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Introduction and challenges

*

How to build a set of “optimal” blocking schemes efficiently?

*

How to design an AL approach under various data distributions?

*

How to alleviate the overfitting problem for powerful models?

*

Conclusion

2/72



: : Qu?trali?n
X Q) ational
Entity Resolution University

The process of identifying records which represent the same
real-world entity from one or more datasets

Blocking Comparison
Evaluation Classification
Clustering
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Evaluation

Clustering

Comparison

v

Classification

Reduce the number of record pairs to be
compared by grouping potentially matched
records into the same block.

E.g., millions of pairs in real life.
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“mw‘:" Reduce the number of record pairs to be
compared by grouping potentially matched
records into the same block.

E.g., millions of pairs in real life.

Esluatoy Classification

Clustering

Without blocking: With blocking:
7 records with 21 pairs 7 records with 5 pairs
B
B/
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Using blocking schemes: (Which is better?)
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Color
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Name
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Using blocking schemes: (Which is better?)

(Y
5
N Color ER
o .,

How to learn a good blocking scheme?

Name

— Millions of record pairs, with highly imbalanced labels hard to obtain.

— The search space for all possible blocking schemes is large.
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Blocking

-
Comparison
Evaluation
n
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Clustering

A classifier is used to categorize samples into
matches and non-matches.
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Blocking

-
Comparison

Evaluation
'n
N e
Clustering

Considering we have samples within a block, and they are mapped into a
feature space shown as below:

A classifier is used to categorize samples into
matches and non-matches.
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The red and blue points refer to matches and non-matches

9/72



Australian
U £ D < Nati |
Training a Classifier University

Sufficient number of samples are necessary for training, but obtaining
their labels for learning is costly.
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Accuracy: 90% * Red: 6/20  * Blue: 6/20
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Initialization: random seed samples

Select the most uncertain instances
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1B. Settles, Active learning literature survey, 2010
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4 more samples are labeled
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The distribution of matches and non-matches is highly imbalanced.

A small number of samples are labeled.

— Various strategies: different datasets
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The distribution of matches and non-matches is highly imbalanced.

A small number of samples are labeled.

— Various strategies: different datasets

— Cold start: imbalanced ER data distribution
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Sample distribution Cold Start
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The distribution of matches and non-matches is highly imbalanced.

A small number of samples are labeled.

— Various strategies: different datasets

— Cold start: imbalanced ER data distribution

— Overfitting: powerful models
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Sample distribution Overfitting
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*

Introduction and challenges

*

How to build a set of “optimal” blocking schemes efficiently?
— Active scheme learning and scheme skyline learning 12

*

How to design an AL approach under various data distributions?

*

How to alleviate the overfitting problem for powerful models?

*

Conclusion

1J. Shao and Q. Wang. Active Blocking Scheme Learning for Entity Resolution. PAKDD'18.

2J. Shao, Q. Wang and Y. Lin. Skyblocking for Entity Resolution. IS'19.
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Disjunction of conjunction of attributes

Blocking schemes are built from:

\
N

-

Domain Supervised Unsupervised
Expert Learning Learning
L Human L Labeled L Syntactic
experience samples similarity
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Large Search Space 2(["72]):
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\ {A/B,CD} ANBVC
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N o

(AAB)V (CAD)

Sample distribution
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Our observation: similar attribute values — > matches

How to select attributes to build schemes?
Some values are frequent but useless, e.g. year.
Balanced samples for all possible attributes and select!

Balance Rate (s, X) describes the balance degree for a given scheme s
under a sample set X
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Our observation: similar attribute values — > matches

How to select attributes to build schemes?
Some values are frequent but useless, e.g. year.
Balanced samples for all possible attributes and select!

Balance Rate (s, X) describes the balance degree for a given scheme s
under a sample set X

Eg ifs=AAB, X ={x1,x}, then s(x1) = true, s(x2) = false
Thus (s, X) = 1(#"”6)51(#{3,56) = 0 (balanced):

CcC D
X1 0 1
X2 0 1
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Select samples to minimize the balance rate for a given set of schemes:

Similarity of authors
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(a)Random Sampling (b)Active Sampling
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Reduce the search space by extending “proper” schemes w.r.t. a specific
criterion, e.g. Pair Completeness (Recall) and Pair Quality (Precision).

