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m Network analysis provides unique insights about social net-
work activities, disease transmission, consumer behaviour, com-
munication patterns, and recommendations.

m However, given the private nature of data about individuals
stored in networks, releasing network data raises privacy con-
cerns, thereby requiring privacy-preserving mechanisms.

m The current focus of privacy is around differential privacy (DP).
However, a uniform privacy level (i.e., ¢ ') is assigned to each
individual while guaranteeing DP, which may over or under
protect individuals.

"Smaller value of € implies a stronger privacy guarantee.
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AIMS AND CHALLENGES Neboray

Personalized differential privacy (PDP) provides freedom to indi-
viduals to set their own privacy parameter «.

m Aim: To publish higher-order network statics such as degree
distribution, and joint degree distribution, under (edge or
node) PDP.

m Key Challenges:

» Each individual (node) has its own privacy preference whereas
each data point in data distribution reflects information about
more than one node.

» Network data is highly sensitive to structural changes under
DP.
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We define the notion of neighboring graphs (G ~ G') under edge
and node-DP.

Edge-Neighbor

Original-Graph (E) G and G’ differ in one edge.

G and G’ differ in one node and the
set of edges incident to that node.




DK-DISTRIBUTION ﬁ‘éﬁgﬁg?”

iversity

The dK-graph model [4] offers a systematized way to extract sub-
graph degree distributions from a given graph, i.e. dK-distributions.




DK-DISTRIBUTION

The dK-graph model [4] offers a systematized way to extract sub-
graph degree distributions from a given graph, i.e. dK-distributions.

1K(G)
..G = |1 2
{2 3 } Degree Distribution

. 4 1
® ®
©-
P~ T
&) F
N e
(D




Aust

DK-DISTRIBUTION

The dK-graph model [4] offers a systematized way to extract sub-
graph degree distributions from a given graph, i.e. dK-distributions.

1K(G)
..G = |1 2
{2 3 } Degree Distribution

4 1
® @
< ] 2K (G), <1,2>=1 (B-A)
®. <1,4>=1 (F-0) Joint Degree Distribution
@ ' ® <2,2>=1 (E-D)
@ / <2,4> =3 (A-C), (D-C), (E-C)

ralian



Australian
100

al

DK-DISTRIBUTION

The dK-graph model [4] offers a systematized way to extract sub-
graph degree distributions from a given graph, i.e. dK-distributions.

1K(G)
..G = |1 2
{2 3 } Degree Distribution

) 4 1
e ©
| % <1,2>=1 (B-A)
®. <1,4>=1 (F-0) Joint Degree Distribution
@ ' ® <2,2>=1 (E-D)
S - <2,4> =3 (A-C), (D-C), (E-C)

3K(G)
[ — B
<1,2,4>=2 (B-AC), (F-CA) Clustering Coefficient Distribution
<2,4,2>=3 (A-C-D), (A-C-E), (D-C-E)



DK-DISTRIBUTION

The dK-graph model [4] offers a systematized way to extract sub-

Australian
100

al

graph degree distributions from a given graph, i.e. dK-distributions.

2 3
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G E— 1 2
{ } Degree Distribution

B 2K (G) <1,2>=1 (B-A
) : , (B-A)

O <14>=1 (F-C) Joint Degree Distribution
@ I “® <2,2>=1 (E-D)
N <2,4>=3 (A-C), (D-C), (E-C)
3K(G)
<1,2/4> =2 (B-A-C), (F-C-A) Clustering Coefficient Distribution
<2,4,2> =3 (A-C-D), (A-C-E), (D-C-E)

m When d = |V|, a dK-distribution specifies the entire graph.
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The dK-graph model [4] offers a systematized way to extract sub-
graph degree distributions from a given graph, i.e. dK-distributions.

