0.836
0.838

0.836
0.831

0.821
0.818

0.828
10

0.808
0.835

0.830
0.865

0.859
0.851

0.844
0.837

0.829
0.853

Chapter 7

Generative Adversarial Networks for
Entity Resolution

7.1 Introduction

Generative adversarial network (GAN) and its variants have recently emerged as a powerful
deep learning technique for real-world applications across various domains such as image gen-
eration and natural language processing [60; 59]. Inspired by these advances, in this chapter,
we develop a novel semi-supervised generative adversarial network, called ERGAN, to solve
the aforementioned challenges faced by entity resolution applications. In ERGAN, there are
two key components, which are optimized in an adversarial learning manner: (1) a label gen-
erator G that aims to generates pseudo labels for unlabeled samples, and (2) a discriminator
D that aims to distinguish samples with pseudo labels from samples with real labels. The dis-
criminator D is trained using not only a small number of samples with real labels but also a
large number of samples with high-quality pseudo labels.

However, the question arises: how to ensure high-quality pseudo labels generated for un-
labeled samples? Unfortunately, the existing GAN and its variants cannot guarantee this when
the number of samples with real labels is limited. To address this question, our model ER-
GAN is designed to incorporate two modules: diversity module and propagation module into
the label generator G and the discriminator D, respectively. The diversity module enriches
the diversity of unlabeled samples during the sampling process, while the propagation module
guarantees that only unlabeled samples with high-quality pseudo labels can be propagated into
the training of the discriminator D. Consequently, even when only a very limited number of
labeled samples are available, ERGAN can still effectively infer the true distribution of all la-
bels in a semi-supervised manner. We theoretically prove that ERGAN overcomes the model
collapse and convergence problems in the original GAN. Specifically, the following properties
of ERGAN are proven: (1) The global optimality can be guaranteed; (2) The label generator G
and the discriminator D converge to the equilibrium point; (3) The diversity module helps im-
prove the generalization without compromising the global optimality and equilibrium; and (4)
The mode collapse issue is alleviated in ERGAN. The experimental results show that ERGAN
outperforms all state-of-the-art baselines, including unsupervised, semi-supervised and full-
supervised learning methods. Even when the label cost is very limited and the state-of-the-art
baselines fail to predicate labels, ERGAN can still achieve reasonably good performance.

87

88 Generative Adversarial Networks for Entity Resolution

Daniel Collins Los Angeles CA

Dan Collins LA California

Labeled instances

Record 𝑟𝑖

Feature

Vector 𝑥𝑖,𝑗

Attribute
Similarity Matrix

Unlabeled Instances
(𝑋𝑈)

Record 𝑟𝑗

𝑥, 𝑦

Label Generator

𝑥, 𝐺 𝑥

Discriminator

Back-Propagation

Labeled Instances
(𝑋𝐿, 𝑌)

G

ERGAN

Word
Embedding

Propagation
Module

D
Diversity
Module

Output

Input

𝐷(𝑥, 𝐺 𝑥)
Non-match

Match

Figure 7.1: Overview of the ERGAN framework. Using only a limited number of labeled samples
for training, ERGAN takes unlabeled samples as input and classifies them as being matches or non-
matches (i.e., predicting their labels).

Figure 7.1 shows an overview of our framework ERGAN for entity resolution tasks. Given
a record pair ri and rj, each record is first represented as a matrix of vector embeddings using
word embedding. Based on this, the record pair is transformed into an attribute similarity ma-
trix, which leads to a feature vector (i.e., an unlabeled sample). Takes these feature vectors (as
unlabeled samples), together with a limited number of labeled samples, as input, the ERGAN
will finally generate all samples with labels.

It is worthy to note that, although we only consider the use of ERGAN for entity resolution
in this chapter, the techniques of ERGAN for handing overfitting and imbalanced data can be
much more widely applicable. Additionally, our ERGAN framework can be used jointly with
any word embedding or string matching techniques for entity resolution tasks.

The rest of this chapter is structured as follows. Section 7.2 introduces the notations used
in the chapter and the formulation of the entity resolution classification problem. Section 7.3
presents the ERGAN framework which contains two components: a label generator and a dis-
criminator, as well as the diversity module and the propagation module for each component,
respectively. Section 7.4 analyzes some properties of ERGAN including the diversity of sam-
ples, the global optimality, the equilibrium and the mode collapse. Section 7.5 discusses our
experimental results. We conclude the chapter in Section 7.6.

7.2 Problem Formulation

Let R be a dataset consisting of a set of records where each r ∈ R is associated with a number
of attributes A. We use r.a to refer to the value of an attribute a ∈ A in a record r. Each
record pair (ri, rj) in R corresponds to a feature vector x(ij) ∈ Rm where each dimension

x(ij)k indicates a feature value, e.g., the textual similarity of values in an attribute ak ∈ A, i.e.,

x(ij)k = f (ri.ak, rj.ak), calculated by a function f .
Let X = {x(ij)|(ri, rj) ⊆ R× R} be the set of all samples corresponding to record pairs in

§7.3 Proposed Method: ERGAN 89

R and Y = {M, N} be a label space where M and N refer to two labels match and non-match,
respectively. There is a small subset XL ⊆ X of samples that are labeled, while the other
samples in X are unlabeled, i.e., XU = X− XL. We assume |XL| << |XU |, i.e., X has a very
limited number of labeled samples in XL but a large number of unlabeled samples in XU . We
denote (XL, Y) as a set of samples in XL and their labels in Y, and (xL, y) ∼ (XL, Y) as a pair
of sample xL ∈ XL and its label y ∈ Y. Our task is to tackle the entity resolution classification
problem as formulated below.

Definition 9. Given a set X of samples with X = XL ∪ XU and |XL| << |XU |, and a label
space Y = {M, N}, the entity resolution classification problem is to learn a model Λ that
can predict a label ŷ ∈ Y for each unlabeled sample x ∈ XU w.r.t.

max E(Λ)/|XU | (7.1)

where E(Λ) = ∑
x∈XU∧ŷ=y

1.

Intuitively, E(Λ) refers to the total number of unlabeled samples in XU whose labels are
correctly classified by Λ.

7.3 Proposed Method: ErGAN

Our proposed method ERGAN consists of two components: (1) a label generator G; and (2)
a discriminator D. Both G and D are differentiable functions.

7.3.1 Label Generator

In ERGAN, a label generator G can obtain samples from p(XU), but does not know about
p(Y) nor p(X, Y). Nevertheless, we know that p(XU) ≈ p(X) because XU ⊆ X and
|XU |/|X| is close to 1. The goal of G is to learn a conditional distribution pg(Y|XU) ≈
p(Y|XU), i.e., given an sample x ∼ p(XU) as input, G generates a pseudo label ŷ for x. Ide-
ally, the pseudo label ŷ generated for an sample x by G should be the same as the real label of
x. To simulate the conditional distribution p(Y|XU), the label generator G receives feedback
(i.e., gradients) from the discriminator D and is trained iteratively through backpropagation.

Diversity module. One major difference of our ERGAN from the original GAN and its vari-
ants such as CatGAN [138] is that we consider the diversity of samples in the minibatch sam-
pling process. More specifically, for all samples in X, we partition them into a number of non-
overlapping subspaces alike in certain features {X1, . . . , Xb} such that samples in the same
subspace are more similar than those in different subspaces. Accordingly, labeled samples in
XL and unlabeled samples in XU are partitioned into these b subspaces, i.e., XL

i = Xi ∩ XL

and XU
i = Xi ∩ XU .

Let v = (v1, ..., vb) be a binary vector corresponding to b subspaces, where each vi =

(v1
i , . . . , vni

i)
T ∈ [0, 1]ni and ni = |XU

i |. That is, each vj
i (1 ≤ j ≤ ni) is associated with an

sample in XU
i . Then, a minibatch of m samples is selected from XU according to the following

90 Generative Adversarial Networks for Entity Resolution

objective function:
maximize ||v||2,1 s.t. ∑

i,j
vj

i = m (7.2)

where ||v||2,1 is a l2,1-norm function defined as:

||v||2,1 =
b

∑
i=1
||vi||2 =

b

∑
i=1

√√√√ ni

∑
j=1

vj
i
2

(7.3)

Here, ||vi||2 is the l2-norm of vi. When vj
i = 1, the sample in XU

i corresponding to vj
i is

selected into the minibatch; otherwise, that sample is not selected. When the value of the l2,1-
norm is small, samples are selected from a small number of subspaces in XU and the diversity
of samples is low. Conversely, when maximizing the l2,1-norm in Eq. 7.2, samples are selected
from as many subspaces in XU as possible and the diversity of samples is high.

