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Introduction



Motivation

Network analysis provides unique insights about social net-
work activities, disease transmission, consumer behaviour, com-
munication patterns, and recommendations.

However, given the private nature of data about individuals
stored in networks, releasing network data raises privacy con-
cerns, thereby requiring privacy-preserving mechanisms.

The current focus of privacy is around differential privacy (DP).
However, a uniform privacy level (i.e., ε ) is assigned to each
individual while guaranteeing DP, which may over or under
protect individuals.
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stored in networks, releasing network data raises privacy con-
cerns, thereby requiring privacy-preserving mechanisms.

The current focus of privacy is around differential privacy (DP).
However, a uniform privacy level (i.e., ε 1) is assigned to each
individual while guaranteeing DP, which may over or under
protect individuals.

1Smaller value of ε implies a stronger privacy guarantee.
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Aims and Challenges

Personalized differential privacy (PDP) provides freedom to indi-
viduals to set their own privacy parameter ε.

Aim: To publish higher-order network statics such as degree
distribution, and joint degree distribution, under (edge or
node) PDP.

Key Challenges:
▶ Each individual (node) has its own privacy preference whereas

each data point in data distribution reflects information about
more than one node.

▶ Network data is highly sensitive to structural changes under
DP.
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Problem Formulation



Neighboring Graphs

We define the notion of neighboring graphs (G ∼ G′) under edge
and node-DP.
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Neighboring Graphs

We define the notion of neighboring graphs (G ∼ G′) under edge
and node-DP.
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set of edges incident to that node.
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dK-distribution

The dK-graph model [4] offers a systematized way to extract sub-
graph degree distributions from a given graph, i.e. dK-distributions.

When d = |V|, a dK-distribution specifies the entire graph.
γdK(G) queries the dK-distribution of G.
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Problem Formulation

Given two (edge or node) neighboring graphs G ∼ G′ where G′

is obtained from G by adding (or deleting) an edge (or node)
can affect more than one node.

Thus, PDP should be formalized in terms of all affected nodes
to guarantee ε-indistinguishability.

Given a privacy specification Φ = {ε1, . . . εn}, denote Φv the
privacy preference ε of a node v

6 18



Problem Formulation

Given two (edge or node) neighboring graphs G ∼ G′ where G′

is obtained from G by adding (or deleting) an edge (or node)
can affect more than one node.

Thus, PDP should be formalized in terms of all affected nodes
to guarantee ε-indistinguishability.

Given a privacy specification Φ = {ε1, . . . εn}, denote Φv the
privacy preference ε of a node v

6 18



Problem Formulation

Given two (edge or node) neighboring graphs G ∼ G′ where G′

is obtained from G by adding (or deleting) an edge (or node)
can affect more than one node.

Thus, PDP should be formalized in terms of all affected nodes
to guarantee ε-indistinguishability.

Given a privacy specification Φ = {ε1, . . . εn}, denote Φv the
privacy preference ε of a node v

6 18



Problem Formulation

Edge Φ-PDP: For G e∼ G′, adding (or deleting) an edge affects
exactly two nodes u and v.

Pr[K(G) ∈ O] ≤ emin{Φu,Φv} × Pr[K(G′) ∈ O].

NodeΦ-PDP: For G n∼ G′, adding (or deleting) a node v+ affects
|E+| nodes incident to v+ and v+ itself.

Pr[K(G) ∈ O] ≤ emin{Φv|(v+,v)∈E+} × Pr[K(G′) ∈ O] and

Pr[K(G) ∈ O] ≤ eΦv+ × Pr[K(G′) ∈ O]
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Problem Formulation

We want to generate DΦ that is an anonymized version of D
satisfying (edge or node) Φ-PDP.

We view the response to γdK as a collection of responses to
degree queries, one for each tuple (entry) in a dK-distribution.

(Degree query)
A degree query γq : γdK(G) → N maps a degree tuple dt ∈ γdK(G)
to a frequency value in N s.t. (dt, γq(G)) ∈ γdK(G).
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Sensitivity Analysis

We analyze the sensitivity (∆) 2 of a single dK-distribution entry,
i.e., degree query γq rather than the entire dK-distribution γdK .