1K(G)
G E— 1 2
{ } Degree Distribution

2 3
4 1
< 7 2K (G), <1,2>=1 (B-A)
© - <1,4>=1 (F-C) Joint Degree Distribution
@  ® <2,2>=1 (E-D)
~ L P <2,45> =3 (A-C), (D-C), (E-C)

3K (G)
<1,2,4>=2 (B-A-C), (F-C-A) Clustering Coefficient Distribution
<2,4,2> =3 (A-C-D), (A-C-E), (D-C-E)

m When d = |V|, a dK-distribution specifies the entire graph.
m 19%(G) queries the dK-distribution of G.
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m Given two (edge or node) neighboring graphs G ~ G’ where G’
is obtained from G by adding (or deleting) an edge (or node)
can affect more than one node.

m Thus, PDP should be formalized in terms of all affected nodes
to guarantee e-indistinguishability.

m Given a privacy specification & = {e4,...e,}, denote ¢V the
privacy preference ¢ of a node v
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m Edge ¢-PDP: For G <~ G/, adding (or deleting) an edge affects
exactly two nodes u and v.

PriK(G) € O] < eMmM®*®"} . priK(G') € O).

m Node ®-PDP:ForG X G, adding (or deleting) a node v+ affects
|[ET| nodes incident to v and v itself.

PriC(G) € O] < eMmM®IVIVIEE} o pric(G') € O] and
PrK(G) € O] < e® x Pr[KC(G) € O]
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m We want to generate Dg that is an anonymized version of D
satisfying (edge or node) ®-PDP.

m We view the response to v/ as a collection of responses to
degree queries, one for each tuple (entry) in a dK-distribution.

(DEGREE QUERY)

A degree query 4 : v%(G) — N maps a degree tuple d; € v9€(G)
to a frequency value in N s.t. (dt,74(G)) € v9%(G).
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We analyze the sensitivity (A) 2 of a single dK-distribution entry,
i.e., degree query 4 rather than the entire dK-distribution 9.

m A(yq) of is |[ET| + 1 over 1K(G) under node-DP.

m A(yq) of (deg(G) + 1) x |[ET| over 2K(G) under node-DP.
m A(yq) of is 2 over 1K(G) under Edge-DP.

m A(vq) of is 2 x deg(G) + 1 over 2K(G) under Edge-DP.

We observe that the sensitivity of +4 is half as compared to .

*The maximum change in .
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Local Least Based Personalized Perturbation: LL-dK perturbs en-
tries with the strongest local ¢.

Y£(G) = 1K(G) YHE) = 2K(@)
s <1,2>=1 (B-A)
® 1 2 (B,F) <1,4>=1 (F-C)
B 2 3 (ADE) <2,2>=1 (E-D)
4 1 [<2,4>=3 (A) (D-0), (E-C)

1K~distribution of G 2K-distribution of G

The frequency value 2 in 1K(G), and the frequency value 3 in 2K(G)
are perturbed with ¢ = min(®8, o), and ¢ = min(®*, o€, 0, oF),
respectively.




*|  Australian
National

PERSONALIZED APPROACH I -y

Threshold Projection Based Personalized Perturbation: TP-dK trans-
formsa graph into a 9-bounded graph then removes all nodes with

e<T.




PERSONALIZED APPROACH Il

Threshold Projection Based Personalized Perturbation: TP-dK trans-
formsa graph into a 9-bounded graph then removes all nodes with

e<T.




Australian
N

PERSONALIZED APPROACH Il

Threshold Projection Based Personalized Perturbation: TP-dK trans-
formsa graph into a 9-bounded graph then removes all nodes with

e<T.
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Threshold Projection Based Personalized Perturbation: TP-dK trans-
formsa graph into a 9-bounded graph then removes all nodes with

e<T.
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Threshold Projection Based Personalized Perturbation: TP-dK trans-
formsa graph into a 9-bounded graph then removes all nodes with

e<T.

2K~distribution of G 97

- - GOt - 1K~distribution of G 97

0.2 10 02 10 10
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Threshold Projection Based Personalized Perturbation: TP-dK trans-
formsa graph into a 9-bounded graph then removes all nodes with

e<T.

2K~distribution of G 97
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Since deg(G) < 0, the sensitivity of -4 is reduced.
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Threshold Projection Based Personalized Perturbation: TP-dK trans-
forms a graph into a #-bounded graph then removes all nodes with

e<T.

2K~distribution of G 9T

- ot
- - GOt ‘ 1K-distribution of G

0.2 10 02 10 10
2 2 02 1 2 (BE) <1,2>=2 (B-A),(E-C)
® 9 @ g A 2 2 (AQ) <2,2>=1 (A-C)
10 10
02 O 02 02 ct?
OOJ :F> ] E
R S X 0oL 0.01
L o

Since deg(G) < 0, the sensitivity of -4 is reduced.
With threshold 7 all nodes with high privacy are removed.
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Sampling Based Personalized Perturbation: ST-dK first splits en-
tries, and then samples them with non-uniform probabilities.

