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Introduction



Motivation
Publishing network data may reveal sensitive information of
an individual even if the graph is anonymized, thereby requir-
ing privacy-preserving mechanisms.

Di�erential privacy (DP) [3] bounds a shift in the output dis-
tribution of a randomized mechanism that can be induced by
a small change in its input, preserving individual’s privacy.

Figure 1: K gives ε-DP if for all neighboring datasets (di�ering in just
one entry) D1 and D2, and all C ⊆ range(K):
Pr[K(D1) ∈ C] ≤ eε Pr[K(D2) ∈ C]
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Aims and Challenges

Aim: To develop a framework for publishing higher-order net-
work statistics, such as joint degree distribution, under guar-
antees of node-DP, while enhancing network data utility.

Key Challenge: To enhance the overall utility of published
network statistics, the key challenge is how to reduce the mag-
nitude of noise needed to achieve node-DP by controlling sen-
sitivity e�ectively.

Key Observation: We observe that dK-distributions [5] can
serve as a good basis for representing higher-order network
statistics.

3 25



Aims and Challenges

Aim: To develop a framework for publishing higher-order net-
work statistics, such as joint degree distribution, under guar-
antees of node-DP, while enhancing network data utility.

Key Challenge: To enhance the overall utility of published
network statistics, the key challenge is how to reduce the mag-
nitude of noise needed to achieve node-DP by controlling sen-
sitivity e�ectively.

Key Observation: We observe that dK-distributions [5] can
serve as a good basis for representing higher-order network
statistics.

3 25



Aims and Challenges

Aim: To develop a framework for publishing higher-order net-
work statistics, such as joint degree distribution, under guar-
antees of node-DP, while enhancing network data utility.

Key Challenge: To enhance the overall utility of published
network statistics, the key challenge is how to reduce the mag-
nitude of noise needed to achieve node-DP by controlling sen-
sitivity e�ectively.

Key Observation: We observe that dK-distributions [5] can
serve as a good basis for representing higher-order network
statistics.

3 25



Problem Formulation



Neighboring graphs

We define the notion of neighboring graphs under node-DP.

G G’
B A

C

D

FE

B A

C

D

FE

𝑣𝑣+

Neighboring graphs
Two graphs G = (V, E) and G′ = (V′, E′) are said to be neighboring
graphs, denoted as G ∼ G′, i� V′ = V ∪ {v+}, E′ = E∪ E+, and E+ is
the set of all edges incident to v+in G′.
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dK-distribution

Given a graph, we represent its topology properties as dK-
distributions [5].

dK-distribution
A dK-distribution over a graph G = (V, E), denoted as dK(G), is a
probability distribution p : Dd → N such that p(a1, . . . ,ad) refers
to the total number of connected subgraphs of size d in G with
the nodes {v1, . . . , vd} and ai = deg(vi) for i = 1, . . . ,d.

For a graph, 1K-distribution captures the degree distribution,
2K-distribution captures the joint degree distribution. When
d = |V|, a dK-distribution specifies the entire graph.
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dK-function

A dK-distribution is extracted from a graph, by using dK func-
tion (s.t. γdK(G) = dK(G)).

γ2K(G) returns the joint degree distribution of G, i.e., p(i, j) is a
frequency value, referring to the number of edges connecting
nodes of degrees i and j.

G
B A

C

D

FE

ϒ2𝐾𝐾 𝐺𝐺 = 2K(G)

<1,2> = 1 (B-A)
<1,4> = 1 (F-C)
<2,2> = 1 (E-D)
<2,4> = 3 (A-C), (D-C), (E-C)

2𝐾𝐾(𝐺𝐺)

2K−distribution of G
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For instance, p(2, 4) = 3 because G contains 3 edges between
2 degree nodes (i.e., A, D, and E) and 4 degree node (i.e., C)
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Perturbed dK-distribution

To release dK-distribution under the guarantees of node-DP,
we perturb dK-distribution by adding controlled noise from
Laplace stochastic process [3].

K(G) = γdK(G) + Lap
(

∆γ

ε

)|V|d

ε > 0 is the privacy parameter (smaller values provide stronger
privacy guarantees).
∆γ refers to the sensitivity of the dK-function γdK , which is
the maximum variation in its output, i.e., dK-distribution, over
two neighboring graphs G ∼ G′.
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Problem Statement

We define the notion of ε-di�erentially private dK-distribution
(i.e., an anonymized version of γdK(G) satisfying di�erential
privacy).

