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MOTIVATION e

m Publishing network data may reveal sensitive information of
an individual even if the graph is anonymized, thereby requir-
ing privacy-preserving mechanisms.
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MOTIVATION

m Publishing network data may reveal sensitive information of
an individual even if the graph is anonymized, thereby requir-
ing privacy-preserving mechanisms.

m Differential privacy (DP) [3] bounds a shift in the output dis-
tribution of a randomized mechanism that can be induced by
a small change in its input, preserving individual’s privacy.

ratio bounded

Pr [response]

Responses

Figure 1: K gives ¢-DP if for all neighboring datasets (differing in just
one entry) D, and D,, and all C C range(K):
Pr[K(D,) € C] < e Pr[K(D,) € C]
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m Aim: To develop a framework for publishing higher-order net-
work statistics, such as joint degree distribution, under guar-
antees of node-DP, while enhancing network data utility.
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m Aim: To develop a framework for publishing higher-order net-
work statistics, such as joint degree distribution, under guar-
antees of node-DP, while enhancing network data utility.

m Key Challenge: To enhance the overall utility of published
network statistics, the key challenge is how to reduce the mag-
nitude of noise needed to achieve node-DP by controlling sen-
sitivity effectively.

m Key Observation: We observe that dK-distributions [5] can
serve as a good basis for representing higher-order network
statistics.
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m We define the notion of neighboring graphs under node-DP.
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m We define the notion of neighboring graphs under node-DP.
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NEIGHBORING GRAPHS

Two graphs G = (V,E) and G’ = (V/, E’) are said to be neighboring
graphs, denotedas G ~ G/, iff V = VU{v"},E' = EUE",and ET is
the set of all edges incident to v*in G'.
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m Given a graph, we represent its topology properties as dK-
distributions [5].
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m Given a graph, we represent its topology properties as dK-
distributions [5].

DK-DISTRIBUTION

A dK-distribution over a graph G = (V, E), denoted as dK(G), is a
probability distribution p : D¢ — N such that p(a,, ..., aq4) refers
to the total number of connected subgraphs of size d in G with
the nodes {v,,...,v4} and a; = deg(v;) fori=1,...,d.
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m Given a graph, we represent its topology properties as dK-
distributions [5].

DK-DISTRIBUTION

A dK-distribution over a graph G = (V, E), denoted as dK(G), is a
probability distribution p : D¢ — N such that p(a,, ..., aq4) refers
to the total number of connected subgraphs of size d in G with
the nodes {v,,...,v4} and a; = deg(v;) fori=1,...,d.

m For a graph, 1K-distribution captures the degree distribution,
2K-distribution captures the joint degree distribution. When
d = |V|, a dK-distribution specifies the entire graph.
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m A dK-distribution is extracted from a graph, by using dK func-
tion (s.t. v9%(G) = dK(G)).
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m A dK-distribution is extracted from a graph, by using dK func-
tion (s.t. v9%(G) = dK(G)).

m 12X(G) returns the joint degree distribution of G, i.e., p(i,j) is a
frequency value, referring to the number of edges connecting
nodes of degrees i and j.

Y2K(G) = 2K(G)
A
A ZK(G) <1,2>=1 (B-A)
©= 7 abo1rg
o & \\7’7\‘ <2,2>=1 (E-D)
1 <2,4>=3 (A-C), (D-C), (E-C)
D

2K~distribution of G
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m A dK-distribution is extracted from a graph, by using dK func-
tion (s.t. v9%(G) = dK(G)).

m 1%€(G) returns the joint degree distribution of G, i.e., p(i,j) is a
frequency value, referring to the number of edges connecting
nodes of degrees i and j.

Y2K(G) = 2K(G)
® D %0
‘B <1,2>=1 (B-A)
‘ > <1,4>=1 (F-C)
<2,2>=1 (E-D)
<2,4> =3 (A-C), (D-C), (E-C)

@ ®

s o

2K-distribution of G

m For instance, p(2,4) = 3 because G contains 3 edges between
2 degree nodes (i.e., A, D, and E) and 4 degree node (i.e., C)
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m To release dK-distribution under the guarantees of node-DP,
we perturb dK-distribution by adding controlled noise from
Laplace stochastic process [3].

v
K(6) = ~%(G) + Lap (A”)

m ¢ > oisthe privacy parameter (smaller values provide stronger
privacy guarantees).

m A~ refers to the sensitivity of the dK-function 9K, which is
the maximum variation in its output, i.e., dK-distribution, over
two neighboring graphs G ~ G'.

8]
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PROBLEM STATEMENT

m We define the notion of e-differentially private dK-distribution
(i.e., an anonymized version of v9K(G) satisfying differential
privacy).