A reduce block size, increase PQ
V increase block size, increase PC
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Reduce the search space by extending “proper” schemes w.r.t. a specific
criterion, e.g. Pair Completeness (Recall) and Pair Quality (Precision).

A reduce block size, increase PQ
V increase block size, increase PC

Example: to learn a blocking scheme with two attributes: (name), (color)

w.r.t. PQ=0.8

(name)
[ & B

p BN ﬁ ‘ % (color)/A\{name)
s B B B ‘a8
[ 8 B, | PQ=033 ‘ 8"‘ 8 |
8 & (color) o
B (& :

g8 4
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Possible Blocks

— The higher, the
better (PC and PQ
values) Ideal Blocks Eyfﬂy

— More records in one
block (high PC
threshold)
— Less records in one
block (high PQ
threshold

High PQ

B9 (B9
& 34
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Skyblocking Approach

Skyline queries under a set of blocking schemes:

Map schemes into a measure space

Blocking pc | PQ
scheme
s1 0.13 | 0.76
) 0.31 | 0.99
S3 0.58 | 0.76
S 0.84 | 0.40
S5 0.86 | 0.50

PQ

1.0

0.8

0.6

0.4

0.2

0
0

Australian
«=> National
University

Scheme Skyline

o

0]

02 04 06 08 1.0

PC
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Skyblocking Approach .3 ﬁ%ﬁ%%?;

Skyline queries under a set of blocking schemes:

Dominated VS Dominating schemes

Blocking pc | PQ
scheme
s1 0.13 | 0.76
) 0.31 | 0.99
S3 0.58 | 0.76
S 0.84 | 0.40
S5 0.86 | 0.50

PQ

1.0

0.8

0.6

0.4

0.2

0
0

Scheme Skyline

0]

02 04 06 08 1.0
PC
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A naive way to learn scheme skyline:

- Learn “optimal” schemes w.r.t. different thresholds

1.0

s

1

(a) Parallel Step

(b) Merging Step
1.0 *s,

PQ

0.1

1.0 0 1.0
PC
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Naive Skyline Learning (Naive-Sky) ﬁ%%é%?;

A naive way to learn scheme skyline:

- New threshold: current one plus a threshold interval, e.g. A =0.1

1.0

*s

(a) Parallel Step

2

1.0

PQ

0.2

1.0

(b) Merging Step
s, s,

1.0
PC
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Naive Skyline Learning (Naive-Sky) ﬁ%%é%?;

A naive way to learn scheme skyline:

- New threshold: current one plus a threshold interval, e.g. A =0.1

(a) Parallel Step (b) Merging Step
1.0 107 ks ks,
° *?53 *s
o |®
o
o
°
0 0
0 0.3 1.0 0 1.0
PC
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Naive Skyline Learning (Naive-Sky) ﬁ%%é%?;

A naive way to learn scheme skyline:

- New threshold: current one plus a threshold interval, e.g. A =0.1

(a) Parallel Step (b) Merging Step
1.0 107 ks ks,
o *‘54 *53—4
e °
o
o
°
0 0
0 0.4 1.0 0 1.0
PC
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A naive way to learn scheme skyline:

- New threshold: current one plus a threshold interval, e.g. A =0.1

1.0

(a) Parallel Step

*
Ss

1.0

PQ

1.0

(b) Merging Step
s, s,
*(53—5

1.0
PC
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A naive way to learn scheme skyline:

- New threshold: current one plus a threshold interval, e.g. A =0.1

1.0

(a) Parallel Step

Se

1.0

PQ

0.6

1.0

(b) Merging Step
s, s,
*(53—5

*Ss

1.0
PC
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A naive way to learn scheme skyline:

- New threshold: current one plus a threshold interval, e.g. A =0.1

1.0

(a) Parallel Step

S7

1.0

PQ

0.7

1.0

(b) Merging Step
s, s,
*53—5
*se

*s

1.0
PC
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A naive way to learn scheme skyline:

- New threshold: current one plus a threshold interval, e.g. A =0.1

1.0

(a) Parallel Step

PQ

1.0

(b) Merging Step

*1 ks,

*(5375
*Ss

*s

*Ss

1.0
PC
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A naive way to learn scheme skyline:

- New threshold: current one plus a threshold interval, e.g. A =0.1

1.0

(a) Parallel Step

0.91.0

PQ

1.0

(b) Merging Step

*1 ks,

*(5375
*Ss

*s

5y

0

1.0
PC
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A naive way to learn scheme skyline:

- Merge them for skyline

1.0

(a) Parallel Step

(b) Merging Step
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Observation: some are redundant under different thresholds: e.g. s3_5

New threshold: PC/PQ value of current scheme plus a threshold interval

PC Scaled
1.0 1.07 1.07 o
5022 52 53—? 52 53—? *Ss

o : 0.1 + PC(s5) L4 pcesle)

0.5 0.5 0.5
- rd N

0.0~ - - 0- : . | | .

0.0 0.5 1.0 0 0.5 1.0 0 0.5 1.0
PC PC PC
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Unnecessary label cost in Adap-Sky: samples are independently selected
and may be duplicated under different thresholds.

Pro-Sky with scheme extension:

(a) 1-ary Scheme Skyline
1.0

1.0

38/72



Progressive Skyline Learning (Pro-Sky) .‘7'” Australian

= University

Unnecessary label cost in Adap-Sky: samples are independently selected
and may be duplicated under different thresholds.

Pro-Sky with scheme extension:

(b) 2-ary Scheme Skyline

1.0

0.5

0
0 0.5 1.0
PC
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Progressive Skyline Learning (Pro-Sky) },9 Australian

= University

Unnecessary label cost in Adap-Sky: samples are independently selected
and may be duplicated under different thresholds.

Pro-Sky with scheme extension:

(c) 3+-ary Scheme Skyline

1.0
0.5
; B
0 0.5 1.0
PC
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Datasets
Dataset # of Attributes # of Records Class Imbalance Ratio
Cora 4 1,295 1:49
DBLP - ACM 4 2,616/2,294 1:1,117
DBLP - Scholar 4 2,616:64,263 1:31,440
NCVR 18 267,716/278,262 1:2,692
Baselines
Domain | Supervised | Unsupervised\ Active \
Expert Learning Learning Learning

L TBlo L RSL LFiSher L ASL
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(a) Cora (b) DBLP-Scholar
1.04 == Skyline Length-1 1.0
@ l-ary Schemes
0.84 0.8
_______________ -2
1
1
0.6 : 0.6
o] 1 o]
o ° o - o
1 (meeee e ———————— -9
0.4- g 0.4 !
1 1
1 1
i o |
0.21 ,. : 0.2 I
L] I 1
0 i ° 1 0.0 . . .1-__._ -
0 0.2 0.4 0.6 0.8 1.0 a 0.2 04 0.6 0.8 1.0
PC PC
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Scheme Skylines (Pro-Sky) in Experi ts _g-: ﬁ%ﬁ%%?;

(b) DBLP-Scholar

(a) Cora
l0 meeemm==n 1.0
1
1
i
0.8-___'.____ 1 0.8
L |?
0.6 i 06 T
o I ,
0.4+ 0.4
k-1
| == 1l-ary Skyli v 'l ] 1
0.2 - 2-ary Skil;:: 1 0.2 1
W Z-ary Conjunction I :
V¥ 2-ary Disjunction I [ JSP—— 5
0 T T T T 1 0.0 . = 1
0 0.2 0.4 0.6 0.8 1.0 o 0.2 0.4 08 0.8 10
PC

PC
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Scheme Skylines (Pro-Sky) in Experiments

PQ

(a) Cora
1.0---+-----=
I
|
0.8{ N .
i
4 I
0.6 | ‘i
- L1
1
0.41 H
1
== 2-ary Skyline H
| == 3+ary skyl -9
0.2 Iy .
® Fisher H
¥ TBlo 1
0 . : . —
0 0.2 0.4 0.6 0.8
PC

(b) DBLP-Scholar

Australian

1
1
1
1
-
1
1
1
1
——1
1
1
1
:
: i
0 02 04 06 08 10

39 National
University
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*

Introduction and challenges

*

How to build a set of “optimal” blocking schemes efficiently?

