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Introduction



Data Publishing Process

Publishing data about individuals poses a privacy threat.

Invader

Publically 
Available Data

Data Recipient

Data Publishing

Anonymization

Individuals’ Data

Data Holder/ Publisher

Individuals’ 

Bob

Data Collection
Published 

Individuals’ Data

Hmm.. Bob 
has Cancer

Remove unique identifiers, e.g., name
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Related Work



PPDP Paradigms

01

02

03

04

k-Anonymity

Microaggregation

Differential Privacy

PPDP
Paradigms

Personalized Privacy

 Pros: Prevents identity disclosure. 
 Cons: Limited background knowledge.

 Pros: Enhance data utility.
 Cons: NP-hard problem.

 Pros: Mathematical privacy guarantee.
 Cons: Limits data utility.

 Pros: Provides Personalization.
 Cons: Difficult to achieve.
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Differential Privacy (DP)

DP bounds a shift in the output distribution of a randomized mech-
anism K that can be caused by a small change in its input.

Differ in one entry 

Probability

Outcomes

Outcomes

Probability

Probability

Outcomes

ratio bounded by 𝑒𝑒ε

Differential 
Privacy Indistinguishable

to any invader 

X

Y

𝑒𝑒ε ⁓ (1 + ε)

ε ϵ [0,∞) is a 
privacy budget

If mechanism K satisfies ε-DP then
Pr[K(X) ∈ D] ≤ eε Pr[K(Y) ∈ D]
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Standard way of Achieving DP

One way to satisfy DP is to add controlled noise to the output of
a query f using a random distribution (e.g., Laplace).

True Answer
f(X) ResearcherDatabase

Query  f

Add Noise
𝑓𝑓 𝑋𝑋 + Lap∆(𝑓𝑓)

ε

Noise is calibrated according to sensitivity (∆) of f and ε.

∆ is maximum variation in f between X and Y.

ε > 0 is the privacy parameter.
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Research Goals and Challenges



Goals

To develop privacy-preserving data publishing (PPDP) mechanisms.

Privacy: Provide privacy guarantee of differential privacy.

Utility: Enhance the accuracy of published data while provid-
ing differential privacy.
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Key Challenges

How to determine the right amount of noise that guarantees
both privacy and accuracy under DP?

How to reduce the amount of noise needed to achieve DP by
controlling sensitivity?

How to enhance data utility under different data structures
while providing DP guarantee?
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Contributions and Publications



Contributions

Part I: Relational Data Publishing
▶ Reduce sensitivity by incorporating microaggregation into DP.
▶ Enhance overall utility by reducing both error produced

during microaggregation and DP.

Part II: Graph Data Publishing
▶ Preserve topological structure of a graph through adding

controlled perturbation to its edges.
▶ Publish higher-order network statistics while providing DP

guarantee to nodes in a network.
▶ Consider personalization to achieve personal data protection

under DP while enhancing utility.
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Publications

Part I: Relational Data Publishing
▶ M.Iftikhar, Q.Wang, Y.Lin. Publishing Differentially Private

Datasets via Stable Microaggregation. EDBT 2019.
▶ M.Iftikhar, Q.Wang, Y.Li, Y.Lin, J.Shao. Differentially Private

Data Release via α-Stable Microaggregation. Under journal
preparation.

Part II: Graph Data Publishing
▶ M.Iftikhar, Q.Wang, Y.Lin. dK-Microaggregation: Anonymizing

Graphs with Differential Privacy Guarantees. PAKDD 2020.
▶ M.Iftikhar, Q.Wang. dK-Projection: Publishing Graph Joint

Degree Distribution with Node Differential Privacy. PAKDD
2021.