∆(γq) of is |E+|+ 1 over 1K(G) under node-DP.

∆(γq) of (deg(G) + 1)× |E+| over 2K(G) under node-DP.

∆(γq) of is 2 over 1K(G) under Edge-DP.

∆(γq) of is 2 × deg(G) + 1 over 2K(G) under Edge-DP.

We observe that the sensitivity of γq is half as compared to γdK .

2The maximum change in γq.
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Proposed Personalized
Approaches



Personalized Approach I

Local Least Based Personalized Perturbation: LL-dK perturbs en-
tries with the strongest local ε.

The frequency value 2 in 1K(G), and the frequency value 3 in 2K(G)
are perturbed with ε = min(ΦB,ΦF), and ε = min(ΦA,ΦC,ΦD,ΦE),
respectively.
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Personalized Approach II

ThresholdProjectionBasedPersonalizedPerturbation: TP-dK trans-
forms a graph into a θ-bounded graph then removes all nodes with
ε < τ .

Since deg(G) ≤ θ, the sensitivity of γq is reduced.

With threshold τ all nodes with high privacy are removed.

11 18
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Personalized Approach III

Sampling Based Personalized Perturbation: ST-dK first splits en-
tries, and then samples them with non-uniform probabilities.

Inclusion probability for each entry depends on corresponding ε
and global threshold τ .
Sampled dK-distribution is perturbed with τ .
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Personalized Approach IV

Aggregation Based Personalized Perturbation: AG-dK computes
corresponding ε values to performs aggregation over dK-distribution.

Entries are perturbed with the strongest local ε corresponding to
each partition.
γq is approximated to γq ◦M.
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Experiments and Results



Experimental Setup

Four network datasets:

(1) Facebook contains 4,039 nodes and 88,234 edges.

(2) Wiki-Vote contains 7,115 nodes and 103,689 edges.

(3) Ca-HepPh contains 12,008 nodes and 118,521 edges.

(4) Email-Enron contains 36,692 nodes and 183,831 edges.

Two utility metrics [1]:
▶ L1 distance measures the network structural error the original

dK-distribution D and its private version DΦ by calculating
∥D− DΦ∥1 =

∑deg(G)
i=1 |Di − DΦi |.

▶ KS distance measures the closeness between the cumulative
distribution functions of D and DΦ by calculating KS(D,DΦ) =
maxi|CDFDi − CDFDΦi

|.
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Experiments I

Does the proposed personalized approaches yield more utility in
1K-distribution under edge-PDP and node-PDP?

Our methods yield less network structural error.
AG-dK outperforms under edge-PDP and LL-dK outperforms
under node-PDP by generating more similar 1K-distributions.
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Experiments II

Does the proposed personalized approaches yield yield more util-
ity in 2K-distribution under edge-PDP and node-PDP?

Our methods yield less network structural error.
AG-dK outperforms under edge-PDP and LL-dK outperforms
under node-PDP by generating more similar 2K-distributions.
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Experiments II
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Discussion

What kind of trade-off exists between utility and privacy while
generating personalized differentially private dK-distributions?

The error caused by sensitivity (∆) and the privacy preference
ε dominates the impact on output utility.

Increasing ε and decreasing ∆ can help to reduce error.

Reducing sensitivity is more challenging under node-PDP than
for edge-PDP as graph data is highly sensitive under node-DP.
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Conclusion and Future work

Conclusion:

▶ We have studied the problem of publishing degree distribution
and joint degree distribution under PDP.

▶ We have theoretically analyzed the sensitivity of these distri-
butions under edge-PDP and node-PDP.

▶ We have proposed four personalized privacy-preserving mech-
anisms while enhancing output utility.

▶ The effectiveness of our proposed work has been empirically
verified over four real-world networks.

Future work: To this work will consider local differential pri-
vacy to release network statistics under personalization.
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