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Knowledge Tracing – Introduction

Question: Can machines trace human knowledge like humans?

(Image source: The New York Academy of Sciences)
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Knowledge Tracing – Introduction

Human educators can intelligently track the knowledge of a student.
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Knowledge Tracing – Introduction

Knowledge tracing aims to build a model that can trace the
knowledge of students as they interact with coursework items.

CHAPTER 2. DEEP KNOWLEDGE TRACING 16
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Figure 2.1: A single student and her predicted responses as she solves 50 exercises on Khan Academy 8th
grade math curriculum. She seems to master finding x and y intercepts and then has trouble transferring
knowledge to graphing linear equations.

for over 20 years [CA94]. Knowledge tracing is evaluated by its ability to predict how students will perform

on future questions. This ability to predict student preformance, if achieved, demonstrates a profound under-

standing of both a student and the material that they are working on, and as such the task has been identified

as a central problem in comptuer supported education. It is the foundation beneath autonomous tutors. Im-

provement on this task means that resources can be suggested to students based on their individual needs,

and content which is predicted to be too easy or too hard can be skipped or delayed. Already, hand-tuned

intelligent tutoring systems that attempt to tailor content show promising results [PR13].

The knowledge tracing problem is inherently difficult as human learning is grounded in the complexity

of both the human brain and human knowledge. Thus, the use of rich models seems appropriate. However

most previous work in education relies on first order Markov models with restricted functional forms. In this

chapter we present a formulation that we call Deep Knowledge Tracing (DKT) in which we apply flexible

recurrent neural networks that are ‘deep’ in time to the task of knowledge tracing. This family of models

represents latent knowledge state, along with its temporal dynamics, using large vectors of artificial ‘neurons’,

and allows the latent variable representation of student knowledge to be learned from data rather than hard-

coded. The main contributions of this work are:

1. A novel way to encode student interactions as input to a recurrent neural network.

2. A 25% gain in AUC over the best previous result on a knowledge tracing benchmark.

3. Demonstration that our knowledge tracing model does not need expert annotations.

4. Discovery of exercise influence and generation of improved exercise curricula.

2.1 Knowledge Tracing

The task of knowledge tracing can be formalized as: given observations of interactions x0 . . .xt taken by

a student on a particular learning task, predict aspects of their next interaction xt+1 [CA94]. In the most

ubiquitous instantiation of knowledge tracing, interactions take the form of a tuple of xt = {qt, at} that

(Image source: Deep Knowledge Tracing, NIPS 2015)

This can help enable personalised learning experiences for students.
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Related Work - Overview

Bayesian Knowledge Tracing (BKT)

[Corbett & Anderson]
1995

Learning Factors Analysis (LFA)

[Cen, Koedinger & Junker]

2006

Performance Factors Analysis (PFA)

[Pavlik Jr, Cen & Koedinger]

2009

Deep Knowledge Tracing (DKT)

[Piech et al.]
2015

Dynamic Key-Value Memory Networks (DKVMN)

[Zhang et al.]

2017
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Related Work - Bayesian Knowledge Tracing

Built upon Hidden Markov Model (HMM)

Represent a knowledge state as a set of binary latent variables, each
for student understanding of a concept (i.e., known and unknown):

How can we capture the relationship between different concepts?
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Related Work - Deep Knowledge Tracing

Built upon Recurrent Neural Network (RNN)

Summarise a student’s knowledge state of all concepts in one hidden
state, thus difficult to trace:

How much a student has mastered certain concepts?

h0 h1 h2 h3 hT

x1 x2 x3 xT

y1 y2 y3 yT

… 

Figure 2: The connection between variables in a simple recurrent neural network. The inputs (xt) to the
dynamic network are either one-hot encodings or compressed representations of a student action, and the
prediction (yt) is a vector representing the probability of getting each of the dataset exercises correct.

where both tanh and the sigmoid function, � (·), are applied elementwise. The model is parame-
terized by an input weight matrix Whx, recurrent weight matrix Whh, initial state h0, and readout
weight matrix Wyh. Biases for latent and readout units are given by bh and by .

Long Short Term Memory (LSTM) networks [16] are a more complex variant of RNNs that often
prove more powerful. In LSTMs latent units retain their values until explicitly cleared by the action
of a ‘forget gate’. They thus more naturally retain information for many time steps, which is believed
to make them easier to train. Additionally, hidden units are updated using multiplicative interactions,
and they can thus perform more complicated transformations for the same number of latent units.
The update equations for an LSTM are significantly more complicated than for an RNN, and can be
found in Appendix A.

3.2 Input and Output Time Series

In order to train an RNN or LSTM on student interactions, it is necessary to convert those interac-
tions into a sequence of fixed length input vectors xt. We do this using two methods depending on
the nature of those interactions:

For datasets with a small number M of unique exercises, we set xt to be a one-hot encoding of
the student interaction tuple ht = {qt, at} that represents the combination of which exercise was
answered and if the exercise was answered correctly, so xt 2 {0, 1}2M . We found that having
separate representations for qt and at degraded performance.

For large feature spaces, a one-hot encoding can quickly become impractically large. For datasets
with a large number of unique exercises, we therefore instead assign a random vector nq,a ⇠
N (0, I) to each input tuple, where nq,a 2 RN , and N ⌧ M . We then set each input vector
xt to the corresponding random vector, xt = nqt,at

. This random low-dimensional representation
of a one-hot high-dimensional vector is motivated by compressed sensing. Compressed sensing
states that a k-sparse signal in d dimensions can be recovered exactly from k log d random linear
projections (up to scaling and additive constants) [2]. Since a one-hot encoding is a 1-sparse signal,
the student interaction tuple can be exactly encoded by assigning it to a fixed random Gaussian input
vector of length ⇠ log 2M . Although the current paper deals only with 1-hot vectors, this technique
can be extended easily to capture aspects of more complex student interactions in a fixed length
vector.