▶ M.Iftikhar, Q.Wang, Y.Li. dK-Personalization: Publishing
Network Statistics with Personalized Differential Privacy.
Accepted by PAKDD 2022.
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Relational Data Publishing



Neighboring Datasets

Name Zip Age Nationality Disease

Eve 13053 28 Russian Heart

Alice 13068 29 American Heart

Bob 13068 21 Japanese Flu

Amy 14853 50 Indian Cancer

X

Name Zip Age Nationality Disease

Eve 13053 28 Russian Heart

Alice 13068 29 American Heart

Bob 13068 21 Japanese Flu

Farhan 26001 29 Pakistan Covid-19

Y

X and Y differ in one record
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Problem Statement

Problem: Given a dataset X, we want to generate Xε that can
provide DP guarantee.

Key Observation: Microaggregation can help to reduce sensi-
tivity for improving data utility.
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Proposed Solution

A microaggregated dataset X is added between X and Xε.

Original 
dataset

ε-differentially 
private dataset 

Microaggregated 
dataset 

X 𝑋𝑋𝜀𝜀

�𝑋𝑋

KM

K

a query f approximated
========⇒ a query f ◦M
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Microaggregation

A microaggregation algorithm M consists of two phases:

Microaggregation

Group similar entries into 
the same cluster of size k

Partition Aggregation

Replace each entry with the 
centroid of its cluster

13 50



Microaggregation meets DP

An arbitrary M could not reduce sensitivity when incorporated
into DP.

M may generate considerably different clusters.

Leading to a much larger ∆(f ◦M) than ∆(f ).
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Proposed Framework

Stable microaggregation characterizes a certain correspondence
of clusters in microaggregated datasets to control sensitivity.
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Stable microaggregation

There is a bijection between CX and CY such that at most two pairs
of corresponding clusters differ in a single record.

∆(f ◦M) is reduced to (2 ×∆(f )/k) from (n/k×∆(f )).

Needs k ≥ 2 to reduce noise regardless of dataset size n.
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α-stable microaggregation

We proposed a unified framework called α-stable microaggrega-
tion which generalized stable microaggregation:

At most α pairs of corresponding clusters in CX and CY differ
in a single record to enhance within cluster homogeneity.

α indicates the trade-off between error introduced during
microaggregation and achieving DP.

∆(f ◦M) is (α×∆(f )/k).
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α-stable microaggregation algorithms

1. Sequential α-stable microaggregation algorithm: Performs
record-level search such that swapping records leads to
enhance within cluster homogeneity.

2. Decisional α-stable microaggregation algorithm: Performs
cluster-level search followed by record-level within the
selected cluster to enhance within cluster homogeneity.
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Experimental Setup

Three datasets:

(1) CENSUS contains 1,080 records.

(2) EIA contains 4,092 records.

(2) Tarragona contains 834 records.

Two measures:
▶ IL1s measures information loss between the original and

differentially private datasets [8].
▶ RL measures the percentage of record linkage between the

original and differentially private datasets [7].
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Experiments I

Does the proposed framework yield less IL1s and RL in microag-
gregated datasets?

Significantly reduced IL1s during microaggregation by provid-
ing better within cluster homogeneity.

Attain RL below 5% for k ≥ 20.
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Experiments II

Does the proposed framework yield less IL1s and RL in differen-
tially private datasets?

Reduced IL1s as ∆(f ◦M) is α×∆(f )/k.
When k ≥ α, noise is reduced regardless of n.
Attain RL below 5%
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Discussion

What kind of trade-off exists between utility and privacy while
generating differentially private datasets?

Error caused by DP that depend on ∆(f ◦ M) dominates the
impact on data utility as compared to microaggregation error.

Reducing sensitivity can increase the data utility but it is not
straightforward.

Adding more noise provides better privacy but less utility and
vise versa.
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Graph Data Publishing



Neighboring Graphs

G

G’

B A

C

D

FE

B A

C

D

FE

𝑣𝑣+

B A

C

D

FE
G’

Original-Graph

Edge-Neighbor

Node-Neighbor

G and G’ differ in one edge.

G and G’ differ in one node and the 
set of edges incident to that node.
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Key Challenges

Graph data is highly sensitive to structural changes.

