DK-PROJECTION: PUBLISHING GRAPH JOINT DEGREE DISTRIBUTION WITH NODE DIFFERENTIAL PRIVACY

Masooma Iftikhar Qing Wang

School of Computing College of Engineering and Computer Science The Australian National University Canberra, Australia

MAY 11-14, 2021

- Introduction
- Problem Formulation
- Sensitivity Analysis
- dK-Projection Framework
- Proposed Approach
- Experiments and Results
- Conclusion and Future Work

INTRODUCTION

MOTIVATION

Publishing network data may reveal sensitive information of an individual even if the graph is anonymized, thereby requiring privacy-preserving mechanisms.

MOTIVATION

- Publishing network data may reveal sensitive information of an individual even if the graph is anonymized, thereby requiring privacy-preserving mechanisms.
- Differential privacy (DP) [3] bounds a shift in the output distribution of a randomized mechanism that can be induced by a small change in its input, preserving individual's privacy.

Figure 1: \mathcal{K} gives ε -DP if for all neighboring datasets (differing in just one entry) D_1 and D_2 , and all $C \subseteq range(\mathcal{K})$: $Pr[\mathcal{K}(D_1) \in C] \leq e^{\varepsilon} Pr[\mathcal{K}(D_2) \in C]$

Aim: To develop a framework for publishing higher-order network statistics, such as joint degree distribution, under guarantees of node-DP, while enhancing network data utility.

- Aim: To develop a framework for publishing higher-order network statistics, such as joint degree distribution, under guarantees of node-DP, while enhancing network data utility.
- Key Challenge: To enhance the overall utility of published network statistics, the key challenge is how to reduce the magnitude of noise needed to achieve node-DP by controlling sensitivity effectively.

- Aim: To develop a framework for publishing higher-order network statistics, such as joint degree distribution, under guarantees of node-DP, while enhancing network data utility.
- Key Challenge: To enhance the overall utility of published network statistics, the key challenge is how to reduce the magnitude of noise needed to achieve node-DP by controlling sensitivity effectively.
- **Key Observation:** We observe that *dK*-distributions [5] can serve as a good basis for representing higher-order network statistics.

PROBLEM FORMULATION

■ We define the notion of neighboring graphs under node-DP.

■ We define the notion of neighboring graphs under node-DP.

We define the notion of neighboring graphs under node-DP.

NEIGHBORING GRAPHS

Two graphs G = (V, E) and G' = (V', E') are said to be *neighboring* graphs, denoted as $G \sim G'$, iff $V' = V \cup \{v^+\}$, $E' = E \cup E^+$, and E^+ is the set of all edges incident to v^+ in G'.

■ Given a graph, we represent its topology properties as *dK*-distributions [5].

■ Given a graph, we represent its topology properties as *dK*-distributions [5].

DK-DISTRIBUTION

A *dK*-distribution over a graph G = (V, E), denoted as dK(G), is a probability distribution $p : D^d \to \mathbb{N}$ such that $p(a_1, \ldots, a_d)$ refers to the total number of connected subgraphs of size d in G with the nodes $\{v_1, \ldots, v_d\}$ and $a_i = deg(v_i)$ for $i = 1, \ldots, d$.

■ Given a graph, we represent its topology properties as *dK*-distributions [5].

DK-DISTRIBUTION

A *dK*-distribution over a graph G = (V, E), denoted as dK(G), is a probability distribution $p : D^d \to \mathbb{N}$ such that $p(a_1, \ldots, a_d)$ refers to the total number of connected subgraphs of size d in G with the nodes $\{v_1, \ldots, v_d\}$ and $a_i = deg(v_i)$ for $i = 1, \ldots, d$.

For a graph, 1K-distribution captures the degree distribution, 2K-distribution captures the joint degree distribution. When d = |V|, a *dK*-distribution specifies the entire graph.

■ A dK-distribution is extracted from a graph, by using *dK function* (s.t. $\gamma^{dK}(G) = dK(G)$).

- A dK-distribution is extracted from a graph, by using dK function (s.t. $\gamma^{dK}(G) = dK(G)$).

DK-FUNCTION

- A dK-distribution is extracted from a graph, by using dK function (s.t. γ^{dK}(G) = dK(G)).