Objective function of G. After a minibatch of unlabeled samples is selected from XU ac-
cording to Eq. 7.2, the label generator G generates a pseudo label G(xi) for each unlabeled
sample xi in the minibatch. Then, (xi, G(xi)) is sent to the discriminator D. After receiving
the gradient from D, G updates its parameters according to the following objective:

LG =min
G

Ex∼p(XU
i)[log(1− D(x, G(x)))] (7.4)

7.3.2 Discriminator

Unlike GAN, a discriminator D in our ERGAN does not know about the real distribution
p(X, Y). Instead, D has access only to a limited number of samples with real labels, i.e.,
(XL, Y). The goal of D is to distinguish whether a labeled sample (x, G(x)) is from the real
distribution p(X, Y), i.e., given a pair (x, G(X)) as input, D generates a scalar value in [0, 1]
to indicate the probability that G(x) is the same as the real label y of x.

Propagation module. To achieve the above goal, as opposite to GAN and its variants in which
the discriminator has the true distribution p(X, Y), D in ERGAN is designed to approximate
the true joint distribution p(X, Y) progressively through a propagation module. The general
principle of propagation is that, the more confident the pseudo label G(x) of an sample x is the
same as its real label y, the more likely such an sample is selected. Specifically, let (Xt, G(Xt))
denote all unlabeled samples with their pseudo labels at the t-th iteration of propagation. These
samples are fed to D to obtain their scores D(Xt, G(Xt)) that indicates the probabilities of
their pseudo labels being the same as their real labels. Based on the scores, a subset ∆Xt ⊆ Xt

of samples is selected according to the following objective function:

argmax
∆Xt⊆Xt

∑
x∈∆Xt

D(x, G(x))

subject to |∆Xt| = γ
(7.5)

where γ is a hyper-parameter for the number of unlabeled samples being selected in the t-th
iteration of propagation.

§7.3 Proposed Method: ERGAN 91

(a) Seed Samples (b) 1-st Iteration (c) 2-nd Iteration

x
c

x
c x

c

x
c x

c

x
c

Figure 7.2: An illustration for propagation of ERGAN. A boundary between two classes (red and
blue) is learned through propagation.

Then, this subset of samples with their high-quality pseudo labels (∆Xt, Ŷ) is propagated
into the set of labeled samples (X∗, Y)t to train D, i.e.,

• (X∗, Y)0 = (XL, Y)

• (X∗, Y)t = (X∗, Y)t−1 ∪ (∆Xt, Ŷ)

Hence, at the t-th iteration of propagation, D has access to (X∗, Y)t, which is a mixed set
of labeled samples from XL (with real labels) and unlabeled samples from XU (with pseudo
labels generated by G). The following holds:

(X∗, Y)0 ⊆ (X∗, Y)1 ⊆ · · · ⊆ (X∗, Y)t (7.6)

Fig. 7.2 shows an example of the propagation in two iterations, where the grey dash line indi-
cates a boundary between two classes (red and blue) and is learned through propagation.

Objective function of D. The objective function of D at the t-th iteration of propagation is
defined as:

LD =max
D

Ex∼p(XU
i)log[(1− D(x, G(x)))]

+ λE(x,y)∼(X∗,Y)t log[D(x, y)]
(7.7)

where λ refers to a weighted term. In the following, we will explain how unlabeled samples
with their pseudo labels, i.e., (Xt, Ŷ), is selected at the t-th iteration of propagation.

7.3.3 Algorithm Description

Our algorithm is described in Algorithm 7. It involves two key processes: batch training (Lines
3-8) and label propagation (Lines 9-12). In the batch training process, a minibatch is randomly
selected from unlabeled samples in XU and G generates pseudo labels for samples in this
minibatch (Lines 4-5). Then another minibatch is randomly selected from samples in (X∗, Y)t

(Line 6). After that, the discriminator D is trained using these two minibatches w.r.t. Eq.

92 Generative Adversarial Networks for Entity Resolution

7.7, while the label generator G is trained w.r.t. Eq. 7.4. The label propagation process only
occurs after each batch training is finished. At this time, G and D reach (or closely approach)
the equilibrium point and their parameters are fixed. In the label propagation process, G first
generates pseudo labels for all unlabeled samples in Xt, and then D predicts scores for these
samples. Based on these scores, a subset of samples ∆Xt ⊆ Xt with high-quality pseudo
labels is propagated into the set of labeled samples (X∗, Y)t for D in the t-th iteration.

How to choose b, t and n? In our algorithm, the number of subspaces b is decided based
on the attributes in each dataset. Suppose that a dataset has four attributes, we first obtain the
median value for each attribute, and then partition samples into 42 = 16 subspaces according
to whether attribute values of each sample are above or below the median values of these four
attributes [136]. Furthermore, n is a hyper-parameter referring to the number of iterations for
converging G and D, and t is decided by the total number XU of unlabeled samples and the
number γ of samples being propagated in each iteration, i.e., t = d |X

U |
γ e.

Algorithm 7: Minibatch stochastic gradient descent and label propagation of ER-
GAN

Input: b subspaces in X; XU; (XL, Y);
Output: (X∗, Y)t where X∗ = X

1 Initialize t = 0; (X∗, Y)0 = (XL, Y); X0 = X1 = XU

2 while Xt 6= ∅ do
3 for n iterations do // Batch training
4 Sample a minibatch {x1, ..., xm} from XU w.r.t. Eq. 7.2
5 Generate pseudo labels {(x1, G(x1)), ..., (xm, G(xm))}
6 Sample a minibatch {(xL

1 , y1), ..., (xL
m, ym)} from (X∗, Y)t

7 Update the parameters of D w.r.t. Eq. 7.7
8 Update the parameters of G w.r.t. Eq. 7.4

9 t=t+1 // Label propagation
10 Generate pseudo labels for Xt

11 Select ∆Xt ⊆ Xt for propagation w.r.t. Eq. 7.5
12 (X∗, Y)t = (X∗, Y)t−1 ∪ (∆Xt, Ŷ); Xt+1 = Xt − ∆Xt

7.4 Theoretical Analysis

We prove several nice theoretical properties of ERGAN.

Diversity. We first show that partitioning X into subspaces for diversity does not affect the
learning goals of G and D.

Lemma 7.4.1. If pg(Y|XU
i) by G approximates p(Y|XU

i) for each feature subspace XU
i , then

pg(Y|XU) ≈ p(Y|XU).

Proof. XU is partitioned into non-overlapping subspaces {XU
i }b

i=1. Thus, p(XU) is com-
posed of b distributions p(XU

i)(1 ≤ i ≤ b). Further, Eq. 7.2 prefers samples from different
subspaces, but within each subspace, samples are selected randomly.

§7.4 Theoretical Analysis 93

Since unlabeled and labeled samples are selected from the corresponding subspaces, we
have the following lemma for D.

Lemma 7.4.2. If pd(XU
i , Y) by D approximates p(XU

i , Y) for each feature subspace XU
i , then

pd(XU , Y) ≈ p(XU , Y).

By |XL| << |XU |, we have p(XU) ≈ p(X). Accordingly, pg(Y|XU) ≈ pg(Y|X),
pd(XU , Y) ≈ pd(X, Y), and p(XU , Y) ≈ p(X, Y).

Global optimality. Here we use pd(X∗, Y)t to refer to the distribution learned by D at the
t-th iteration of propagation. We have the following lemma.

Lemma 7.4.3. For the fixed label generator G, the optima D in the t-th iteration of propagation
is:

D∗G(x, y) =
pd(X∗, Y)t

pd(X∗, Y)t + pg(X, Y)t (7.8)

Proof. At the t-th iteration of propagation, by Eq. 7.7, the training objective of D is to maxi-
mize:

Ex∼p(XU
i)log[(1− D(x, G(x)))]+

λE(x,y)∼pd(X∗,Y)t log[D(x, y)]

Based on the ”change of variable” technique [57], we have pg(s) = pXU
i
(G−1(y)) dG−1(y)

d(s) ,
where s = (x, y) denotes the vector concatenated by x and y at the t-th iteration of propagation.
The first part of the above formula equals to:∫

s
pXU

i
(G−1(y))log(1− D(s))dG−1(y)

=
∫

s
pg(s)log[(1− D(s))]d(s)

Hence, we have an objective function that is the same as GAN [60]. This lemma is proven.

As a result, we have the following lemma.

Lemma 7.4.4. The global minimum of the training criterion of G under the optimal D at the
t-th iteration of propagation is achieved when pd(X∗, Y)t = pg(X, Y)t.

Equilibrium. By Lemma 7.4.4, we have pg(X, Y)t = pd(X∗, Y)t. Thus, the equilibrium of
the minimax game in ERGAN is achieved at each iteration of propagation. When the labels
are propagated sufficiently, the real data distribution is well simulated. The following lemma
states that D can approximate the real distribution p(X, Y) when the number of propagation
iterations is large.

Lemma 7.4.5. pd(X∗, Y)t approaches p(X, Y) when t increases.

94 Generative Adversarial Networks for Entity Resolution

Statistically, according to the Central Limit Theorem, the larger sample size the more likely
an estimated distribution is close to the real distribution. This lemma corresponds to the central
property of self-training based semi-supervised learning approaches [61; 143].