Differentially Private dK-distribution
A randomized mechanism K is ε-di�erentially private, if for each
pair of neighboring graphs G ∼ G′ and all possible perturbed
dK-distributions D ⊆ range(K), we have:

Pr[K(G) ∈ D] ≤ eε × Pr[K(G′) ∈ D]. (1)

The challenge of releasing di�erentially private dK-distributions
is to determine how much noise should be added to perturb
dK-distributions.
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Sensitivity Analysis

Suppose that a node v+ is added to G with a set E+ of edges.

G G’
B A

C

D

FE

ϒ2𝐾𝐾 𝐺𝐺 = 2K(G)

B A

C

D

FE

<1,3> = 1  (B-A)
<2,2> = 2  (F-v+), (E-D)
<2,3> = 1  (F-v+)
<2,4> = 3  (D-C), (E-C), (F-C)
<3,4> = 1  (A-C)

ϒ2𝐾𝐾 𝐺𝐺 = 2K(Gʹ)

𝑣𝑣+<1,2> = 1 (B-A)
<1,4> = 1 (F-C)
<2,2> = 1 (E-D)
<2,4> = 3 (A-C), (D-C), (E-C)

2𝐾𝐾(𝐺𝐺) 2𝐾𝐾(𝐺𝐺𝐺)

2K−distribution of G 2K−distribution of Gʹ

Each edge (v+, vi) ∈ E+ may cause at most 2 × deg(G) + 1
entries of γ2K(G) being changed.
Thus, the total number of entries of γ2K(G) being changed by
all edges in E+ is upper bounded by (2× deg(G) + 1)× |E+|.
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dK-Projection Framework



Proposed Framework

dK-projection works in the following steps:

(1) Given a graphG, a graph projection algorithm transformsG into
a θ-bounded graph Gθ.

𝐺𝐺𝜃𝜃

G

B A

C

D

FE

Graph Projection

θ-bounded Graph 
Transformation 
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Proposed Framework
dK-projection works in the following steps:

(1) Given a graphG, a graph projection algorithm transformsG into
a θ-bounded graph Gθ.

(2) Then higher-order network statistics such as dK-distributions
[5] are extracted from Gθ.

(3) Finally extracted dK-distributions are perturbed yielding ε- dif-
ferentially private dK-distributions.

𝐺𝐺𝜃𝜃
dK-distribution

Perturbed
dK- distribution

Extraction
G

1𝐾𝐾(𝐺𝐺)2𝐾𝐾(𝐺𝐺)3𝐾𝐾(𝐺𝐺)

n𝐾𝐾 𝐺𝐺

Differentially Private dK-distributions

B A

C

D

FE

Graph Projection

Perturbation

θ-bounded Graph 
Transformation 

Figure 2: A high-level overview of the proposed framework
(dK-Projection)
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Proposed Approach



Stable-Edge-Removal Graph Projection

We propose Stable-Edge-Removal (SER) that transform a graph
G to a θ-bounded graph Gθ with θ < deg(G) based on a two-
level ordering strategy on G.

Two-Level Ordering

A two-level ordering over G = (V, E) is a pair Γ = (�N,�V) where
�N is a local neighbour ordering such that, for each v ∈ V, there
is a bijection: NG(v)→ {1, . . . , |NG(v)|}; �V is a global node
ordering such that there is a bijection: V → {1, . . . , |V|}.

Given a two-level ordering Γ, an edge ordering is defined.
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Stable-Edge-Removal Algorithm

Assume that a two-level ordering Γ = (�N,�V) on a graph G
obtained by sorting nodes based on degrees from highest to
lowest (�V), and for each node v sorting their neighbours in
NG(v) in a similar manner (�N).

B A

C

D

FE

Original Graph

v deg(v) N(v)

C 4 {A, D, E, F}

A 2 {C, B}

D 2 {C, E}

E 2 {C, D}

B 1 {A}

F 1 {C}
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Stable-Edge-Removal Algorithm

Thus, we have a sequence of edges ordered by �Γ, i.e.,
〈(C,A), (C,D), (C, E), (C, F), . . . , (F, C)〉. Let θ = 1.

B A

C

D

FE

Original Graph

v deg(v) N(v)

C 4 {A, D, E, F}

A 2 {C, B}

D 2 {C, E}

E 2 {C, D}

B 1 {A}

F 1 {C}
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Stable-Edge-Removal Algorithm

Then, following this sequence, by checking whether deg(C) >
θ, SER first removes edge (C,A) and decreases the degree counts
of nodes C and A by 1.