For instance, p(2, 4) = 3 because *G* contains 3 edges between 2 degree nodes (i.e., *A*, *D*, and *E*) and 4 degree node (i.e., *C*)

To release dK-distribution under the guarantees of node-DP, we perturb dK-distribution by adding controlled noise from Laplace stochastic process [3].

$$\mathcal{K}(\mathbf{G}) = \gamma^{dK}(\mathbf{G}) + Lap\left(rac{\Delta\gamma}{arepsilon}
ight)^{|\mathbf{V}|^d}$$

- $\varepsilon > o$ is the *privacy parameter* (smaller values provide stronger privacy guarantees).
- $\Delta \gamma$ refers to the *sensitivity* of the *dK*-function γ^{dK} , which is the maximum variation in its output, i.e., *dK*-distribution, over two neighboring graphs $G \sim G'$.

■ We define the notion of *ε*-differentially private *dK*-distribution (i.e., an anonymized version of $\gamma^{dK}(G)$ satisfying differential privacy).

DIFFERENTIALLY PRIVATE DK-DISTRIBUTION

A randomized mechanism \mathcal{K} is ε -differentially private, if for each pair of neighboring graphs $G \sim G'$ and all possible perturbed dK-distributions $\mathcal{D} \subseteq range(\mathcal{K})$, we have:

$$\Pr[\mathcal{K}(G) \in \mathcal{D}] \le e^{\varepsilon} \times \Pr[\mathcal{K}(G') \in \mathcal{D}].$$
(1)

The challenge of releasing differentially private dK-distributions is to determine how much noise should be added to perturb dK-distributions.

SENSITIVITY ANALYSIS

Suppose that a node v^+ is added to G with a set E^+ of edges.

Suppose that a node v^+ is added to G with a set E^+ of edges.

Each edge $(v^+, v_i) \in E^+$ may cause at most $2 \times deg(G) + 1$ entries of $\gamma^{2K}(G)$ being changed.

Suppose that a node v^+ is added to G with a set E^+ of edges.

- Each edge $(v^+, v_i) \in E^+$ may cause at most $2 \times deg(G) + 1$ entries of $\gamma^{2K}(G)$ being changed.
- Thus, the total number of entries of $\gamma^{2K}(G)$ being changed by all edges in E^+ is upper bounded by $(2 \times deg(G) + 1) \times |E^+|$.

DK-Projection Framework

■ dK-projection works in the following steps:

- **dK-projection** works in the following steps:
 - (1) Given a graph G, a graph projection algorithm transforms G into a θ -bounded graph G^{θ} .

■ dK-projection works in the following steps:

- (1) Given a graph G, a graph projection algorithm transforms G into a θ -bounded graph G^{θ} .
- (2) Then higher-order network statistics such as dK-distributions [5] are extracted from G^{θ} .

- **dK-projection** works in the following steps:
 - (1) Given a graph G, a graph projection algorithm transforms G into a θ -bounded graph G^{θ} .
 - (2) Then higher-order network statistics such as dK-distributions [5] are extracted from G^{θ} .
 - (3) Finally extracted dK-distributions are perturbed yielding ε differentially private dK-distributions.

Figure 2: A high-level overview of the proposed framework (*dK-Projection*)

PROPOSED APPROACH

■ We propose *Stable-Edge-Removal* (SER) that transform a graph *G* to a θ -bounded graph G^{θ} with $\theta < deg(G)$ based on a two-level ordering strategy on *G*.

Two-Level Ordering

A two-level ordering over G = (V, E) is a pair $\Gamma = (\succ_N, \succ_V)$ where \succ_N is a local neighbour ordering such that, for each $v \in V$, there is a bijection: $N_G(v) \rightarrow \{1, \ldots, |N_G(v)|\}; \succ_V$ is a global node ordering such that there is a bijection: $V \rightarrow \{1, \ldots, |V|\}$.

Given a two-level ordering Γ, an edge ordering is defined.

Assume that a two-level ordering $\Gamma = (\succ_N, \succ_V)$ on a graph *G* obtained by sorting nodes based on degrees from highest to lowest (\succ_V), and for each node *v* sorting their neighbours in $N_G(v)$ in a similar manner (\succ_N).

Thus, we have a sequence of edges ordered by \succ_{Γ} , i.e., $\langle (C,A), (C,D), (C,E), (C,F), \dots, (F,C) \rangle$. Let $\theta = 1$.

■ Then, following this sequence, by checking whether *deg*(*C*) > θ , *SER* first removes edge (*C*, *A*) and decreases the degree counts of nodes *C* and *A* by 1.

■ Similarly, *SER* removes edge (*C*, *D*) and decreases the degree counts of nodes *C* and *D* by 1.

■ SER keeps on removing edges, following the edge ordering \succ_{Γ} , and decreases the degree counts of nodes $v \in V$ by 1, until G^{θ} is obtained.

Given a graph G, instead of extracting a dK-distribution from G directly, we extract a dK-distribution from a θ-bounded graph G^θ generated by a graph projection algorithm P, here P refers to our SER algorithm.

