DK-PERSONALIZATION: PUBLISHING NETWORK STATISTICS WITH PERSON-ALIZED DIFFERENTIAL PRIVACY

Masooma Iftikhar Qing Wang Yang Li

School of Computing College of Engineering and Computer Science The Australian National University, Canberra, Australia

MAY 17, 2022

- Introduction
- Problem Formulation

- Introduction
- Problem Formulation
- Sensitivity Analysis

- Introduction
- Problem Formulation
- Sensitivity Analysis
- Proposed Personalized Approaches

Introduction

- Problem Formulation
- Sensitivity Analysis
- Proposed Personalized Approaches
- Experiments and Results

Introduction

- Problem Formulation
- Sensitivity Analysis
- Proposed Personalized Approaches
- Experiments and Results
- Conclusion and Future Work

INTRODUCTION

Network analysis provides unique insights about social network activities, disease transmission, consumer behaviour, communication patterns, and recommendations.

- Network analysis provides unique insights about social network activities, disease transmission, consumer behaviour, communication patterns, and recommendations.
- However, given the private nature of data about individuals stored in networks, releasing network data raises privacy concerns, thereby requiring privacy-preserving mechanisms.

- Network analysis provides unique insights about social network activities, disease transmission, consumer behaviour, communication patterns, and recommendations.
- However, given the private nature of data about individuals stored in networks, releasing network data raises privacy concerns, thereby requiring privacy-preserving mechanisms.
- The current focus of privacy is around differential privacy (DP). However, a uniform privacy level (i.e., ε¹) is assigned to each individual while guaranteeing DP, which may over or under protect individuals.

¹Smaller value of ε implies a stronger privacy guarantee.

Aim: To publish higher-order network statics such as degree distribution, and joint degree distribution, under (edge or node) PDP.

- Aim: To publish higher-order network statics such as degree distribution, and joint degree distribution, under (edge or node) PDP.
- Key Challenges:

- Aim: To publish higher-order network statics such as degree distribution, and joint degree distribution, under (edge or node) PDP.
- Key Challenges:
 - Each individual (node) has its own privacy preference whereas each data point in data distribution reflects information about more than one node.

Aim: To publish higher-order network statics such as degree distribution, and joint degree distribution, under (edge or node) PDP.

Key Challenges:

- Each individual (node) has its own privacy preference whereas each data point in data distribution reflects information about more than one node.
- Network data is highly sensitive to structural changes under DP.

PROBLEM FORMULATION

We define the notion of neighboring graphs ($G \sim G'$) under edge and node-DP.

NEIGHBORING GRAPHS

We define the notion of neighboring graphs ($G \sim G'$) under edge and node-DP.

Original-Graph

4

NEIGHBORING GRAPHS

We define the notion of neighboring graphs ($G \sim G'$) under edge and node-DP.

NEIGHBORING GRAPHS

We define the notion of neighboring graphs ($G \sim G'$) under edge and node-DP.

• When d = |V|, a dK-distribution specifies the entire graph.

When d = |V|, a dK-distribution specifies the entire graph.

 γ^{dK}(G) queries the dK-distribution of G.

■ Given two (edge or node) neighboring graphs G ~ G' where G' is obtained from G by adding (or deleting) an edge (or node) can affect more than one node.

- Given two (edge or node) neighboring graphs G ~ G' where G' is obtained from G by adding (or deleting) an edge (or node) can affect more than one node.
- Thus, PDP should be formalized in terms of all affected nodes to guarantee *ε*-indistinguishability.

- Given two (edge or node) neighboring graphs *G* ~ *G*′ where *G*′ is obtained from *G* by adding (or deleting) an edge (or node) can affect more than one node.
- Thus, PDP should be formalized in terms of all affected nodes to guarantee *ε*-indistinguishability.
- Given a privacy specification $\Phi = \{\varepsilon_1, \dots, \varepsilon_n\}$, denote Φ^v the privacy preference ε of a node v

Edge Φ -**PDP:** For **G** $\stackrel{e}{\sim}$ **G**', adding (or deleting) an edge affects exactly two nodes *u* and *v*.

$$\Pr[\mathcal{K}(G) \in \mathcal{O}] \leq e^{\min\{\Phi^u, \Phi^v\}} \times \Pr[\mathcal{K}(G') \in \mathcal{O}].$$

Edge Φ-PDP: For G ^e G', adding (or deleting) an edge affects exactly two nodes u and v.

$$\Pr[\mathcal{K}(G) \in \mathcal{O}] \leq e^{\min\{\Phi^u, \Phi^v\}} \times \Pr[\mathcal{K}(G') \in \mathcal{O}].$$

Node Φ -**PDP:** For **G** $\stackrel{n}{\sim}$ **G**', adding (or deleting) a node v^+ affects $|E^+|$ nodes incident to v^+ and v^+ itself.

$$\Pr[\mathcal{K}(G) \in \mathcal{O}] \le e^{\min\{\Phi^{v} | (v^+, v) \in E^+\}} imes \Pr[\mathcal{K}(G') \in \mathcal{O}]$$
 and
 $\Pr[\mathcal{K}(G) \in \mathcal{O}] \le e^{\Phi^{v^+}} imes \Pr[\mathcal{K}(G') \in \mathcal{O}]$

■ We want to generate *D*^Φ that is an anonymized version of *D* satisfying (edge or node) Φ-PDP.