Mode collapse. The mode collapse problem occurs in GAN where the generator collapses
to generate limited and nonsensical images. However, our approach ERGAN does not suffer
from this problem for two reasons: (1) ERGAN takes unlabeled samples as input for both
G and D. This allows D to distinguish pd(X∗, Y)t from pg(X, Y)t, and D can prevent G
to generate the same kind of pseudo labels for unlabeled samples, i.e., mode collapse. (2) In
GAN, mode collapse only occurs when the discriminator is well trained but the generator is not
optimal. In ERGAN, (X∗, Y)t only has limited samples with labels when t is small. Thus, D
can hardly be optimal in early iterations of propagation. For later iterations, since G is trained
iteratively based on its previous parameters, the mode collapse issue can also be avoided.

Overfitting problem and imbalanced class problem. ERGAN can alleviate the overfitting
problem. This is because, instead of training a single classifier, ERGAN trains the label gener-
ator G and the discriminator D adversarially such that D improves G to generate pseudo labels
for unlabeled samples and G regularizes D from overfitting through propagating unlabeled
samples with high-quality pseudo labels. In essence, G serves as an adaptive regularization
term acting on D during the minibatch training process. ERGAN can also alleviate the imbal-
anced class problem. We observe that, the key to solving the imbalanced class problem lies
in how to effectively approximate the true distribution using limited samples with real labels.
Driven by this observation, ERGAN employs the diversity module to select samples diversely
from different feature subspaces. This leads to a dual boosting: both improving label efficiency
of selecting samples from the minority class, and improving learning efficiency of learning a
fast approximation on the underlying data distribution.

7.5 Experiments

We evaluate ERGAN to answer the following questions:

Q1. How does ERGAN perform in comparison with the state-of-the-art unsupervised, semi-
supervised and fully supervised methods?

Q2. How do the design choices such as the diversity module, the propagation module, and
GAN architecture affect performance of ERGAN?

Q3. To what degree ERGAN can work for classifying samples when the label cost is ex-
tremely limited (i.e., only a small number of samples with real labels)?

7.5.1 Experimental Setup

Datasets. We use four widely used benchmark datasets of entity resolution tasks: Cora,
DBLP-Scholar, DBLP-ACM and North Carolina Voter Registration (NCVoter). Table 2.2 sum-
marizes the characteristics of these four datasets which are highly imbalanced.

Baselines. We compare ERGAN with the following baselines:

§7.5 Experiments 95

• Unsupervised methods: Two-Steps (2S) is a widely-used unsupervised learning method
proposed by Christen [24]. Iterative Term-Entity Ranking and CliqueRank (ITER-CR) is
the state-of-the-art graph based unsupervised method for entity resolution [158].

• Semi-supervised methods: Semi-supervised Boosted Classifier (SBC) is the state-of-the-
art semi-supervised learning method with label propagation based on Adaboost classifier
[129] proposed by Kejriwal and Miranker [87].

• Fully supervised methods: Magellan is a state-of-the-art open-source fully supervised
learning-based entity resolution solution designed by Konda et al. [92]. We consider
two supervised classifiers provided in Magellan: Logistic Regression (LR) and Support
Vector Machine (SVM). eXtreme Gradient boosting (XGboost) is a state-of-the-art fully
supervised ensemble learning-based method proposed by Chen and Guestrin [19].

• Deep learning-based methods: DeepMatcher (DM) is a state-of-the-art deep learning-
based entity matching method for entity resolution [113]. Deep Transfer active learn-
ing (DTAL) is the state-of-the-art active learning method which combines both transfer
learning and active learning for handling entity resolution tasks [81].

To make a fair comparison, we follow the default parameters suggested in the original
papers of the baselines. Note that DM uses the imbalance rate as a hyper-parameter which
is normally unknown in real-life applications. Both DTAL and DM are deep learning-based
methods in which FastText [12] is used for learning word embeddings. For other baselines, we
use 2-gram Jaccard similarity for textual comparison.

To compare with the baselines that use word embeddings, we use ERGAN+WE to refer
to the model of ERGAN augmented with word embeddings for attribute values. In our ablation
study, we use ERGAN-D and ERGAN-P to refer to a model being obtained by removing the
diversity and propagation modules from ERGAN, respectively, and ERNN a model in which
the GAN architecture (i.e., G and D are trained alternatively) is replaced by a single multi-layer
perceptron for semi-supervised learning with the diversity module. We set λ = 1, m ≤ 100,
and γ = |X∗| at each iteration of propagation. Our models use the same word embedding and
similarity comparison techniques as the baselines.

Measures. We use the following widely used measures in entity resolution tasks for perfor-
mance evaluation: Recall, Precision and F-measure(FM). Details of these measures are intro-
duced in Section 2.2.2. Due to the existence of highly imbalanced classes in entity resolution
datasets, F-measure is preferred rather than accuracy in our experiments.

7.5.2 Results and Discussion

In this section, we discuss the results of our experiments to answer the aforementioned ques-
tions.

7.5.2.1 Performance Comparison

Performance comparison under 60% training set. We conduct an experiment to evaluate
how our methods perform against the baselines. Following the previous work for the super-

96 Generative Adversarial Networks for Entity Resolution

Cora DBLP-ACM DBLP-Scholar NCVoter
Datasets

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

(a) Precision

2S
SVM
LR
XGBoost
ER-GAN

Cora DBLP-ACM DBLP-Scholar NCVoter
Datasets

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Re
ca

ll

(b) Recall

Cora DBLP-ACM DBLP-Scholar NCVoter
Datasets

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F-
m

ea
su

re

(c) FM

Figure 7.3: Comparison of precision, recall and f-measure results with 20% training over four
datasets.

Figure 7.4: Comparison of f-measure results with 0.1% – 10% training for ablation study under
four datasets.

§7.5 Experiments 97

Table 7.1: Comparison of f-measure results with 60% training. The results marked by ∗ are taken
from the original chapters and the others are obtained by running the code provided by the authors.

Method
Datasets

Cora
DBLP- DBLP-

NCVoter
ACM Scholar

2S [24] 62.69 91.43 68.78 98.96
ITER-CR* [158] 89.00 – – –
SBC [87] 85.71 97.09 85.47 99.78
SVM [92] 88.95 97.19 85.71 98.48
LR [92] 80.25 95.56 83.84 99.37
XGBoost [19] 91.34 97.20 86.63 100
ERGAN 93.03 98.23 88.32 100

DM [113] 98.58 98.29 94.68 100
DTAL* [81] 98.68±0.26 98.45±0.22 92.94±0.47 –
ERGAN+WE 98.72±0.15 98.51±0.23 94.73±0.35 100

vised methods DM [113] and DTAL [81], we split the datasets with 60% for training and the
rest for testing.

Table 7.1 shows the results of the experiment, where the last three methods DM, DTAL and
ERGAN+WE are deep-learning methods which use word embeddings for attribute values and
the other methods use Jaccard similarity for comparing attribute values (without using word
embeddings). We can see that, the unsupervised method 2S performs the worst among all the
methods. However, the other unsupervised method ITER-CR performs better than SBC, SVM
and LR due to its ability to leverage graph based structure. Compared with the fully supervised
methods, the semi-supervised method SBC performs better than LR, comparably with SVM,
but worse than XGBoost. Our method ERGAN performs better than any non-deep-learning
method, but worse than the deep-learning methods with word embedding, i.e., DM, DTAL and
ERGAN+WE. Nonetheless, our method ERGAN+WE outperforms all the baseline, including
two deep-learning methods DM and DTAL, over all databases they have the results.

Observation 1. With sufficient training data, ERGAN+WE performs better than ERGAN
due to the power of word embedding for records. ERGAN+WE has superior performance
against all the baselines consistently.

Performance comparison under 20% training set. To understand how performance may
change when the amount of training data is reduced, we conduct an experiment on the super-
vised methods by splitting the datasets into 20% for training and 80% for testing. DTAL is
excluded in this experiment because the original paper does not have results in this setting and
also no code is available.

Fig. 7.3 shows the results of precision, recall and f-measure over four datasets. LR per-
forms the worst except for precision on DBLP-ACM. The performance of the semi-supervised
method SBC is better than LR and SVM, and comparable with XGBoost w.r.t. f-measure. This
is because SBC takes the advantage of label propagation but its classifier Adaboost is not as
powerful as XGBoost. For the deep-learning methods, the performance of DM drops signif-

98 Generative Adversarial Networks for Entity Resolution

icantly on DBLP-ACM and DBLP-Scholar and even worse than ERGAN which is different
from the case of 60% training in Table 7.1. ERGAN+WE still performs the best on all datasets
w.r.t. all the three measures. Overall, compared with Table 7.1, the performance of SVM, LR
and DM is affected considerably on one or more datasets, whereas SBC, XGBoost, ERGAN
and ERGAN+WE remain comparable performance.