YK(G) = 1K(G)

1 2 (B,F)
02 => 32 3 (ADF
! 4 1 (Q)
0.2 1K-distribution of G
@

<14>=1 (F-C)
<2,2>=1 (E-D)
<2,4>=3 (A-C), (D-C), (E-C)

: u\'D/\‘ : -
= I 2K(6) Y2 (G) = 2K(G)
<1,2>=1 (B-A) }

2K-distribution of G
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Sampling Based Personalized Perturbation: ST-dK first splits en-
tries, and then samples them with non-uniform probabilities.

Y®(6) = 1K(6)
11 (B)
1 2 (BF 11 (F
02 ‘},9;‘ =) {z 3 (A,D,E)} :: 2 1 @A
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Sampling Based Personalized Perturbation: ST-dK first splits en-
tries, and then samples them with non-uniform probabilities.

YK(G) = 1K(G) . 1 @)
1 1 (F)
12 (8F) 11
2 M mm ) 3 apg =<2 1A = i
I L) 2 1 Split 2 1 (D) Sample (A)
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02 ©- 1K-distribution of G 2 10
@ ®
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<2521 (B-A) <1,4>=1 (F-C) <1,2>=1 (B-A)
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Sampling Based Personalized Perturbation: ST-dK first splits en-
tries, and then samples them with non-uniform probabilities.

YK(G) = 1K(G) . 1 @)
1 1 (F)
12 (8F) 11
2 M mm ) 3 apg =<2 1A = i
I L) 2 1 Split 2 1 (D) Sample (A)
; @ > 1@ 4 1 (
02 ©- 1K-distribution of G 2 10
G ®
g ) Y?4(6) = 2K(6) A2>=1 (B-A)
u <2521 (B-A) <1,4>=1 (F-C) <1,2>=1 (B-A)
(1'4>:1 (F-0) =) | <2,2>=1 (E-D) =) <2,4>=1 (AQ)
<22>=1 (ED) split 1) <24>=1 (AQ) (g 241 (A
3 ample _
<2,4>=3 (A-C), (D-C), (E-C) :;2:1 EED:CC)) 2,4>=1 (E-C)

2K-distribution of G

Inclusion probability for each entry depends on corresponding ¢
and global threshold .



PERSONALIZED APPROACH llI ftrakan

Sampling Based Personalized Perturbation: ST-dK first splits en-
tries, and then samples them with non-uniform probabilities.

Y(G) = 1K(G)
1 1 (B) 1 1M
1 2 (BF) 11
02 = 5 3 (ADE ‘ 5 1 (A =) 2 1 (A)
@ Split 2 1 (D) Sample | 2 1 (A)
4 1 (Q a1
T 2 1 (E)
02 1K~distribution of G 2 1 (0
B

<1,2>=1 (B-A)

<1,4>=1 (F-C) =) | <2,2>=1 (E-D) =) <2,4>=1 (A-Q)
<«2,2>=1 (E-D) split 1) <24>=1 (A-C)

<2,4>=3 (A-C), (D-C), (E-C)

2K-distribution of G

<24>=1 (AC)
<24>=1 (E-Q)

@ 2K(G) Y(6) = 2K(6) <1,2>=1 (B-A)
|—$ } <1,4>=1 (F-C) <1,2>=1 (B-A)

<24>=1 (D | S2mPle

<2,4>=1 (E-Q)

Inclusion probability for each entry depends on corresponding ¢
and global threshold .

Sampled dK-distribution is perturbed with 7.



PERSONALIZED APPROACH IV ﬁ‘éﬁgﬁg?”

versity

Aggregation Based Personalized Perturbation: AG-dK computes
corresponding ¢ values to performs aggregation over dK-distribution.




PERSONALIZED APPROACH IV fiStrakon

Aggregation Based Personalized Perturbation: AG-dK computes
corresponding ¢ values to performs aggregation over dK-distribution.