Directly perturbing graph data for achieving DP often leads to
inject a large amount of noise.

Preserving topological structures of an original graph while
achieving DP is not straightforward.
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Problem Statement

Problem: Given a graph G, we want to publish graph statistics
under the guarantee of DP.

Key Observation: dK-distributions can serve as a good basis
for representing graph statistics. The dK-graph model [5] pro-
vides a systematic way of extracting dK-distributions from G.
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dK-distribution

dK-distributions are a set of reproducible graph properties, which
capture degree correlations within d-sized subgraphs of a graph.

B A

C

D

FE

<1,2> = 1 (B-A)
<1,4> = 1 (F-C)
<2,2> = 1 (E-D)
<2,4> = 3 (A-C), (D-C), (E-C)

1𝐾𝐾(𝐺𝐺) 1          2
2          3
4          1

<1,2,4> = 2 (B-A-C), (F-C-A)
<2,4,2> = 3  (A-C-D), (A-C-E), (D-C-E)

2𝐾𝐾(𝐺𝐺)

3𝐾𝐾(𝐺𝐺)

G
D𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

Joint D𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

Clustering Coefficient Distribution

When d = |V|, a dK-distribution specifies the entire graph.
γdK(G) queries the dK-distribution of G.
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Variants of DP

DP has two variants when applying to graph data:

Edge-DP: Hide the presence and absence of a single edge in
a graph.

Node-DP: Hide the presence and absence of a single node and
the set of edges incident to that node.

Node-DP can provide stronger privacy protection than edge-DP.

Achieving node-DP is more challenging than for edge-DP as graph
data is highly sensitive under node-DP.
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Achieving Edge-DP

dK-Microaggregation Framework: Microaggregation helps to re-
duce the overall noise needed to achieve edge-DP.

Microaggregation

G ⁓ G’

𝐺𝐺𝜀𝜀

𝐺𝐺𝐺𝜀𝜀

Differentially Private 
dK-Graph

G

G’
dK-distribution

Perturbed
dK- distribution

Perturbation

Partitioning

AggregationExtraction

γdK ◦M is (4 × g+ 1)× n, where g = max({deg(G),deg(G′)}),
and n is the number of clusters generated by M.
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Proposed Microaggregation Algorithms

A microaggregation algorithm partitions dK-distribution into clus-
ters and then aggregates frequency values of tuples in each clus-
ter.

B A

C

D

FE

<1,2> = 1 (B-A)
<1,4> = 1 (F-C)
<2,2> = 1 (E-D)
<2,4> = 3 (A-C), (D-C),

(E-C)

<1,2> = 1 (B-A)
<2,2> = 1 (E-D)
-----------------------------
<1,4> = 1 (F-C)
<2,4> = 3 (A-C), (D-C),

(E-C)

(B-A) (E-D)

(F-C), (A-C), 
(D-C), (E-C)

<1,4> 
<2,4>

<1,2> 
<2,2>

C(D)= D’ A(D’) = �D

= 2 

= 4 

G

Differentially 
Private  

2K-distribution

M = (C,A)

ϒ𝑑𝑑𝑑𝑑 𝐺𝐺 = 𝐷𝐷 K 𝑑𝑑𝑑𝑑( �D) = D 𝜀𝜀

2K−distribution

1. MDAV-dK algorithm: Partition dK-distribution with a fixed-
size constraint such that each cluster has at least k tuples.

2. MPDC-dK algorithm: Partition dK-distribution such that every
pair of tuples in a cluster satisfies a distance constraint.
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Experimental Setup

Three network datasets:

(1) polbooks contains 105 nodes and 441 edges.

(2) ca-GrQc contains 5,242 nodes and 14,496 edges.

(3) ca-HepTh contains 9,877 nodes and 25,998 edges.