B A

C

D

FE

Original Graph

v deg(v) N(v)

C 4 {A, D, E, F}

A 2 {C, B}

D 2 {C, E}

E 2 {C, D}

B 1 {A}

F 1 {C}

v deg(v) N(v)

C 3 {D, E, F}

A 1 {B}

D 2 {C, E}

E 2 {C, D}

B 1 {A}

F 1 {C}
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Stable-Edge-Removal Algorithm

Similarly, SER removes edge (C,D) and decreases the degree
counts of nodes C and D by 1.

B A

C

D

FE
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A 2 {C, B}
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v deg(v) N(v)

C 3 {D, E, F}

A 1 {B}

D 2 {C, E}

E 2 {C, D}

B 1 {A}

F 1 {C}

v deg(v) N(v)

C 2 {E, F}

A 1 {B}

D 1 {E}
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B 1 {A}

F 1 {C}

18 25



Stable-Edge-Removal Algorithm

SER keeps on removing edges, following the edge ordering�Γ,
and decreases the degree counts of nodes v ∈ V by 1, until Gθ
is obtained.

B A

C

D

FE

Original Graph

B A

C

D

FE

After Stable-Edge-Removal

v deg(v) N(v)

C 4 {A, D, E, F}

A 2 {C, B}

D 2 {C, E}

E 2 {C, D}

B 1 {A}

F 1 {C}

v deg(v) N(v)

C 3 {D, E, F}

A 1 {B}

D 2 {C, E}

E 2 {C, D}

B 1 {A}

F 1 {C}

v deg(v) N(v)

C 2 {E, F}

A 1 {B}

D 1 {E}

E 2 {C, D}

B 1 {A}

F 1 {C}

v deg(v) N(v)

C 1 {F}

A 1 {B}

D 1 {E}

E 1 {D}

B 1 {A}

F 1 {C}
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Releasing dK-distribution via Projection

Given a graph G, instead of extracting a dK-distribution from G
directly, we extract a dK-distribution from a θ-bounded graph
Gθ generated by a graph projection algorithm P , here P refers
to our SER algorithm.

Then based on the sensitivity of γdK ◦ P , i.e., (2θ + 1) × θ the
perturbation is performed over the dK-distribution being ex-
tracted from Gθ to generate a ε-di�erentially private joint de-
gree distribution.
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Experiments and Results



Experimental Setup

Four network datasets:
(1) Facebook contains 4,039 nodes and 88,234 edges.
(2) Wiki-Vote contains 7,115 nodes and 103,689 edges.
(3) Ca-HepPh contains 12,008 nodes and 118,521 edges.
(4) Email-Enron contains 36,692 nodes and 183,831 edges.

Three utility metrics [2, 4, 6]:
I preserved edge ratio measures the ratio of edges being

preserved by graph projection.
I L1 distance measures the network structural error between an

original dK-distribution p and its perturbed dK-distribution
p′.

I KS distance quantifies the closeness between an original
dK-distribution p and its perturbed dK-distribution p′.
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Evaluating graph projection I

We first compare our method SER with the state-of-the-art
graph projection method EAD [2], in terms of preserved edge
ratio. For every value of θ, SER outperforms EAD by preserving
more edges over all four datasets.
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Evaluating graph projection II
We also compare our method SERwith graph projection method
EAD [2], in terms of L1 distance and KS distance. For all four
datasets, our projection method SER leads to less network
structural error and generates dK-distributions which are more
similar to their original dK-distributions for every value of θ
as compared to EAD.

23 25



Evaluating DP dK-distributions
We compare the overall utility of di�erentially private dK- dis-
tributions generated by our method against the baseline meth-
ods.
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Conclusion and Future work

Conclusion:
I Developed a novel framework, called dK-Projection to publish

higher-order network statistics such as joint degree distribu-
tion under node-DP.

I Analysed the sensitivity of publishing joint degree distribution
in the proposed framework.

I Introduced a new graph projection algorithm to reduce sensi-
tivity of publishing network statistics under node-DP.

I Conducted experiments to verify the utility enhancement and
privacy guarantee of our proposed framework on four real-
world networks.

Future work: Future extensions to this work will consider per-
sonalized di�erential privacy to release statistics about social
networks while protecting privacy of individuals based on in-
dividuals preferences.
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