Observation 2. With reduced but still considerable training data, the performance of ERGAN
and ERGAN+WE remains strong and consistent. This is because ERGAN and ERGAN+WE
benefit from its adversarial learning architecture and diversity and propagation modules.

Performance comparison under less than 10% training set. To study performance under
a limited number of samples with real labels, we further conduct an experiment using only
a small percentage for training, ranging from 0.1% to 10% of the datasets, and the rest for
testing.

Fig. 7.4 shows the experimental results. ERGAN performs best among all the methods
over all the datasets when training data is below 1%. ERGAN+WE performs poorly in this
range. However, the performance of ERGAN+WE increases rapidly with increasing training
data and exceeds all the other methods on all the datasets when training data reaches 10%. LR
and DM have a similar trend as ERGAN+WE, but perform significantly worse. The semi-
supervised method SBC performs better than ERGAN+WE only when training data is small,
i.e., below 0.2% for Cora and below 0.9% for DBLP-ACM, DBLP-Scholar and NCVoter. The
performance of SVM and XGBoost varies in datasets, i.e., perform well on Cora and DBLP-
ACM, but badly on DBLP-Schloar and NCVoter. This demonstrates that the performance of
SVM and XGBoost is sensitive to the imbalance rate of a dataset, and they fail to handle imbal-
anced data when no sufficient training data is available. For NCVoter, due to a clear boundary
existing between matches and non-matches in the underlying distribution, the performance of
all the methods that perform poorly for small training data can be dramatically improved af-
ter using 0.6% or more training data. In general, we may conclude that, compared with the
cases of 60% and 20% training in Table 7.1 and Fig. 7.3, the performance gain of the methods
with word embedding against the methods without word embedding does not exist anymore.
Instead, the methods with word embedding performs worse than most of the methods without
word embedding when training data is small, i.e., below 1%.

Observation 3. When decreasing training data, ERGAN+WE gradually performs worse than
ERGAN+WE. This is because, ERGAN+WE transforms samples into a high dimensional
space through word embedding and thus requires much more labels in training than ERGAN.

7.5.2.2 Ablation Analysis

We conduct an ablation study to evaluate the effects of the key components of ERGAN, in-
cluding the adversarial learning architecture, the diversity module and the propagation module,
under different label costs, ranging from 0.1% to 60% for training. The results are presented in
Table 7.2. We observe that the performance of all the methods ERNN, ERGAN-D, ERGAN-
P and ERGAN become stable and gradually converge when the label cost increases, e.g. in the
case of 60% training. Nonetheless, ERGAN performs the best among all the methods, and the

§7.5 Experiments 99

Table 7.2: Comparison of f-measure results with 0.1%, 1%, 20% and 60% training for ablation
analysis.

Datasets Cora DBLP-ACM
0.1% 1% 20% 60% 0.1% 1% 20% 60%

ERNN 84.46 90.67 91.43 92.78 88.05 95.68 98.20 98.22
ERGAN-D 79.87 85.14 91.27 92.97 0 93.30 97.16 98.21
ERGAN-P 85.18 90.76 91.42 93.03 92.67 95.96 98.21 98.23
ERGAN 87.45 91.07 91.54 93.03 96.89 96.93 98.22 98.23

Datasets DBLP-Scholar NCVoter
0.1% 1% 20% 60% 0.1% 1% 20% 60%

ERNN 82.76 83.17 86.71 87.73 99.39 100 100 100
ERGAN-D 0 78.85 83.43 88.29 0 99.58 100 100
ERGAN-P 83.43 85.34 86.55 88.32 99.39 99.79 100 100
ERGAN 84.23 85.85 86.86 88.32 99.45 100 100 100

performance of the other methods varies in different datasets. In the following, we will discuss
how each key component of ERGAN may affect the performance.

Adversarial learning architecture. The performance of ERNN generally lies in between ERGAN-
D and ERGAN-P, and significantly worse than ERGAN. This indicates that the use of adver-
sarial learning architecture by ERGAN helps to improve the performance, particularly when
training data is limited, e.g., for 0.1% training, ERGAN improves around 3% on Cora and
more than 8% on DBLP-ACM upon ERNN.

Diversity module. In Table 7.2, the results of ERGAN-D are the worst among all the methods
over all the datasets. This indicates that diverse samples are more informative for model train-
ing, which can improve the label efficiency. Specifically, with 0.1% training, ERGAN-D fails
to work (i.e., f-measure value is 0) on three datasets except for Cora. This is because ERGAN-
D lacks the diversity module and can only randomly select samples for training. As a result,
all training samples are selected from the majority class (non-matches), and accordingly no
matched sample can be classified correctly by ERGAN-D, i.e., all the samples are classified
as non-matches. Since datasets in entity resolution applications are usually highly imbalanced,
training data without diversity may hardly contain samples from the minority class (matches)
when labels are limited, thus leading to poor performance.

Propagation module. Table 7.2 shows that ERGAN-P generally has better performance than
ERNN and ERGAN-D, and thus it may affect the performance of ERGAN least compared
with the other two key components: the adversarial learning architecture and the diversity
module, especially when the label cost is small, e.g. 0.1% and 1% training. Additionally,
when the label cost is 60%, the performance of ERGAN-P and ERGAN is the same. This is
because samples with real labels in 60% training data can provide sufficient information for
learning, and the propagation of samples with pseudo labels becomes unnecessary.

Observation 4. In ERGAN, all the three key components, i.e., the adversarial learning
architecture, the diversity module and the propagation module, are necessary, each serving
as an integral part of the entire framework.

100 Generative Adversarial Networks for Entity Resolution

Table 7.3: Comparison of f-measure results under extremely limited real-labeled samples. The
methods SVM, LR, XGBoost, DM, ERGAN-D, and ERGAN+WE have the f-measure value 0 in all
these settings and are thus excluded from the table.

Dataset Label Cost Methods
(#samples) SBC ERNN ERGAN-P ERGAN

Cora

50 0 0.6648 0.7358 0.7735
100 0 0.7684 0.7960 0.8083
200 0.303 0.7742 0.8156 0.8314
500 0.7629 0.8234 0.8493 0.8691

50 0 0.6694 0.8492 0.8869
DBLP- 100 0 0.7261 0.9143 0.9673
ACM 200 0 0.7463 0.9151 0.9656

500 0 0.8013 0.9174 0.9681

50 0 0.0043 0.6777 0.7760
DBLP- 100 0 0.0536 0.7335 0.8045
Scholar 200 0 0.6869 0.7869 0.8124

500 0 0.7903 0.8256 0.8372

NCVoter

50 0 0.3603 0.6389 0.7192
100 0 0.8202 0.9091 0.9532
200 0 0.9289 0.9431 0.9583
500 0 0.9724 0.9740 0.9740

7.5.2.3 Extremeness Test

In the previous experiments, ERGAN has demonstrated strong and consistent performance
when training data is reduced from 60% to 0.1%. However, a question left is: what are the
minimum label costs required by ERGAN to achieve reasonably performance? To answer
this, we conduct an experiment under extremely limited label cost, ranging from 50 to 500
samples with real labels. Table 7.3 shows the results of our experiment. Note that we exclude
the results of the methods SVM, LR, XGBoost, DM, ERNN, ERGAN-D and ERGAN+WE
from this table because they fail to work when the label costs are below 500, i.e., f-measure
value is 0 in all the settings in Table 7.3.

In Table 7.3, the results of SBC are almost 0 except for the cases when the label cost is 200
and 500 on Cora. This shows that SBC as a semi-supervised method can perform better than
other fully supervised methods SVM, LR, XGBoost and DM under extremely limited label
cost. Moreover, the performance of SBC is affected by the imbalance rate, and SBC fails to
perform when the imbalance rate of a dataset is high.

We also notice that ERGAN can perform reasonably well on all the datasets even with 50
labels, and achieve good performance using only 500 labels. Moreover, ERNN, ERGAN-P
and ERGAN have results in all the setting, but ERGAN-D does not have results in any of these
settings. This is due to the diversity module, which can effectively select balanced training data
to maximize the use of labels under extremely limited label cost. ERGAN-P performs better

§7.6 Summary 101

than ERNN on all the datasets. It indicates that performance may be harmed rather than helped
by propagation if the quality of pseudo labels being propagated is not guaranteed. It is worthy
to note that, for the cases of 50 and 100 labels on DBLP-Scholar dataset, we find that the
reason why ERNN has very low feature values is because of high recall values (i.e., 0.749 for
50 labels and 0.777 for 100 labels) but low precision values (i.e., 0.002 for 50 labels and 0.028
for 100 labels). It means ERNN incorrectly classifies many non-matches as matches (i.e., false
positives) and then propagates them into training data, leading to poor performance. With the
increase in the label cost, this phenomenon is alleviated.

Observation 5. ERGAN can achieve good performance even with extremely limited labels.
This is because the label generator G and the discriminator D are trained adversarially in ER-
GAN such that G uses the diversity module to balance the selection of samples from different
classes and D propagates samples with high-quality psuedo labels into training.