Two measures:
▶ Euclidean distance measures network structural error

between original and perturbed dK-distributions [6].
▶ Sum of absolute error measures within-cluster homogeneity

of clustering algorithms [3] .
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Experiments I

Does the proposed framework reduce the amount of noise added
into dK-distributions while still providing edge-DP guarantee?

Lead to less structural error.
Introduce overall less noise to achieve edge-DP.
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Experiments II

How do our microaggregation algorithms perform in providing bet-
ter within cluster homogeneity for dK-distributions?

Produce clusters with less sum of absolute error.
Reduce error due to microaggregation.

32 50



Achieving Node-DP

dK-Projection Framework: Projection helps to reduce sensitivity
by bounding maximum degree in G.

𝐺𝐺𝜃𝜃
dK-distribution

Perturbed
dK- distribution

Extraction
G

1𝐾𝐾(𝐺𝐺)2𝐾𝐾(𝐺𝐺)3𝐾𝐾(𝐺𝐺)

n𝐾𝐾 𝐺𝐺

Differentially Private dK-distributions

B A

C

D

FE

Graph Projection

Perturbation

θ-bounded Graph 
Transformation 

γ2K ◦P is reduced to (2×θ+ 1)×θ from (2×deg(G)+ 1)×|E+|
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Proposed Projection Algorithms

The algorithm projects a graph using a two-level ordering: (i) global
node ordering, and (ii) local neighborhood ordering.

- Assume a sequence of edges ordered by two-level ordering,
and let θ = 1.

B A

C

D

FE

Original Graph

B A

C

D

FE

After Stable-Edge-Removal

v deg(v) N(v)

C 4 {A, D, E, F}

A 2 {C, B}

D 2 {C, E}

E 2 {C, D}

B 1 {A}

F 1 {C}

v deg(v) N(v)

C 3 {D, E, F}

A 1 {B}

D 2 {C, E}

E 2 {C, D}

B 1 {A}

F 1 {C}

v deg(v) N(v)

C 2 {E, F}

A 1 {B}

D 1 {E}

E 2 {C, D}

B 1 {A}

F 1 {C}

v deg(v) N(v)

C 1 {F}

A 1 {B}

D 1 {E}

E 1 {D}

B 1 {A}

F 1 {C}
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Experimental Setup

Four network datasets:

(1) Facebook contains 4,039 nodes and 88,234 edges.

(2) Wiki-Vote contains 7,115 nodes and 103,689 edges.

(3) Ca-HepPh contains 12,008 nodes and 118,521 edges.

(4) Email-Enron contains 36,692 nodes and 183,831 edges.

Three utility metrics [1]:
▶ Preserved edge ratio measures the ratio of edges being

preserved by graph projection.
▶ L1 distance measures the network structural error between an

original dK-distribution and its perturbed dK-distribution.
▶ KS distance quantifies the closeness between an original

dK-distribution and its perturbed dK-distribution.
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Experiments I

Does the proposed graph projection algorithm yield more utility
in projected graphs?

Preserves more edges.
Leads to less network structural error.
Generates dK-distributions that are more similar to their orig-
inal dK-distributions.
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Experiments II

Does the proposed graph projection algorithm yield more utility
in differentially private datasets?

Yields less network structural error.

For smaller values of θ, differentially private dK-distributions
are more similar to their original dK-distributions.
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Personalized Differential Privacy (PDP)

Limitations of DP:

▶ Uniform privacy level (i.e., ε) is assigned to each individual
while performing perturbation.

▶ DP may lead to provide insufficient protection for some
individuals, while over-protecting others.

Personalized differential privacy provides freedom to individuals
to set their own privacy parameter ε.
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Problem Statement

Problem: Given a graph G, we want to publish graph statistics
under the guarantee of DP while considering personalization.

Key Challenges:
▶ Graph is a structure of connections between nodes, thus

publishing data about one node may leads to violate privacy
of others under personalization.