DIFFERENTIALLY PRIVATE DK-DISTRIBUTION

A randomized mechanism K is e-differentially private, if for each
pair of neighboring graphs G ~ G’ and all possible perturbed
dK-distributions D C range(K), we have:

Pr[K(G) € D] < e° x Pr[K(G') € D]. (1)

m The challenge of releasing differentially private dK-distributions
is to determine how much noise should be added to perturb
dK-distributions.

9]
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m Suppose that a node v* is added to G with a set ET of edges.

Y2K(G) = 2K(G) Y2K(G) = 2K(G")
® <1,2>=1 (B-A) &) \é/\‘vk 2K(G") | <13>=1(B-A)
<1,4>=1 (F-C) @ T <2,25=2 (F-v"), (E-D)
@ ™~ <2,2>=1 (E-D) @ ' <2,3>=1 (F-")
E) | @ <2,4>=3 (A-C), (D-C), (EC) L | ; <2,4>=3 (D-C), (E-C), (F-C)
~@ ) <3,4>=1 (A-C)

2K~distribution of G 2K~distribution of G’
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m Suppose that a node v* is added to G with a set ET of edges.

YK (G) = 2K(G) YK (G) = 2K(G")
‘B \A/ 2K(G) <1,2>=1 (B-A) @ \A/\‘rv'f‘ 2K(G") <1,3>=1 (B-A)
<14>=1 (F-Q) © | === 222V ED)
@ = <2,2>=1 (E-D) @ ® <2,3>=1 (F-1%)
ey | W <2,4>=3 (A-C), (D-C), (E-C) . | ¥ <2,4>=3 (D-C), (E-C), (F-C)
) N0)) <3,4>=1 (A-C)

2K~distribution of G 2K~distribution of G’

m Each edge (vt,v;) € ET may cause at most 2 x deg(G) + 1
entries of 42(G) being changed.
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m Suppose that a node v* is added to G with a set ET of edges.

YE(6) = 2K(6) Y2K(G) = 2K(G)
® 42521 (BA) ® *?/\‘174, 2K(G) | <L3>=1 (B-A)
<1ds=1 :F-C)) © | :;g: N i EEV; 0
P o | 22=1(D ® | @ G
@ | F <245=3 (A-C), (D-C), (E-C) < E } ] <2,4>=3 (D-C), (E-C), (F-C)

) ) <3,4>=1 (A-C)

2K~distribution of G 2K~distribution of G’

m Each edge (vt,v;) € ET may cause at most 2 x deg(G) + 1
entries of 42(G) being changed.

m Thus, the total number of entries of 42X(G) being changed by
all edges in E™ is upper bounded by (2 x deg(G) + 1) x |[E*]|.
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m dK-projection works in the following steps:
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m dK-projection works in the following steps:

(1) Givenagraph G, a graph projection algorithm transforms G into
a #-bounded graph G°.

|
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PROPOSED FRAMEWORK

m dK-projection works in the following steps:

(1) Givenagraph G, agraph projection algorithm transforms G into
a #-bounded graph G°.

(2) Then higher-order network statistics such as dK-distributions
[5] are extracted from G.

Graph Projection ! Extraction

PR # E O-bounded Graph
C Transformation

& F E E dK-distribution
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m dK-projection works in the following steps:

(1) Givenagraph G, agraph projection algorithm transforms G into
a #-bounded graph G°.

(2) Then higher-order network statistics such as dK-distributions
[5] are extracted from G°.

(3) Finally extracted dK-distributions are perturbed yielding - dif-
ferentially private dK-distributions.

-
B s ] X — —
— H Graph Projection ; Extraction \
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Figure 2: A high-level overview of the proposed framework
(dK-Projection)
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m We propose Stable-Edge-Removal (SER) that transform a graph
G to a 9-bounded graph G’ with § < deg(G) based on a two-
level ordering strategy on G.

Two-Level Ordering

A two-level ordering over G = (V,E) is a pair I = (>, >v) where
=y IS a local neighbour ordering such that, for each v € V, there
is a bijection: Ng(v) — {1,...,|Ng(v)|}; >v is a global node
ordering such that there is a bijection: V — {1,...,|V|}.

m Given a two-level ordering I, an edge ordering is defined.
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m Assume that a two-level ordering ' = (>, >v) on a graph G
obtained by sorting nodes based on degrees from highest to
lowest (~y), and for each node v sorting their neighbours in
Ng(v) in a similar manner (>-y).
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m Thus, we have a sequence of edges ordered by ~r, i.e.,
((C,A),(C,D),(C,E),(C,F),...,(F,C)). Let 6 =1.