7.6 Summary

In this chapter, we have proposed a novel method, called ERGAN, to solve the entity resolution
classification problem with very limited labeled samples. ERGAN incorporates the diversity
of samples into sampling, prior to training the models. ERGAN consists of a label generator G
to generate pseudo labels for unlabeled samples, and a discriminator D to distinguish samples
with pseudo labels from samples with real labels.

102 Generative Adversarial Networks for Entity Resolution

Chapter 8

Conclusions and Future Work

In this thesis, we have studied some tasks that are important during the entity resolution pro-
cess, such as learning blocking schemes and training classifiers. While existing work focuses
on how to learn good blocking schemes and how to train a classification model w.r.t. the ac-
curacy and scalability, we have noticed the following challenges in entity resolution: highly
imbalanced data distributions and difficulties of obtaining labels in real-life applications. Thus,
we have targeted at solving such challenges. Specifically, we have proposed the following ap-
proaches:

• In Chapter 4, we have used active learning techniques to develop a blocking scheme
learning approach. Our approach overcomes the weaknesses of the existing work in
two aspects: (1) Previously, supervised blocking scheme learning approaches require
a large number of labels for learning a blocking scheme, which is an expensive task
for entity resolution; (2) Existing unsupervised blocking scheme learning approaches
generate training sets based on the similarity of record pairs, instead of their true labels,
thus the training quality can not be guaranteed. Our experimental results show that our
proposed approach outperforms the baseline approaches under a pre-defined error rate
within a label budget.

• In Chapter 5, we have proposed a scheme skyline learning framework called skyblock-
ing, which integrates skyline query techniques and active learning techniques into learn-
ing a set of optimal blocking schemes under different constraints and a limited label
budget. We have tackled the class imbalance problem by solving the balanced sampling
problem. We have also proposed the scheme extension strategy to reduce the searching
space and label costs. We have further developed three algorithms for efficiently learning
scheme skylines.

• In Chapter 6, we have proposed a novel learning-based active learning framework called
Learning-To-Sample. We use the state-of-the-art machine learning models to solve the
classification tasks in entity resolution. This framework is composed of a sampling
model G and a boosting model F. The boosting model contains a dynamic training set
with an increasing number of samples in different iterations. These additional samples
are selected iteratively by the sampling model which can learn from the performance
of the boosting model through a unified process for two sampling strategies: uncer-
tainty sampling (US) and diversity sampling (DS). The experimental results show that

103

104 Conclusions and Future Work

our approach outperforms all the baselines, particularly when the number of samples is
relatively small. In addition to this, our framework can handle the cold start problem and
the class imbalance problem.

• In Chapter 7, we have proposed ERGAN, to solve the entity resolution classification
problem under a limited number of labeled samples. ERGAN takes the advantages of
semi-supervised learning, and it incorporates the diversity of samples into sampling,
prior to training the models. This approach consists two key components: (1) with a
diversity module, the label generator G is used to generate pseudo labels for unlabeled
samples; (2) a discriminator D is used to distinguish samples with pseudo labels from
samples with real labels, and a propagation module is designed to propagate high ranking
pseudo labeled samples into real labeled sample set. This approach can be extended with
word embedding for handling attribute values, leading to an enhanced method, called
ERGAN+WE. We have formally proven that even with a limited number of samples
with real labels, D and G in ERGAN can converge to the true distribution of samples
and their labels. Our experimental results show that the performance of our methods
beats all the baselines.

Inspired by the success for deep learning models in computer vision [60; 59] and natu-
ral language processing [39], entity resolution with deep learning techniques has been widely
developed. Compared with traditional entity resolution approaches targeting at solving struc-
tured data, they have shown the advantages on solving unstructured data, i.e., no attribute is
specified in the dataset, which can achieve much better performance [113]. The most recent
work using Graph Convolutional Network (GCN) considers entity resolution in a token-centric
manner rather than attribute-centric [99].

Apart from graph-based neural networks, language models are also trained and applied for
non-structured data, i.e., sentences, paragraphs and documents w.r.t. natural language. some
work has been published for entity resolution based on the pre-trained language models and
achieved quite comparable results [159]. Due to the challenge that the labels for training sam-
ples are hard to achieve, transfer learning technique has also been adopted in entity resolution,
which helps to reduce the label cost using pre-trained models [81]. Further researches are still
necessary on deep learning-based entity resolution classification. For example, integrating ac-
tive learning techniques into deep learning models, which will be useful to reduce the label cost
in training a model. Active learning techniques can also be used with transfer learning using
pre-trained language models. Specific active learning strategies can be defined as heuristics
based on the token level record representations. Furthermore, graph-based models can also be
developed for classification with active learning techniques.

In the future, we can also further explore how to design an efficient deep learning-based
approach for blocking. Skyline querying is a useful technique for decision making. Skyblock-
ing helps the user to select the most suitable blocking schemes in practice. However, at its
core, the efficiency and accuracy of the scheme skyline are determined by blocking scheme
learning algorithms. Our skyblocking algorithm can be improved in the future with applying
some state-of-the-art skyline query algorithms and skyline learning approaches [80; 155] into
blocking scheme learning process, thus the performance of skyblocking can also be improved.

105

Furthermore, we may consider an extended active learning framework which will not be lim-
ited to the blocking scheme learning, but also be applied for schema selection and so on.

106 Conclusions and Future Work

Bibliography

1. A. Aizawa and K. Oyama. A fast linkage detection scheme for multi-source information
integration. In Web Information Retrieval and Integration, 2005. WIRI’05. Proceedings.
International Workshop on Challenges in, pages 30–39. IEEE, 2005. 23

2. Y. Altowim, D. V. Kalashnikov, and S. Mehrotra. Progressive approach to relational
entity resolution. Proceedings of the VLDB Endowment, 7(11):999–1010, 2014. 3

3. A. Arasu, M. Götz, and R. Kaushik. On active learning of record matching packages. In
SIGMOD, pages 783–794. ACM, 2010. 38

4. A. Arasu, M. Götz, and S. Kaushik. Active learning of record matching packages, July 14
2015. US Patent 9,081,817. 7

5. M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks.
In International Conference on Machine Learning (ICML), pages 214–223, 2017. 34

6. S. Basu, A. Banerjee, and R. Mooney. Semi-supervised clustering by seeding. In Inter-
national Conference on Machine Learning (ICML), 2002. 7

7. R. Baxter, P. Christen, and T. Churches. A comparison of fast blocking methods for
record linkage; erschienen in: Proceedings of the workshop on data cleaning, record
linkage and object consolidation at the ninth acm sigkdd international conference on
knowledge discovery and data mining; washington dc; 2003; o. 21

8. K. Bellare, S. Iyengar, A. G. Parameswaran, and V. Rastogi. Active sampling for entity
matching. In SIGKDD, pages 1131–1139. ACM, 2012. 38

9. Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic language
model. The journal of machine learning research, 3:1137–1155, 2003. 8

10. I. Bhattacharya and L. Getoor. A latent dirichlet model for unsupervised entity resolution.
In SIAM International Conference on Data Mining, pages 47–58, 2006. 27

11. M. Bilenko, B. Kamath, and R. J. Mooney. Adaptive blocking: Learning to scale up
record linkage. In Sixth International Conference on Data Mining (ICDM’06), pages
87–96. IEEE, 2006. 3, 5, 6, 22, 36, 37, 42, 60

12. P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with sub-
word information. Transactions of the Association for Computational Linguistics, 5:135–
146, 2017. 95

107

108 BIBLIOGRAPHY

13. S. Borzsony, D. Kossmann, and K. Stocker. The skyline operator. In ICDE, pages 421–
430. IEEE, 2001. 30

14. L. Breiman. Classification and regression trees. Wadsworth International Group, 1984.
33, 79

15. L. Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996. 33

16. K. Brinker. Incorporating diversity in active learning with support vector machines. In
Proceedings of the 20th International Conference on Machine Learning (ICML), 2003.
31

17. Y. Cao, Z. Chen, J. Zhu, P. Yue, C.-Y. Lin, and Y. Yu. Leveraging unlabeled data to scale
blocking for record linkage. In IJCAI, volume 22, page 2211, 2011. 5, 6, 22, 37

18. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321–
357, 2002. 31

19. T. Chen and C. Guestrin. Xgboost: a scalable tree boosting system. In international
conference on Knowledge Discovery and Data mining (SIGKDD), 2016. 27, 33, 79, 80,
95, 97

20. S. Chester and I. Assent. Explanations for skyline query results. In EDBT, pages 349–
360, 2015. 49

21. J. Chomicki, P. Ciaccia, and N. Meneghetti. Skyline queries, front and back. SIGMOD
Record, 42(3):6–18, 2013. 29, 49

22. J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting. In ICDE, pages
717–719. IEEE, 2003. 30

23. J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting: Theory and
optimizations. In IIPWM, pages 595–604. Springer, 2005. 30