▶ Each individual (node) has its own privacy preference
whereas each entry in data distribution reflects information
about more than one node.
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Sensitivity Analysis

We analyze the sensitivity (∆) of a single dK-distribution entry, i.e.,
degree query γq rather than the entire dK-distribution γdK .

∆(γq) of is |E+|+ 1 over 1K(G) under node-DP.

∆(γq) of (deg(G) + 1)× |E+| over 2K(G) under node-DP.

∆(γq) of is 2 over 1K(G) under Edge-DP.

∆(γq) of is 2 × deg(G) + 1 over 2K(G) under Edge-DP.

We observe that the sensitivity of γq is half as compared to γdK .
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Proposed Personalized Approaches I

Local Least Based Personalized Perturbation: LL-dK perturbs en-
tries with the strongest local ε.

1          2    (B,F)
2          3    (A,D,E)
4          1    (C)

ϒ1𝐾𝐾 𝐺𝐺 = 1K(G)

1K−distribution of G

B A

C

D

FE

G

0.01 0.01

0.2

0.2

1.0

1.0

ϒ2𝐾𝐾 𝐺𝐺 = 2K(G)

2K−distribution of G

<1,2> = 1    (B-A)
<1,4> = 1    (F-C)
<2,2> = 1    (E-D)
<2,4> = 3    (A-C), (D-C), (E-C)

The frequency value 2 in 1K(G), and the frequency value 3 in 2K(G)
are perturbed with ε = min(ΦB,ΦF), and ε = min(ΦA,ΦC,ΦD,ΦE),
respectively.
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Proposed Personalized Approaches II

Threshold Projection Based Personalized Perturbation: TP-dK trans-
forms a graph into a θ-bounded graph then removes all nodes with
ε < τ .

1          2    (B,E)
2          2    (A,C)

1K−distribution of 𝐺𝐺θτ

B A

C

D

FE

G

0.01 0.01

0.2

0.2

1.0

1.0

<1,2> = 2    (B-A),(E-C)
<2,2> = 1    (A-C)B A

C

D

FE

𝐺𝐺θ

0.01 0.01

0.2

0.2

1.0

1.0
B A

C
E

𝐺𝐺θτ

0.2

0.2

1.0

1.0

2K−distribution of 𝐺𝐺θτ

Since deg(G) ≤ θ, the sensitivity of γq is reduced.

With threshold τ all nodes with high privacy are removed.
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Proposed Personalized Approaches III

Sampling Based Personalized Perturbation: ST-dK first splits en-
tries, and then samples them with non-uniform probabilities.

1          2    (B,F)
2          3    (A,D,E)
4          1    (C)

ϒ1𝐾𝐾 𝐺𝐺 = 1K(G)

1K−distribution of G

B A

C

D

FE

G

0.01 0.01

0.2

0.2

1.0

1.0

ϒ2𝐾𝐾 𝐺𝐺 = 2K(G)

2K−distribution of G

<1,2> = 1    (B-A)
<1,4> = 1    (F-C)
<2,2> = 1    (E-D)
<2,4> = 3    (A-C), (D-C), (E-C)

1 1    (B)
1         1    (F)
2 1    (A)
2          1    (D)
2          1    (E)
4          1    (C)

Split

1          1    (F)
2 1    (A)
2          1    (A)
4          1    (C)

Sample

1𝐾𝐾(𝐺𝐺)

2𝐾𝐾(𝐺𝐺) <1,2> = 1    (B-A)
<1,4> = 1    (F-C)
<2,2> = 1    (E-D)
<2,4> = 1    (A-C)
<2,4> = 1    (D-C)
<2,4> = 1    (E-C)

Split Sample

<1,2> = 1    (B-A)
<2,4> = 1    (A-C)
<2,4> = 1    (A-C)
<2,4> = 1    (E-C)

Inclusion probability for each entry depends on corresponding ε
and global threshold τ .
Sampled dK-distribution is perturbed with τ .
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Proposed Personalized Approaches IV

Aggregation Based Personalized Perturbation: AG-dK computes
corresponding ε values to performs aggregation over dK-distribution.