*

How to design an AL approach under various data distributions?
— Learning based active learning for ER !

*

How to alleviate the overfitting problem for powerful models?

*

Conclusion

1J. Shao, Q. Wang and F. Liu. Learning To Sample: an Active Learning Framework.

ICDM’'19.
4572



To build an active learning framework:

Performance

\S
«°
5
<0

e’a(‘{\(\%\\"\c’\
\X

Australian

39 National
University

Uncertainty Sampling

Random Sampling
(active)

Converge Point

AN

Random Sampling
(non-active)

Cold Start

# of labels
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Challenges

* No one-fit-all: the “best” active learning strategy varies due to
different datasets and machine learning models.

* Cold start problem: occurs under limited highly imbalanced samples.
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Challenges in ER with Active Learning Lational

Challenges

* No one-fit-all: the “best” active learning strategy varies due to
different datasets and machine learning models.

* Cold start problem: occurs under limited highly imbalanced samples.

Solution

— Dynamical estimation of model performance (learning-based)

— Uncertainty and diversity of samples

48 /72
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Uncertainty sampling: function-based uncertainty measures

Diversity sampling: considering sample distribution (feature values)

- .
LA ALR

(a) Entire Data Distribution

. .
s .

.
& .

(c) Uncertainty Sampling (d) Diversity Sampling
(4 groups)

49/72



Australian
0 [ R % National
Framework: Learning to Sample (LTS) " National |

Two models dynamically learn from each other in iterations for
performance improvement.

Training Set
(Boosting)

Boosting
Model F

Training Set
Sampling
Sampling
Model G i - -
Learning-based Diversity
Sampler Regularizer
| Dataset
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1| Softmax |

Sampling
Model G

S g
[

The boosting model F is a set of classi-
fiers (F ..., F(M),

A classifier f(t) € F at the t-th iteration
is trained by minimizing:
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The boosting model F is a set of classi-
fiers (F ..., F(M),

A classifier f(t) € F at the t-th iteration
is trained by minimizing:

Z (1 (Y;(t_l) + (), yi) + Qu(FD)
(xi.y1)eT®

where:

— T®: training set;

- )’?i(tfl) = Z,t(;ll f(K)(x;): predicted label of x;;
— {1: a differentiable loss function;

— Q1(f1): the complexity penalty for (1),
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Boosting

Sampling
Model G

Learning-based | Diversity
Sampler Regularizer

The sampling model G actively selects
a set A(®) of uncertainty and diversity
samples at the t-th iteration by:
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The sampling model G actively selects
a set A(®) of uncertainty and diversity
samples at the t-th iteration by:

Learning-based
Sampler

k

maximize Z Vig(t)(Xi) +a xT(v)
i=1

subject to ||v||; = |A®)]

where v = (v1,..., )T € {0,1}, k is the number of samples, and « is a
parameter.

— A regressor g(t)(x;) for uncertainty sampling
— A regularizer ['(v) for diversity sampling.
54 /72
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University

A regressor is trained to predict the uncer-
tainty of samples by minimizing:

S WM (x), 217) + Qa(g?)

(xi,2 ) eA®

Uncertainty Sampling

where:

- Al = {(x,z ))|x eT® z € [0,1]}: uncertainty sample set;
( ).