24. P. Christen. Automatic record linkage using seeded nearest neighbour and support vector
machine classification. In international conference on Knowledge Discovery and Data
mining (SIGKDD), pages 151–159. ACM, 2008. 7, 27, 95, 97

25. P. Christen. Development and user experiences of an open source data cleaning, dedupli-
cation and record linkage system. ACM SIGKDD Explorations Newsletter, 11(1):39–48,
2009. 26, 27

26. P. Christen. Data matching: concepts and techniques for record linkage, entity resolution,
and duplicate detection. Springer Science & Business Media, 2012. 1, 2, 3, 19, 20, 21,
26, 31

27. P. Christen. A survey of indexing techniques for scalable record linkage and deduplica-
tion. TKDE, 24(9):1537–1555, 2012. 2, 6, 14, 21, 44, 60

BIBLIOGRAPHY 109

28. P. Christen et al. Towards parameter-free blocking for scalable record linkage. 2007. 21

29. P. Christen, D. Vatsalan, and Q. Wang. Efficient entity resolution with adaptive and
interactive training data selection. In ICDM, pages 727–732. IEEE, 2015. 49

30. V. Christophides, V. Efthymiou, T. Palpanas, G. Papadakis, and K. Stefanidis. End-to-end
entity resolution for big data: A survey. arXiv preprint:1905.06397, 2019. 28, 29

31. H.-M. Chu and H.-T. Lin. Can active learning experience be transferred? In Proceedings
of the 16th International Conference on Data Mining (ICDM), 2016. 32

32. T. Churches, P. Christen, K. Lim, and J. X. Zhu. Preparation of name and address data
for record linkage using hidden markov models. BMC Medical Informatics and Decision
Making, 2(1):9, 2002. 20

33. D. Clark. Practical introduction to record linkage for injury research. Injury Prevention,
10(3):186–191, 2004. 19

34. W. Cohen, P. Ravikumar, and S. Fienberg. A comparison of string metrics for match-
ing names and records. In Kdd workshop on data cleaning and object consolidation,
volume 3, pages 73–78, 2003. 26

35. W. W. Cohen and J. Richman. Learning to match and cluster large high-dimensional
data sets for data integration. In Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 475–480. ACM, 2002. 5, 23

36. A. Culotta and A. McCallum. Reducing labeling effort for structured prediction tasks. In
Proceedings of the AAAI conference on artificial intelligence, 2005. 31

37. S. Dasgupta and D. Hsu. Hierarchical sampling for active learning. In Proceedings of
the 25th international conference on machine learning, pages 208–215. ACM, 2008. 30,
36

38. Y. Deng, K. Chen, Y. Shen, and H. Jin. Adversarial active learning for sequences label-
ing and generation. In Proceedings of the International Joint Conferences on Artificial
Intelligence (IJCAI), 2018. 34, 69, 70, 78

39. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
28, 29, 104

40. P. Donmez and J. G. Carbonell. Paired-sampling in density-sensitive active learning.
2008. 69

41. A. V. Dorogush, V. Ershov, and A. Gulin. Catboost: gradient boosting with categorical
features support. arXiv preprint arXiv:1810.11363, 2018. 33

42. O. Dovrat, I. Lang, and S. Avidan. Learning to sample. In Proceedings of the conference
on Computer Vision and Pattern Recognition (CVPR), 2019. 32

110 BIBLIOGRAPHY

43. U. Draisbach and F. Naumann. A comparison and generalization of blocking and win-
dowing algorithms for duplicate detection. In International Workshop on QDB, pages
51–56, 2009. 5

44. M. Ebraheem, S. Thirumuruganathan, S. Joty, M. Ouzzani, and N. Tang. Distributed
representations of tuples for entity resolution. Proceedings of the VLDB Endowment,
11(11):1454–1467, 2018. 19, 28

45. S. Ertekin, J. Huang, L. Bottou, and L. Giles. Learning on the border: active learning
in imbalanced data classification. In Proceedings of the international Conference on
Information and Knowledge Management (CIKM), 2007. 7, 31, 69

46. W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record matching rules. Proceedings of
the VLDB Endowment, 2(1):407–418, 2009. 27

47. I. P. Fellegi and A. B. Sunter. A theory for record linkage. Journal of the American
Statistical Association, 64(328):1183–1210, 1969. 1, 21, 22, 44, 60

48. Z. Ferdowsi, R. Ghani, and R. Settimi. Online active learning with imbalanced classes. In
Data Mining (ICDM), 2013 IEEE 13th International Conference on, pages 1043–1048.
IEEE, 2013. 31

49. J. Fisher, P. Christen, and Q. Wang. Active learning based entity resolution using markov
logic. In PAKDD, pages 338–349. Springer, 2016. 7, 31, 36, 49

50. J. Fisher, P. Christen, Q. Wang, and E. Rahm. A clustering-based framework to control
block sizes for entity resolution. In SIGKDD, pages 279–288. ACM, 2015. 1, 5, 21, 23

51. M. Fortini, B. Liseo, A. Nuccitelli, and M. Scanu. On bayesian record linkage. Research
in Official Statistics, 4(1):185–198, 2001. 26

52. Y. Freund. Boosting a weak learning algorithm by majority. Information and computa-
tion, 1995. 27, 33

53. Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of computer and system sciences, 1997. 77

54. Y. Freund, R. E. Schapire, et al. Experiments with a new boosting algorithm. In Pro-
ceedings of the International Conference on Machine Learning (ICML), 1996. 33

55. J. Friedman, T. Hastie, R. Tibshirani, et al. Additive logistic regression: a statistical view
of boosting. The annals of statistics, 2000. 33

56. C. Fu, X. Han, L. Sun, B. Chen, W. Zhang, S. Wu, and H. Kong. End-to-end multi-
perspective matching for entity resolution. In IJCAI, pages 4961–4967, 2019. 28

57. C. W. Gardiner et al. Handbook of stochastic methods, volume 3. springer Berlin, 1985.
93

BIBLIOGRAPHY 111

58. L. Getoor and A. Machanavajjhala. Entity resolution for big data. In Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 1527–1527. ACM, 2013. 3

59. I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016. 28, 34, 87,
104

60. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in neural in-
formation processing systems (NeurIPS), pages 2672–2680, 2014. 28, 34, 87, 93, 104

61. Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimization. In
Advances in neural information processing systems (NeurIPS), pages 529–536, 2005. 94

62. A. Gruenheid, X. L. Dong, and D. Srivastava. Incremental record linkage. VLDB En-
dowment, 7(9):697–708, 2014. 2, 3

63. J. Hammersley. Monte carlo methods. Springer Science & Business Media, 2013. 32

64. J. Han, J. Pei, and M. Kamber. Data mining: concepts and techniques. Elsevier, 2011.
27

65. M. A. Hernández and S. J. Stolfo. The merge/purge problem for large databases. In
Sigmod Record, volume 24, pages 127–138. ACM, 1995. 21, 22

66. T. N. Herzog, F. J. Scheuren, and W. E. Winkler. Data quality and record linkage tech-
niques. Springer Science & Business Media, 2007. 26

67. T. K. Ho. Random decision forests. In Proceedings of 3rd international conference on
document analysis and recognition, volume 1, pages 278–282. IEEE, 1995. 33

68. A. Holub, P. Perona, and M. C. Burl. Entropy-based active learning for object recog-
nition. In Proceedings of the Conference on Computer Vision and Pattern Recognition
Workshops (CVPR), 2008. 31, 69

69. W.-N. Hsu and H.-T. Lin. Active learning by learning. In Proceedings of the Twenty-
Ninth AAAI conference on artificial intelligence, 2015. 31, 69

70. Y. Hu, Q. Wang, D. Vatsalan, and P. Christen. Regression classifier for improved temporal
record linkage. 2016. 2

71. A. K. Jain. Data clustering: 50 years beyond k-means. Pattern recognition letters,
31(8):651–666, 2010. 7

72. P. Jain and A. Kapoor. Active learning for large multi-class problems. In Proceedings of
the conference on Computer Vision and Pattern Recognition (CVPR), 2009. 7, 31

73. P. Jamshidi, M. Velez, C. Kästner, and N. Siegmund. Learning to sample: Exploiting
similarities across environments to learn performance models for configurable systems.
In Proceedings of the 26th Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE), 2018. 32

112 BIBLIOGRAPHY

74. M. A. Jaro. Probabilistic linkage of large public health data files. Statistics in medicine,
14(5-7):491–498, 1995. 19

75. G. Jeh and J. Widom. Scaling personalized web search. In Proceedings of the 12th
international conference on World Wide Web, pages 271–279. ACM, 2003. 19

76. L. Jiang, D. Meng, S.-I. Yu, Z. Lan, S. Shan, and A. Hauptmann. Self-paced learning
with diversity. In Advances in Neural Information Processing Systems (NeurIPS), pages
2078–2086, 2014. 31, 75, 78