@ VO=16
10 ==
a 12 8
g {2 3 (A,D,E)}
4 10
o
‘-

@ ® -
0.01 001 1K-distribution of G

L)
IZK(G) Y2K(G) = 2K(G)

<1,2>=1 (B-A)
<145=1 (FC)
<2,2>=1 (E-D)
<2,4>=3 (AC), (D-C), (E-C)

2K-distribution of G
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Aggregation Based Personalized Perturbation: AG-dK computes
corresponding ¢ values to performs aggregation over dK-distribution.

@ VO=16
10 ==

0;27\ @ 1 2 (8F) 001 |02 |-

B I’ 2 3 (AD,E) 001 |02 |10

02 ct? 4 1 () 0 |- E
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& ;001[ \gz/n 1K-distribution of G prigacy preferences
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@
IZK(G) Y2K(G) = 2K(G)

<1,2>=1 (B-A) L I N
<1,4>=1 (F-C) L L N
<2,2>=1 (ED) 001 |02 | - | -
<2,4>=3 (A-C), (D-C), (E-C) 001 |02 | 10|10

Corresponding
privacy preferences

2K-distribution of G
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Aggregation Based Personalized Perturbation: AG-dK computes
corresponding ¢ values to performs aggregation over dK-distribution.

Aggregation |

) i
1K(G) YIK(G) = 1K(G) | Partition Aggregation '
i |
02 o 1 2 (BF) 001 |02 |- R 2 (BF) { ; } =5 BF), (ADE) | |
[ - 2 3 (ADE) 001 |02 |10 <2 3 (ADE) |
- 4 1 (0) 1w |- |- | | T !
02 e < @ 1 La 1 (0) 4 =1(0) !
@ B 1k-distribution of G e rtoren | ]
.01 001 privacy preferences ' _ _ _ _ _ __________>_____________2_!
® Aggregati
2K(G B ggregation _ _ _ _ _ _ _ _ _ _ _ _ o ___.
u) Y2(6) = 2K(©) = i Partition Aggregation
12521 (B-A) o0z | to | (<125=1 (BA) w2 |y gayeo
<1,4>=1 (F-C) oo |10 V| <14>=1 (FQ) <1,4> :
<2,2>=1 (E-D) oo1 | 02 R —
<2,4>=3 (A-C), (D-C), (E-C) 001 |02 |10|10| | | <22>=1 (E-D)
Correspondin 1| <aas=3 (ac), (0-0) 220 =4 E0) (a0,
2K-distribution of G e I g St <2,4> (0-0), (E-C)
|
|

privacy preferences

(E-C)
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Aggregation Based Personalized Perturbation: AG-dK computes
corresponding ¢ values to performs aggregation over dK-distribution.

privacy preferences

(E-C)

-
Aggregation ; | .
. L R— o
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m Four network datasets:

(1) Facebook contains 4,039 nodes and 88,234 edges.
(2) Wiki-Vote contains 7,115 nodes and 103,689 edges.
(3) Ca-HepPh contains 12,008 nodes and 118,521 edges.

(4) Email-Enron contains 36,692 nodes and 183,831 edges.

m Two utility metrics [1]:

» L1 distance measures the network structural error the original
dK-distribution D and its private version D¢ by calculating

d
ID = Dolls = 79 |D; — Do.

» KS distance measures the closeness between the cumulative
distribution functions of D and D¢ by calculating KS(D, Do) =
max,~|CDFD,. — CDFDG,,_ ‘
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m AG-dK outperforms under edge-PDP and LL-dK outperforms
under node-PDP by generating more similar 2K-distributions.
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DISCUSSION

What kind of trade-off exists between utility and privacy while
generating personalized differentially private dK-distributions?

m The error caused by sensitivity (A) and the privacy preference
¢ dominates the impact on output utility.

m Increasing ¢ and decreasing A can help to reduce error.

m Reducingsensitivity is more challenging under node-PDP than
for edge-PDP as graph data is highly sensitive under node-DP.
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m Conclusion:

> We have studied the problem of publishing degree distribution
and joint degree distribution under PDP.

> We have theoretically analyzed the sensitivity of these distri-
butions under edge-PDP and node-PDP.

> We have proposed four personalized privacy-preserving mech-
anisms while enhancing output utility.

» The effectiveness of our proposed work has been empirically
verified over four real-world networks.

m Future work: To this work will consider local differential pri-
vacy to release network statistics under personalization.
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