- Wi( ). the weights of x;;

the uncertainty of x;;

{>: a differentiable loss function;

— Qu(g(M): the complexity penalty for g(t).
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“ e+ " 7. | Thediversity I'(v) is defined using a k 1-norm

function:
N b
e F(v) = livllor = IIvilla
j=1
where:
— The sample space v with b groups {v1,...,Vvp};

— The vector v; € {0,1}™ indicates samples selected in a group;

— Sample size m = \Xj(t)| in a group.
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Dataset Laboel Budget C | -\pp ‘ %G ‘ XG+RS XG + US | XG+LTS | XG + DS

(% of |X]) a=0 a=1 @ — 00

0.01 0 0 0 0 0.857 0.878

0.05 0741 0763  0.750 0.827 0.864 0.885

Cora 0.1 0788 0.796  0.787 0.823 0.862 0.886
05 0.848 0.835 0.835 0.873 0.900 0.893

1 0.868 0.878  0.880 0.870 0.902 0.894

5 0.878 0.897  0.892 0.907 0.915 0.898

0.01 0 0 0 0 0.324 0.875

0.05 0 0 0 0 0.954 0.991

0.1 0 0 0 0 0.994 0.993

NCVoter 05 0 0 0 0 0.994 | 0991
1 0334 0379 0.398 0 0.993 0.994

5 0.093 0.993  0.994 0.993 0.997 0.993

0.1 0 0 0 0 0 0.397

0.5 0 0 0 0 0.702 0.632
DBLP- 1 0.348 0.347  0.279 0 0.878 | 0.7213
ACM 2 0.599 0.767  0.680 0.403 0.884 0.783
5 0.870 0.850 0.803 0.874 0.931 0.833

10 0.903 0911  0.890 0.926 0.981 0.899

0.1 0 0 0 0 0723 0.731

05 0378 054  0.498 0.555 0.773 0.780

DBLP- 1 0.562 0.669  0.659 0.738 0.804 0.792
Scholar 2 0772 0.806 0.771 0.807 0.815 0.801
5 0773 0.822 0.803 0.836 0.836 | 0.8188

10 0.808 0.835  0.830 0.865 0.851 0.829
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*

Introduction and challenges

*

How to build a set of “optimal” blocking schemes efficiently?

*

How to design an AL approach under various data distributions?

*

How to alleviate the overfitting problem for powerful models?
— A generative model with adversarial nets!

*

Conclusion

1. Shao, Q. Wang, A. Wijesinghe and E. Rahm. ERGAN: Generative Adversarial Networks

for Entity Resolution. ICDM'20.
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Challenges

* The imbalanced class problem: ER tasks

* The overfitting problem: powerful models
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Challenges in ER with Limited Samples s Natonal

Challenges

* The imbalanced class problem: ER tasks

* The overfitting problem: powerful models

Solution

— Label generator G: only have access to unlabeled samples, consider
diverse samples

— Discriminator D: provide feedback to train G, limited labels used with
propagation

60 /72
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Framework Overview U=y

Labeled Samples
Unlabeled Samples (0.6 0 H

U
r = .
\L’:l/‘l‘ '__Module

Discriminator

(xy)

(6, 6()

D(x,G(x))
Back-Propagation
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Label Generator G and Diversity Module sS5q National |

Labeled Samples
Unlabeled Samples’ [6:Ch%)
[N Y s T ——

:’i’ropagation(_ J
Module |
g e— Generate pseudo labels for unla-

beled samples

— TS gl Learn a conditional distribution
| (o Sl

| Module .G (x U\ ~ U

ot onertor [ pe(YX") = p(Y[X")
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Label Generator G and Diversity Module

Unlabeled Samples
@Y

Module

Diversity

Label Generator

,Y)

Labeled Samples

&

L’i’ropagation;\\i
Module |
oy Diciminaor | Generate pseudo labels for unla-

beled samples

A (x,6(x)) — :

el Learn a conditional distribution
D(x,6() pg(YlXU) ~ p(Y|XU)

Back-Propagation

A minibatch of m samples is selected from XY

according to the following objective function:

Diversity Sampling

(4 groups)

maximize [lv[l21 s.t. Zv,’ m
i7j

Australian
National
University
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Objective Function of G Nationdl

G updates its parameters according to:

Lo =min B, ,xvllog(l—D(x,G(x)))] (1)

where:
— G(x;) is the pseudo label of x; generated by G;

— (xi, G(x;)) is a pseudo labeled sample sent to the discriminator
D;

— D(x, G(x)) is the feedback from the discriminator D.
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Discriminator D University

Labeled Samples
(*xL,Y)

Unlabeled Samples
)

{{Propagation_

Module ]!
Discriminator | |

&.y) :

R (x.6()

Distinguish samples with pseudo la-
bels from samples with real labels

Learn a joint distribution p(X,Y)

Diversity

Module

{ Label Generator

Back-Propagation
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Discriminator D University

Unlabeled Samples
)

Labeled Samples
&Ly

{{Propagation_

Module |
Discriminator | |

&.y) :

Distinguish samples with pseudo la-
bels from samples with real labels

R (x.6()

‘ Learn a joint distribution p(X,Y)
: [Diversity e eemmmmen V

_Module ] D(x,6(x))
i\Lﬂbe' Generator i Back-Propagation

The objective function of D at the t-th iteration of propagation is:

Lp= mbax Ex~p(X,.U)|°g[(1 — D(x, G(x)))] o)
+ AE(y )~ (x+,v)l0g[D(x, y)]

where:

— A refers to a weighted term.
— (X*, Y)! refers to the labeled samples in t-th iteration.
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(a) Seed Samples (b) 1-st Iteration (c) 2-nd Iteration

The propagation module selects a minibatch of |AX*| high-quality pseudo
labeled samples for training D:

argmax Z D(x, G(x))
AXIEXT e AXt
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Experimental Setup: Baselines Lational

* Unsupervised: Two-Steps and Iterative Term-Entity Ranking and
CliqueRank (ITER-CR).

* Semi-supervised: Semi-supervised Boosted Classifier (SBC).

* Fully supervised: Magellan and eXtreme Gradient boosting
(XGboost).

* Deep Learning based: DeepMatcher (DM) and Deep Transfer
Active Learning (DTAL).

* Ablation Study: ErGAN+WE, ErGAN-D, ErGAN-P, and ErNN.
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Datasets
Method DBLP- DBLP-
Cora ACM Scholar NCVoter

2S 62.69 91.43 68.78 98.96
ITER-CR* 89.00 - - -
SBC 85.71 97.09 85.47 99.78
SVM 88.95 97.19 85.71 98.48
LR 80.25 95.56 83.84 99.37
XGBoost 91.34 97.20 86.63 100
ERGAN 93.03 98.23 88.32 100
DM 98.58 98.29 94.68 100
DTAL* 98.684+026 98.45102> 92.941 .47 -
ERGAN+WE | 98.72.015 98.51.053 94.73.(35 100
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Results: Ablation Study Lational

Datasets Cora DBLP-ACM
0.1% 1% 20% 60% | 0.1% 1% 20% 60%
ERNN 84.46 90.67 91.43 9278 | 88.05 9568 98.20 98.22

ErRGAN-D | 79.87 85.14 91.27 9297 0 9330 97.16 98.21
ErRGAN-P | 85.18 90.76 91.42 93.03 | 92.67 9596 98.21 98.23
ERGAN 87.45 91.07 91.54 93.03 | 96.89 96.93 98.22 98.23

Datasets DBLP-Scholar NCVoter
0.1% 1% 20% 60% | 0.1% 1% 20% 60%
ERNN 82.76 83.17 86.71 87.73 | 99.39 100 100 100

ErRGAN-D 0 78.85 83.43 88.29 0 99.58 100 100
ERGAN-P | 83.43 8534 86.55 88.32| 99.39 99.79 100 100
ErRGAN 84.23 85.85 86.86 88.32 | 99.45 100 100 100
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In summary, we have proposed four approaches for ER:

* ASL: an active scheme learning approach
* Skyblocking: scheme skyline learning under different blocking criteria
* LST: A learning-based active learning framework

* ERGAN: a generative model with adversarial nets
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Thank You!

Q& A

Email: Jingyu.shao@anu.edu.au
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