1𝐾𝐾(𝐺𝐺)

1          2    (B,F)
2          3    (A,D,E)
4          1    (C)

ϒ1𝐾𝐾 𝐺𝐺 = 1K(G)

1K−distribution of G

Differentially
Private 

1K-distribution

Perturbation

0.01 0.2 -

0.01 0.2 1.0

1.0 - -

Corresponding 
privacy preferences

1          2    (B,F)
2 3    (A,D,E)
------------------------
4          1    (C)

1
2

= 5  (B,F), (A,D,E)

4 = 1  (C)

Partition Aggregation

B A

C

D

FE

2𝐾𝐾(𝐺𝐺)

G

0.01 0.01

0.2

0.2

1.0

1.0

ϒ2𝐾𝐾 𝐺𝐺 = 2K(G)

2K−distribution of G

<1,2> = 1    (B-A)
<1,4> = 1    (F-C)
<2,2> = 1    (E-D)
<2,4> = 3    (A-C), (D-C), (E-C)

0.2 1.0 - -

0.01 1.0 - -

0.01 0.2 - -

0.01 0.2 1.0 1.0

Corresponding 
privacy preferences

Differentially
Private 

2K-distribution

Perturbation

<1,2> = 1    (B-A)
<1,4> = 1    (F-C)
-------------------------------
<2,2> = 1    (E-D)
<2,4> = 3    (A-C), (D-C),

(E-C)

Partition

<1,2>
<1,4>

<2,2>
<2,4>

= 2  (B-A),(F-C)

= 4  (E-D), (A-C),
(D-C), (E-C)

Aggregation

Aggregation

Aggregation

Entries are perturbed with the strongest local ε corresponding to
each partition.
γq is approximated to γq ◦M.
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Experimental Setup

Four network datasets:

(1) Facebook contains 4,039 nodes and 88,234 edges.

(2) Wiki-Vote contains 7,115 nodes and 103,689 edges.

(3) Ca-HepPh contains 12,008 nodes and 118,521 edges.

(4) Email-Enron contains 36,692 nodes and 183,831 edges.

Two utility metrics [1]:
▶ L1 distance measures the network structural error between an

original dK-distribution and its perturbed dK-distribution.
▶ KS distance quantifies the closeness between an original

dK-distribution and its perturbed dK-distribution.
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Experiments I

Does the proposed personalized approaches yield more utility in
1K-distribution under edge-PDP and node-PDP?

Our methods yield less network structural error.
AG-dK outperforms under edge-PDP and LL-dK outperforms
under node-PDP by generating more similar 1K-distributions.
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Experiments II

Does the proposed personalized approaches yield yield more util-
ity in 2K-distribution under edge-PDP and node-PDP?

Our methods yield less network structural error.
AG-dK outperforms under edge-PDP and LL-dK outperforms
under node-PDP by generating more similar 2K-distributions.
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Discussion

What kind of trade-off exists between utility and privacy while
generating personalized differentially private dK-distributions?

The error caused by sensitivity (∆) and the privacy preference
ε dominates the impact on output utility.

Increasing ε and decreasing ∆ can help to reduce error.

Reducing sensitivity is more challenging under node-PDP than
for edge-PDP as graph data is highly sensitive under node-DP.
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Conclusion

PPDP mechanisms for publishing differentially private data:

Relational Data: We present novel framework that outper-
forms the state-of-the-art methods in terms of preserving out-
put utility while guarantee DP.

Graph Data: We present novel PPDP mechanisms to publish
higher-order graph statistics under edge, node and personal-
ized DP while enhancing output utility.
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Future work

To publish graph statistics under local differential privacy while
considering personalization.

To develop differentially private mechanisms for continual re-
lease of graph statistics in dynamic graphs.

To release statistics about social groups in a network while
protecting privacy of individuals under zero knowledge pri-
vacy (ZKP).

50 / 50
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