- Given a graph G, instead of extracting a dK-distribution from G directly, we extract a dK-distribution from a θ-bounded graph G^θ generated by a graph projection algorithm P, here P refers to our SER algorithm.
- Then based on the sensitivity of $\gamma^{dK} \circ \mathcal{P}$, i.e., $(2\theta + 1) \times \theta$ the perturbation is performed over the *dK*-distribution being extracted from G^{θ} to generate a ε -differentially private joint degree distribution.

EXPERIMENTS AND RESULTS

Four network datasets:

- (1) *Facebook* contains 4,039 nodes and 88,234 edges.
- (2) Wiki-Vote contains 7,115 nodes and 103,689 edges.
- (3) *Ca-HepPh* contains 12,008 nodes and 118,521 edges.
- (4) Email-Enron contains 36,692 nodes and 183,831 edges.

Four network datasets:

- (1) *Facebook* contains 4,039 nodes and 88,234 edges.
- (2) Wiki-Vote contains 7,115 nodes and 103,689 edges.
- (3) *Ca-HepPh* contains 12,008 nodes and 118,521 edges.
- (4) Email-Enron contains 36,692 nodes and 183,831 edges.

■ Three utility metrics [2, 4, 6]:

- preserved edge ratio measures the ratio of edges being preserved by graph projection.
- L1 distance measures the network structural error between an original dK-distribution p and its perturbed dK-distribution p'.
- KS distance quantifies the closeness between an original dK-distribution p and its perturbed dK-distribution p'.

We first compare our method SER with the state-of-the-art graph projection method EAD [2], in terms of preserved edge ratio. For every value of θ, SER outperforms EAD by preserving more edges over all four datasets.

Table 1: Comparison on the preserved edge ratio $|E^{\theta}|/|E|$ of EAD and our proposed SER graph projection approach under different values of θ .

Dataset	$\theta = 16$		$\theta = 32$		$\theta = 64$		$\theta = 128$		$\theta = 256$	
	EAD	SER	EAD	SER	EAD	SER	EAD	SER	EAD	SER
Facebook	0.27	0.61	0.44	0.71	0.66	0.84	0.88	0.96	0.97	0.98
Wiki- $Vote$	0.19	0.59	0.32	0.66	0.50	0.76	0.71	0.87	0.88	0.96
Ca- $HepPh$	0.16	0.61	0.24	0.68	0.31	0.77	0.39	0.84	0.46	0.96
Email-Enron	0.17	0.52	0.22	0.61	0.29	0.71	0.36	0.80	0.43	0.89

EVALUATING GRAPH PROJECTION II

We also compare our method SER with graph projection method EAD [2], in terms of L1 distance and KS distance. For all four datasets, our projection method SER leads to less network structural error and generates dK-distributions which are more similar to their original dK-distributions for every value of θ as compared to EAD.

Evaluating DP dK-distributions

■ We compare the overall utility of differentially private *dK*- distributions generated by our method against the baseline methods.

CONCLUSION AND FUTURE WORK

Developed a novel framework, called *dK*-Projection to publish higher-order network statistics such as *joint degree distribution* under node-DP.

- Developed a novel framework, called *dK*-Projection to publish higher-order network statistics such as *joint degree distribution* under node-DP.
- Analysed the sensitivity of publishing joint degree distribution in the proposed framework.

- Developed a novel framework, called *dK*-Projection to publish higher-order network statistics such as *joint degree distribution* under node-DP.
- Analysed the sensitivity of publishing joint degree distribution in the proposed framework.
- Introduced a new graph projection algorithm to reduce sensitivity of publishing network statistics under node-DP.

- Developed a novel framework, called *dK*-Projection to publish higher-order network statistics such as *joint degree distribution* under node-DP.
- Analysed the sensitivity of publishing joint degree distribution in the proposed framework.
- Introduced a new graph projection algorithm to reduce sensitivity of publishing network statistics under node-DP.
- Conducted experiments to verify the utility enhancement and privacy guarantee of our proposed framework on four realworld networks.

- Developed a novel framework, called *dK*-Projection to publish higher-order network statistics such as *joint degree distribution* under node-DP.
- Analysed the sensitivity of publishing joint degree distribution in the proposed framework.
- Introduced a new graph projection algorithm to reduce sensitivity of publishing network statistics under node-DP.
- Conducted experiments to verify the utility enhancement and privacy guarantee of our proposed framework on four realworld networks.

Future work: Future extensions to this work will consider personalized differential privacy to release statistics about social networks while protecting privacy of individuals based on individuals preferences.

References

THANKS FOR YOUR ATTENTION!

ANY **QUESTIONS**