77. L. Jin, C. Li, and S. Mehrotra. Efficient record linkage in large data sets. In Database
Systems for Advanced Applications, 2003.(DASFAA 2003). Proceedings. Eighth Interna-
tional Conference on, pages 137–146. IEEE, 2003. 23

78. P. Jokinen, J. Tarhio, and E. Ukkonen. A comparison of approximate string matching
algorithms. Software: Practice and Experience, 26(12):1439–1458, 1996. 24

79. A. Jurek, J. Hong, Y. Chi, and W. Liu. A novel ensemble learning approach to unsuper-
vised record linkage. Information Systems, 71:40–54, 2017. 27

80. C. Kalyvas and T. Tzouramanis. A survey of skyline query processing. arXiv preprint
arXiv:1704.01788, 2017. 29, 49, 104

81. J. Kasai, K. Qian, S. Gurajada, Y. Li, and L. Popa. Low-resource deep entity resolution
with transfer and active learning. arXiv preprint arXiv:1906.08042, 2019. 28, 95, 97,
104

82. G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. Light-
gbm: A highly efficient gradient boosting decision tree. Advances in neural information
processing systems, 30:3146–3154, 2017. 33

83. M. Kearns and L. Valiant. Cryptographic limitations on learning boolean formulae and
finite automata. Journal of the ACM (JACM), 1994. 33

84. M. Kejriwal and D. P. Miranker. An unsupervised algorithm for learning blocking
schemes. In ICDM, pages 340–349. IEEE, 2013. 3, 5, 6, 22, 35, 36, 37, 42, 44, 60

85. M. Kejriwal and D. P. Miranker. A two-step blocking scheme learner for scalable link
discovery. In OM, pages 49–60, 2014. 5, 22

86. M. Kejriwal and D. P. Miranker. A dnf blocking scheme learner for heterogeneous
datasets. arXiv preprint arXiv:1501.01694, 2015. 6, 22

87. M. Kejriwal and D. P. Miranker. Semi-supervised instance matching using boosted clas-
sifiers. In European Semantic Web Conference, pages 388–402. Springer, 2015. 7, 27,
95, 97

88. I. Keles and K. Hose. Skyline queries over knowledge graphs. In International Semantic
Web Conference, pages 293–310. Springer, 2019. 29

BIBLIOGRAPHY 113

89. H. Keskustalo, A. Pirkola, K. Visala, E. Leppänen, and K. Järvelin. Non-adjacent di-
grams improve matching of cross-lingual spelling variants. In String Processing and
Information Retrieval, pages 252–265. Springer, 2003. 21, 23

90. S. Kim, Y. Song, K. Kim, J.-W. Cha, and G. G. Lee. Mmr-based active machine learning
for bio named entity recognition. In Proceedings of the Human Language Technology
Conference of the North American Chapter of the Association for Computational Lin-
guistics (HLT/NAACL), 2006. 7, 31

91. A. Kisielewicz. A solution of dedekincts problem on the number of isotone boolean
functions. J. reine angew. math, 386:139–144, 1988. 42

92. P. Konda, S. Das, A. Doan, A. Ardalan, J. R. Ballard, H. Li, F. Panahi, H. Zhang,
J. Naughton, and S. Prasad. Magellan: toward building entity matching management
systems over data science stacks. Proceedings of the VLDB Endowment, 9(13):1581–
1584, 2016. 27, 95, 97

93. K. Konyushkova, R. Sznitman, and P. Fua. Learning active learning from data. In Pro-
ceedings of the Advances in Neural Information Processing Systems (NIPS), 2017. 31,
32, 69, 70, 78

94. H. Köpcke and E. Rahm. Frameworks for entity matching: A comparison. Data &
Knowledge Engineering, 69(2):197–210, 2010. 51

95. H. Köpcke, A. Thor, and E. Rahm. Evaluation of entity resolution approaches on real-
world match problems. VLDB Endowment, 3(1-2):484–493, 2010. 13, 59

96. N. Krieger. Social class and the black/white crossover in the age-specific incidence of
breast cancer: a study linking census-derived data to population-based registry records.
American Journal of Epidemiology, 131(5):804–814, 1990. 19

97. K. Kukich. Techniques for automatically correcting words in text. ACM Computing
Surveys (CSUR), 24(4):377–439, 1992. 23

98. D. D. Lewis and W. A. Gale. A sequential algorithm for training text classifiers. In
Proceedings of the conference on Information Retrieval (SIGIR), 1994. 31, 69

99. B. Li, W. Wang, Y. Sun, L. Zhang, M. A. Ali, and Y. Wang. Grapher: Token-centric
entity resolution with graph convolutional neural networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 8172–8179, 2020. 29, 104

100. C. Li, J. Li, G. Wang, and L. Carin. Learning to sample with adversarially learned
likelihood-ratio. 2018. 32

101. X. Li, Y. Wu, M. Ester, B. Kao, X. Wang, and Y. Zheng. Semi-supervised clustering in
attributed heterogeneous information networks. In International Conference on World
Wide Web (WWW), pages 1621–1629, 2017. 7

114 BIBLIOGRAPHY

102. Y. Li, J. Li, Y. Suhara, A. Doan, and W.-C. Tan. Deep entity matching with pre-trained
language models. arXiv preprint arXiv:2004.00584, 2020. 29

103. X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars: The k most representative
skyline operator. In ICDM, pages 86–95. IEEE, 2007. 29

104. V. S. Lokhande, S. Wang, M. Singh, and J. Yarkony. Accelerating column generation via
flexible dual optimal inequalities with application to entity resolution. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34, pages 1593–1602, 2020. 28

105. C. D. Manning, H. Schütze, et al. Foundations of statistical natural language processing,
volume 999. MIT Press, 1999. 14

106. L. Maystre and M. Grossglauser. Just sort it! a simple and effective approach to active
preference learning. In Proceedings of the 34th International Conference on Machine
Learning (ICML), 2017. 69

107. A. McCallum, K. Nigam, and L. H. Ungar. Efficient clustering of high-dimensional data
sets with application to reference matching. In Proceedings of the sixth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 169–178. Cite-
seer, 2000. 21

108. M. Michelson and C. A. Knoblock. Learning blocking schemes for record linkage. In
AAAI, pages 440–445, 2006. 5, 6, 22, 35

109. M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv
preprint:1411.1784, 2014. 34

110. T. M. Mitchell et al. Machine learning. wcb, 1997. 22

111. A. E. Monge, C. Elkan, et al. The field matching problem: Algorithms and applications.
In KDD, pages 267–270, 1996. 26

112. M. Morse, J. M. Patel, and H. V. Jagadish. Efficient skyline computation over low-
cardinality domains. In VLDB, pages 267–278. VLDB Endowment, 2007. 30

113. S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep, E. Arcaute,
and V. Raghavendra. Deep learning for entity matching: A design space exploration. In
Proceedings of the 2018 International Conference on Management of Data, pages 19–34.
ACM, 2018. 8, 19, 28, 95, 97, 104

114. M. Murugesan, W. Jiang, C. Clifton, L. Si, and J. Vaidya. Efficient privacy-preserving
similar document detection. The VLDB Journal—The International Journal on Very
Large Data Bases, 19(4):457–475, 2010. 19

115. G. Navarro. A guided tour to approximate string matching. ACM computing surveys
(CSUR), 33(1):31–88, 2001. 24, 25

BIBLIOGRAPHY 115

116. H. Nie, X. Han, B. He, L. Sun, B. Chen, W. Zhang, S. Wu, and H. Kong. Deep sequence-
to-sequence entity matching for heterogeneous entity resolution. In Proceedings of the
28th ACM International Conference on Information and Knowledge Management, pages
629–638, 2019. 28

117. M. Odell and R. Russell. The soundex coding system. US Patents, 1261167, 1918. 21

118. K. O’Hare, A. Jurek, and C. de Campos. A new technique of selecting an optimal block-
ing method for better record linkage. Information Systems, 77:151–166, 2018. 52

119. G. Papadakis, E. Ioannou, C. Niederée, and P. Fankhauser. Efficient entity resolution for
large heterogeneous information spaces. In Proceedings of the fourth ACM international
conference on Web search and data mining, pages 535–544. ACM, 2011. 21

120. G. Papadakis, E. Ioannou, T. Palpanas, C. Niederee, and W. Nejdl. A blocking framework
for entity resolution in highly heterogeneous information spaces. IEEE Transactions on
Knowledge and Data Engineering, 25(12):2665–2682, 2012. 21

121. G. Papadakis, G. Koutrika, T. Palpanas, and W. Nejdl. Meta-blocking: Taking entity
resolutionto the next level. TKDE, 26(8):1946–1960, 2014. 5, 21, 23

122. G. Papadakis, G. Papastefanatos, and G. Koutrika. Supervised meta-blocking. VLDB
Endowment, 7(14):1929–1940, 2014. 5, 21, 23

123. D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive algorithm for
skyline queries. In SIGMOD, pages 467–478. ACM, 2003. 30