- We want to generate *D*^Φ that is an anonymized version of *D* satisfying (edge or node) Φ-PDP.
- We view the response to γ^{dK} as a collection of responses to degree queries, one for each tuple (entry) in a *dK*-distribution.

- We want to generate *D*^Φ that is an anonymized version of *D* satisfying (edge or node) Φ-PDP.
- We view the response to γ^{dK} as a collection of responses to degree queries, one for each tuple (entry) in a *dK*-distribution.

(DEGREE QUERY)

A degree query $\gamma_q : \gamma^{d\mathcal{K}}(G) \to \mathbb{N}$ maps a degree tuple $d_t \in \gamma^{d\mathcal{K}}(G)$ to a frequency value in \mathbb{N} s.t. $(d_t, \gamma_q(G)) \in \gamma^{d\mathcal{K}}(G)$.

SENSITIVITY ANALYSIS

²The maximum change in γ_q .

• $\Delta(\gamma_q)$ of is $|E^+| + 1$ over 1K(G) under node-DP.

²The maximum change in γ_q .

- $\Delta(\gamma_q)$ of is $|E^+| + 1$ over 1K(G) under node-DP.
- $\Delta(\gamma_q)$ of $(deg(G) + 1) \times |E^+|$ over 2K(G) under node-DP.

- $\Delta(\gamma_q)$ of is $|E^+| + 1$ over 1K(G) under node-DP.
- $\Delta(\gamma_q)$ of $(deg(G) + 1) \times |E^+|$ over 2K(G) under node-DP.
- $\Delta(\gamma_q)$ of is 2 over 1K(G) under Edge-DP.

- $\Delta(\gamma_q)$ of is $|E^+| + 1$ over 1K(G) under node-DP.
- $\Delta(\gamma_q)$ of $(deg(G) + 1) \times |E^+|$ over 2K(G) under node-DP.
- $\Delta(\gamma_q)$ of is 2 over 1K(G) under Edge-DP.
- $\Delta(\gamma_q)$ of is $2 \times deg(G) + 1$ over 2K(G) under Edge-DP.

- $\Delta(\gamma_q)$ of is $|E^+| + 1$ over 1K(G) under node-DP.
- $\Delta(\gamma_q)$ of $(deg(G) + 1) \times |E^+|$ over 2K(G) under node-DP.
- $\Delta(\gamma_q)$ of is 2 over 1K(G) under Edge-DP.
- $\Delta(\gamma_q)$ of is $2 \times deg(G) + 1$ over 2K(G) under Edge-DP.

We observe that the sensitivity of γ_q is half as compared to γ^{dK} .

²The maximum change in γ_q .

PROPOSED PERSONALIZED APPROACHES

10

The frequency value 2 in 1*K*(*G*), and the frequency value 3 in 2*K*(*G*) are perturbed with $\varepsilon = min(\Phi^B, \Phi^F)$, and $\varepsilon = min(\Phi^A, \Phi^C, \Phi^D, \Phi^E)$, respectively.

Since $deg(G) \le \theta$, the sensitivity of γ_q is reduced.

Since $deg(G) \le \theta$, the sensitivity of γ_q is reduced.

With threshold τ all nodes with high privacy are removed.

Inclusion probability for each entry depends on corresponding ε and global threshold τ .

Inclusion probability for each entry depends on corresponding ε and global threshold τ .

Sampled dK-distribution is perturbed with τ .

Entries are perturbed with the strongest local ε corresponding to each partition.

Entries are perturbed with the strongest local ε corresponding to each partition.

```
\gamma_{q} is approximated to \gamma_{q} \circ \mathcal{M}.
```

EXPERIMENTS AND RESULTS

Four network datasets:

EXPERIMENTAL SETUP

Four network datasets:

- (1) *Facebook* contains 4,039 nodes and 88,234 edges.
- (2) Wiki-Vote contains 7,115 nodes and 103,689 edges.
- (3) *Ca-HepPh* contains 12,008 nodes and 118,521 edges.
- (4) Email-Enron contains 36,692 nodes and 183,831 edges.
EXPERIMENTAL SETUP

Four network datasets:

- (1) *Facebook* contains 4,039 nodes and 88,234 edges.
- (2) Wiki-Vote contains 7,115 nodes and 103,689 edges.
- (3) *Ca-HepPh* contains 12,008 nodes and 118,521 edges.
- (4) Email-Enron contains 36,692 nodes and 183,831 edges.
- Two utility metrics [1]:

EXPERIMENTAL SETUP

Four network datasets:

- (1) *Facebook* contains 4,039 nodes and 88,234 edges.
- (2) Wiki-Vote contains 7,115 nodes and 103,689 edges.
- (3) *Ca-HepPh* contains 12,008 nodes and 118,521 edges.
- (4) Email-Enron contains 36,692 nodes and 183,831 edges.
- Two utility metrics [1]:
 - ► L1 distance measures the network structural error the original dK-distribution D and its private version D_{Φ} by calculating $\|D D_{\Phi}\|_1 = \sum_{i=1}^{\deg(G)} |D_i D_{\Phi_i}|.$

Four network datasets:

- (1) *Facebook* contains 4,039 nodes and 88,234 edges.
- (2) Wiki-Vote contains 7,115 nodes and 103,689 edges.
- (3) *Ca-HepPh* contains 12,008 nodes and 118,521 edges.
- (4) Email-Enron contains 36,692 nodes and 183,831 edges.
- Two utility metrics [1]:
 - ► L1 distance measures the network structural error the original dK-distribution D and its private version D_{Φ} by calculating $\|D D_{\Phi}\|_1 = \sum_{i=1}^{\deg(G)} |D_i D_{\Phi_i}|.$
 - ► KS distance measures the closeness between the cumulative distribution functions of D and D_{Φ} by calculating $KS(D, D_{\Phi}) = max_i |CDF_{D_i} CDF_{D_{\Phi_i}}|$.

Our methods yield less network structural error.

- Our methods yield less network structural error.
- AG-dK outperforms under edge-PDP and LL-dK outperforms under node-PDP by generating more similar 1K-distributions.

Our methods yield less network structural error.

- Our methods yield less network structural error.
- AG-dK outperforms under edge-PDP and LL-dK outperforms under node-PDP by generating more similar 2K-distributions.

The error caused by sensitivity (Δ) and the privacy preference ε dominates the impact on output utility.

- The error caused by sensitivity (Δ) and the privacy preference ε dominates the impact on output utility.
- Increasing ε and decreasing Δ can help to reduce error.

- The error caused by sensitivity (Δ) and the privacy preference ε dominates the impact on output utility.
- Increasing ε and decreasing Δ can help to reduce error.
- Reducing sensitivity is more challenging under node-PDP than for edge-PDP as graph data is highly sensitive under node-DP.

CONCLUSION AND FUTURE WORK

We have studied the problem of publishing degree distribution and joint degree distribution under PDP.

- We have studied the problem of publishing degree distribution and joint degree distribution under PDP.
- We have theoretically analyzed the sensitivity of these distributions under edge-PDP and node-PDP.

- We have studied the problem of publishing degree distribution and joint degree distribution under PDP.
- We have theoretically analyzed the sensitivity of these distributions under edge-PDP and node-PDP.
- We have proposed four personalized privacy-preserving mechanisms while enhancing output utility.

- We have studied the problem of publishing degree distribution and joint degree distribution under PDP.
- We have theoretically analyzed the sensitivity of these distributions under edge-PDP and node-PDP.
- We have proposed four personalized privacy-preserving mechanisms while enhancing output utility.
- The effectiveness of our proposed work has been empirically verified over four real-world networks.

- We have studied the problem of publishing degree distribution and joint degree distribution under PDP.
- We have theoretically analyzed the sensitivity of these distributions under edge-PDP and node-PDP.
- We have proposed four personalized privacy-preserving mechanisms while enhancing output utility.
- The effectiveness of our proposed work has been empirically verified over four real-world networks.
- **Future work:** To this work will consider local differential privacy to release network statistics under personalization.

References

- WEI-YEN DAY, NINGHUI LI, AND MIN LYU.
 PUBLISHING GRAPH DEGREE DISTRIBUTION WITH NODE DIFFERENTIAL PRIVACY.
 In SIGMOD, pages 123–138, 2016.
- CYNTHIA DWORK, FRANK MCSHERRY, KOBBI NISSIM, AND ADAM SMITH. CALIBRATING NOISE TO SENSITIVITY IN PRIVATE DATA ANALYSIS. In TCC, pages 265–284, 2006.
- PRIYA MAHADEVAN, CALVIN HUBBLE, DMITRI KRIOUKOV, BRADLEY HUFFAKER, AND AMIN VAHDAT.

ORBIS: RESCALING DEGREE CORRELATIONS TO GENERATE ANNOTATED INTERNET TOPOLOGIES. In *SIGCOMM*, pages 325–336, 2007.

- PRIYA MAHADEVAN, DMITRI KRIOUKOV, KEVIN FALL, AND AMIN VAHDAT. Systematic topology analysis and generation using degree correlations. In SIGCOMM, pages 135–146, 2006.
- ALESSANDRA SALA, XIAOHAN ZHAO, CHRISTO WILSON, HAITAO ZHENG, AND BEN Y ZHAO. SHARING GRAPHS USING DIFFERENTIALLY PRIVATE GRAPH MODELS. In SIGCOMM, pages 81–98, 2011.
- WILLIAM E YANCEY, WILLIAM E WINKLER, AND ROBERT H CREECY. **DISCLOSURE RISK ASSESSMENT IN PERTURBATIVE MICRODATA PROTECTION.** In Inference control in statistical databases, pages 135–152. 2002.

THANKS FOR YOUR ATTENTION!

ANY QUESTIONS