_ A
® 9
e | 4 {A, D, E, F}
©
- o \T/N\‘\ . 2 {c, B}
‘(E 4 (F) 2 {C, E}
- | .
A 2 {C, D}
@
1 {A}
Original Graph 1 {cy
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m Then, following this sequence, by checking whether deg(C) >
0, SER first removes edge (C,A) and decreases the degree counts
of nodes Cand A by 1.

P )
= | C 4 {A, D, E, F} c 3 {D,E,F}
‘)
- ‘\([:/’ A 2 (c B} A 1 ®
\E; ¢ F? D 2 {C, E} - D 2 {C, E}
B\ E 2 {c, D} E 2 {c, D}
|4
B 1 {A} B 1 {A}
Original Graph F 1 ct F 1 {c}
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m Similarly, SER removes edge (C,D) and decreases the degree
counts of nodes C and D by 1.

B
&/ C 4 {A, D, E, F} [« 3 {D, E, F} © 5 )
A 2 {c, B} A 1 (B} A 2 ®
:E F D 2 {c g ‘ D 2 {C.E} ‘ 5 1 e
/B\ E 2 {c, D} B 2 0} = 2 o
= B 1 {A} B 1 {A} B 1 ®
Original Graph F 1 {c} F 1 © . 1 ©
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m SER keeps on removing edges, following the edge ordering >,
and decreases the degree counts of nodes v € V by 1, until G’

is obtained.
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m Given a graph G, instead of extracting a dK-distribution from G
directly, we extract a dK-distribution from a #-bounded graph
G’ generated by a graph projection algorithm P, here P refers
to our SER algorithm.
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m Given a graph G, instead of extracting a dK-distribution from G
directly, we extract a dK-distribution from a #-bounded graph
GY generated by a graph projection algorithm P, here P refers
to our SER algorithm.

m Then based on the sensitivity of %€ o P, i.e., (26 4 1) x 6 the
perturbation is performed over the dK-distribution being ex-
tracted from G’ to generate a e-differentially private joint de-
gree distribution.

iversity
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m Four network datasets:
(1) Facebook contains 4,039 nodes and 88,234 edges.
(2) Wiki-Vote contains 7,115 nodes and 103,689 edges.

(3) Ca-HepPh contains 12,008 nodes and 118,521 edges.
(4) Email-Enron contains 36,692 nodes and 183,831 edges.




EXPERIMENTAL SETUP Natona, "

niversity

m Four network datasets:
(1) Facebook contains 4,039 nodes and 88,234 edges.
(2) Wiki-Vote contains 7,115 nodes and 103,689 edges.

(3) Ca-HepPh contains 12,008 nodes and 118,521 edges.
(4) Email-Enron contains 36,692 nodes and 183,831 edges.

m Three utility metrics [2, 4, 6]:

> preserved edge ratio measures the ratio of edges being
preserved by graph projection.

» L1 distance measures the network structural error between an
original dK-distribution p and its perturbed dK-distribution
p'.

> KS distance quantifies the closeness between an original
dK-distribution p and its perturbed dK-distribution p’.
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m We first compare our method SER with the state-of-the-art
graph projection method EAD [2], in terms of preserved edge
ratio. For every value of 9, SER outperforms EAD by preserving
more edges over all four datasets.

Table 1: Comparison on the preserved edge ratio |E?|/|E| of EAD and our
proposed SER graph projection approach under different values of 0.

0 =16 0 =32 =64 0 =128 0 = 256
EAD SER EAD SER EAD SER EAD SER EAD SER

Facebook 027 061 044 071 0.66 0.84 0.88 0.96 0.97  0.98
Wiki- Vote 0.19 059 032 066 050 076 071 087 0.88 0.96
Ca-HepPh  0.16 061 024 068 031 077 039 084 0.46  0.96
Email-Enron 0.17  0.52 022 061 029 071 036 0.80 0.43  0.89

Dataset
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m We also compare our method SER with graph projection method
EAD [2], in terms of L1 distance and KS distance. For all four
datasets, our projection method SER leads to less network
structural error and generates dK-distributions which are more
similar to their original dK-distributions for every value of ¢
as compared to EAD.
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m We compare the overall utility of differentially private dK- dis-
tributions generated by our method against the baseline meth-
ods.
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m Conclusion:

» Developed a novel framework, called dK-Projection to publish
higher-order network statistics such as joint degree distribu-
tion under node-DP.

» Analysed the sensitivity of publishing joint degree distribution
in the proposed framework.

> Introduced a new graph projection algorithm to reduce sensi-
tivity of publishing network statistics under node-DP.

» Conducted experiments to verify the utility enhancement and
privacy guarantee of our proposed framework on four real-
world networks.

m Future work: Future extensions to this work will consider per-
sonalized differential privacy to release statistics about social
networks while protecting privacy of individuals based on in-
dividuals preferences.
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