124. R. Popp and J. Poindexter. Countering terrorism through information and privacy protec-
tion technologies. IEEE Security & Privacy, 4(6), 2006. 19

125. D. Pyle. Data preparation for data mining. morgan kaufmann, 1999. 7

126. B. Qian, X. Wang, N. Cao, H. Li, and Y.-G. Jiang. A relative similarity based method for
interactive patient risk prediction. Data Mining and Knowledge Discovery, 2015. 7, 31

127. V. Raghavan, P. Bollmann, and G. S. Jung. A critical investigation of recall and precision
as measures of retrieval system performance. ACM Transactions on Information Systems
(TOIS), 7(3):205–229, 1989. 14

128. E. Rahm and H. H. Do. Data cleaning: Problems and current approaches. IEEE Data
Eng. Bull., 23(4):3–13, 2000. 20

129. G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for adaboost. Machine learning,
42(3):287–320, 2001. 27, 95

130. T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Im-
proved techniques for training gans. In Advances in neural information processing sys-
tems (NeurIPS), pages 2234–2242, 2016. 34

116 BIBLIOGRAPHY

131. A. D. Sarma, A. Lall, D. Nanongkai, R. J. Lipton, and J. Xu. Representative skylines
using threshold-based preference distributions. In ICDE, pages 387–398. IEEE, 2011.
29, 49

132. G. Schohn and D. Cohn. Less is more: Active learning with support vector machines. In
ICML, volume 2, page 6. Citeseer, 2000. 7, 69

133. B. Settles. Active learning literature survey. 2010. 7, 30, 31, 69

134. B. Settles. Active learning. Synthesis Lectures on AIML, 6(1):1–114, 2012. 30

135. J. Shao and W. Qing. Active blocking scheme learning for entity resolution. In Pacific-
Asia Conference on Knowledge Discovery and Data Mining (PAKDD), 2018. 5, 49, 79

136. J. Shao, Q. Wang, and F. Liu. Learning to sample: an active learning framework. In
International Conference on Data Mining (ICDM), 2019. 7, 92

137. R. Singh, V. V. Meduri, A. Elmagarmid, S. Madden, P. Papotti, J.-A. Quiané-Ruiz,
A. Solar-Lezama, and N. Tang. Synthesizing entity matching rules by examples. VLDB
Endowment, 11(2):189–202, 2017. 27

138. J. T. Springenberg. Unsupervised and semi-supervised learning with categorical genera-
tive adversarial networks. arXiv preprint:1511.06390, 2015. 34, 89

139. R. S. Sutton, A. G. Barto, et al. Reinforcement learning: An introduction. MIT press,
1998. 73

140. V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, and B. P. Feuston. Random
forest: a classification and regression tool for compound classification and qsar modeling.
Journal of chemical information and computer sciences, 43(6):1947–1958, 2003. 33

141. Y. Tao, L. Ding, X. Lin, and J. Pei. Distance-based representative skyline. In ICDE,
pages 892–903. IEEE, 2009. 29

142. K.-S. Teong, L.-K. Soon, and T. T. Su. Schema-agnostic entity matching using pre-
trained language models. In Proceedings of the 29th ACM International Conference on
Information & Knowledge Management, pages 2241–2244, 2020. 29

143. I. Triguero, S. Garcı́a, and F. Herrera. Self-labeled techniques for semi-supervised learn-
ing: taxonomy, software and empirical study. Knowledge and Information systems,
42(2):245–284, 2015. 94

144. B. Van Berkel and K. De Smedt. Triphone analysis: a combined method for the correction
of orthographical and typographical errors. In Proceedings of the second conference
on Applied natural language processing, pages 77–83. Association for Computational
Linguistics, 1988. 23

145. V. S. Verykios, G. V. Moustakides, and M. G. Elfeky. A bayesian decision model for cost
optimal record matching. The VLDB Journal, 12(1):28–40, 2003. 26

BIBLIOGRAPHY 117

146. Q. Wang, M. Cui, and H. Liang. Semantic-aware blocking for entity resolution. TKDE,
28(1):166–180, 2016. 5, 35

147. Q. Wang, J. Gao, and P. Christen. A clustering-based framework for incrementally re-
pairing entity resolution. In PAKDD, pages 283–295. Springer, 2016. 2, 27, 28, 35

148. Q. Wang, K.-D. Schewe, W. Wang, et al. Provenance-aware entity resolution: Leveraging
provenance to improve quality. In DASFAA (1), pages 474–490, 2015. 27

149. Q. Wang, D. Vatsalan, and P. Christen. Efficient interactive training selection for large-
scale entity resolution. In PAKDD, pages 562–573. Springer, 2015. 3, 7, 37, 49

150. S. E. Whang and H. Garcia-Molina. Entity resolution with evolving rules. 2010. 27

151. S. E. Whang, D. Marmaros, and H. Garcia-Molina. Pay-as-you-go entity resolution.
IEEE Transactions on Knowledge and Data Engineering, 25(5):1111–1124, 2013. 19

152. S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and H. Garcia-Molina. Entity
resolution with iterative blocking. In SIGMOD, pages 219–232. ACM, 2009. 23

153. I. H. Witten, A. Moffat, and T. C. Bell. Managing gigabytes: compressing and indexing
documents and images. Morgan Kaufmann, 1999. 23

154. R. Wu, S. Chaba, S. Sawlani, X. Chu, and S. Thirumuruganathan. Zeroer: Entity reso-
lution using zero labeled examples. In Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 1149–1164, 2020. 29

155. M. Xie, R. C.-W. Wong, and A. Lall. An experimental survey of regret minimization
query and variants: bridging the best worlds between top-k query and skyline query. The
VLDB Journal, 29(1):147–175, 2020. 104

156. Z. Xu, R. Akella, and Y. Zhang. Incorporating diversity and density in active learning for
relevance feedback. In Proceedings of the European Conference on Information Retrieval
(ECIR), 2007. 31

157. Y. Yang, Z. Ma, F. Nie, X. Chang, and A. G. Hauptmann. Multi-class active learning by
uncertainty sampling with diversity maximization. International Journal of Computer
Vision, 2015. 7, 31, 32, 69, 78

158. D. Zhang, L. Guo, X. He, J. Shao, S. Wu, and H. T. Shen. A graph-theoretic fusion frame-
work for unsupervised entity resolution. In 2018 IEEE 34th International Conference on
Data Engineering (ICDE), pages 713–724. IEEE, 2018. 27, 95, 97

159. C. Zhao and Y. He. Auto-em: End-to-end fuzzy entity-matching using pre-trained deep
models and transfer learning. In The World Wide Web Conference, pages 2413–2424,
2019. 28, 104

	Acknowledgements
	Publications
	Abstract
	Contents
	Introduction
	Background
	Challenges in Entity Resolution
	Research Objectives
	Blocking Objectives
	Classification Objectives

	Contributions
	Thesis Outline

	Preliminaries
	Notations
	Experimental Setups
	Datasets
	Measurements
	Quality Measurements
	Efficiency Measurements

	Background and Related Work
	Entity Resolution
	Traditional Entity Resolution
	Blocking
	Comparison
	Classification
	Clustering

	Entity Resolution with Deep Learning

	Skyline Queries
	Active Learning
	Ensembling Techniques for Classification
	Generative Adversarial Networks

	Active Blocking Scheme Learning for Entity Resolution
	Introduction
	Problem Formulation
	Active Scheme Learning Framework
	Active Sampling
	Active Branching
	Algorithm Description

	Theoretical Analysis
	Experiments
	Experimental Setup
	Results and Discussion
	Label Efficiency
	Blocking Quality
	Blocking Efficiency

	Summary

	Skyblocking for Entity Resolution
	Introduction
	Problem Formulation
	Scheme Skyline Learning Framework
	Scheme Extension Strategy
	Naive Skyline Learning
	Adaptive Skyline Learning
	Progressive Skyline Learning

	Theoretical Analysis
	Experiments
	Experimental Setup
	Results and Discussion
	Label Efficiency
	Time Efficiency
	Blocking Quality

	Summary

	Learning-To-Sample for Entity Resolution
	Introduction
	Problem Formulation
	The Learning-To-Sample Framework
	Boosting Model
	Sampling Model

	Sampling Strategies
	Uncertainty Sampling
	Diversity Sampling
	Algorithm Description

	Theoretical Analysis
	Experiments
	Experimental Setup
	Results and Discussion
	Performance Comparison
	Impact of Parameters
	Label Efficiency

	Supplementary Experiments on Classification Tasks

	Summary

	Generative Adversarial Networks for Entity Resolution
	Introduction
	Problem Formulation
	Proposed Method: ErGAN
	Label Generator
	Discriminator
	Algorithm Description

	Theoretical Analysis
	Experiments
	Experimental Setup
	Results and Discussion
	Performance Comparison
	Ablation Analysis
	Extremeness Test

	Summary

	Conclusions and Future Work
	Bibliography