The output yt is a vector of length equal to the number of problems, where each entry represents
the predicted probability that the student would answer that particular problem correctly. Thus the
prediction of at+1 can then be read from the entry in yt corresponding to qt+1.

3.3 Optimization

The training objective is the negative log likelihood of the observed sequence of student responses
under the model. Let �(qt+1) be the one-hot encoding of which exercise is answered at time t + 1,
and let ` be binary cross entropy. The loss for a given prediction is `(yT � (qt+1) , at+1), and the

4
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Related Work - Dynamic Key-Value Memory Networks

Built upon Memory-Augmented Neural Network (MANN)

Acquire knowledge growth through the most recent exercise and fail
to capture long-term dependencies

Ignore the latest knowledge state
during the memory write process

TanhSigmoid

%

LRUA

Softmax

(a) Architecture for Memory-Augmented Neural Networks.

A

TanhSigmoid

Softmax

B

(b) Architecture for Dynamic Key-Value Memory Networks.

Figure 2: In both architecture, the model is only drawn at the timestamp t, where the purple components describe the
read process and the green components describe the write process. The blue components in the DKVMN model denote the
attention process to compute the corresponding weight. (Best viewed in color.)

where Softmax(zi) = ezi/
P

j ezj and is di↵erentiable. Both
the read and write processes will use this weight vector wt,
which represents the correlation between exercise and each
latent concept.

3.2.2 Read process
When an exercise qt comes, the read content rt is retrieved

by the weighted sum of all memory slots in the value matrix
using wt:

rt =

NX

i=1

wt(i)M
v
t (i). (3)

The calculated read content rt is treated as a summary of
the student’s mastery level of this exercise. Given that each
exercise has its own di�culty, we concatenate the read con-
tent rt and the input exercise embedding kt and then pass
it through a fully connected layer with a Tanh activation to
get a summary vector ft, which contains both the student’s
mastery level and the prior di�culty of the exercise:

ft = Tanh(WT
1 [rt,kt] + b1), (4)

where Tanh(zi) = (ezi � e�zi)/(ezi + e�zi).
Finally, ft is passed through another fully connected layer

with a Sigmoid activation to predict the performance of the
student:

pt = Sigmoid(WT
2 ft + b2), (5)

where Sigmoid(zi) = 1/(1 + e�zi), and pt is a scalar that
represents the probability of answering qt correctly.

3.2.3 Write process
After the student answers the question qt, the model will

update the value matrix according to the correctness of the
student’s answer. A joint embedding of (qt, rt) will be writ-

ten to the value part of the memory with the same correla-
tion weight wt used in the read process.

The tuple (qt, rt) is embedded with an embedding matrix
B of size 2Q ⇥ dv to obtain the knowledge growth vt of the
student after working on this exercise. When writing the
student’s knowledge growth into the value component, the
memory is erased first before new information is added [6],
a step inspired by the input and forget gates in LSTMs.

Given a write weight (which is the correlation weight wt

in our model), an erase vector et is computed from vt:

et = Sigmoid(ET vt + be), (6)

where the transformation matrix E is of shape dv ⇥ dv, et

is a column vector with dv elements that all lie in the range
(0, 1). The memory vectors of value component Mv

t�1(i)
from the previous timestamp are modified as follows:

M̃v
t (i) = Mv

t�1(i)[1 � wt(i)et], (7)

where 1 is a row-vector of all 1-s. Therefore, the elements of
a memory location are reset to zero only if both the weight
at the location and the erase element are one. The memory
vector is left unchanged if either the weight or the erase
signal is zero.

After erasing, a length dv add vector at is used to update
each memory slot:

at = Tanh(DT vt + ba)
T , (8)

where the transformation matrix D is of shape dv ⇥ dv and
at is a row vector. The value memory is updated at each
time t by

Mv
t (i) = M̃v

t�1(i) + wt(i)at. (9)

This erase-followed-by-add mechanism allows forgetting
and strengthening concept states in the learning process of
a student.

768
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Knowledge Tracing - The Present Work

Research question

Can we build a knowledge tracing model that can alleviate the
limitations of the previous work?

Problem definition

Given a student’s exercise history X = 〈(q1, y1) , . . . , (qt−1, yt−1)〉,
we want to predict the probability of correctly answering the next
question qt by the student:

pt = (yt = 1|qt ,X )
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Knowledge Tracing - The Present Work

Assumptions

Each question associates with one or more latent concepts.

The concept state of each latent concept is a random variable
describing the mastery level of the student on this latent concept.

At each time step t, the knowledge state of a student is modelled as a
set of all concept states of the student.

Key ingredients

1 A key-value memory 〈Mk,Mv
t 〉

2 Hop-LSTM

3 Effective mechanisms for attention, read and write
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Sequential Key-Value Memory Networks (SKVMN)
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Four layers in this model:

1 Embedding layer maps a question into a continuous vector.

2 Memory layer involves two processes: attention and read.

3 Sequence layer consists of recurrently connected LSTM cells.

4 Output layer yields probability of correctly answering a question.
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Sequential Key-Value Memory Networks (SKVMN)

Attention:

Occur each time when a question qt is taken.

Provide an addressing mechanism for the input question to allocate the
relevant information from the key-value memory.

Obtain an attention vector wt by applying Softmax to the inner
product between kt and each key slot Mk(i) in the key matrix Mk:

wt(i) = Softmax(kT
t Mk(i)).
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Sequential Key-Value Memory Networks (SKVMN)

Read:

Occur each time when a question qt is taken.

Use the attention vector wt to retrieve the concept states of the
student w.r.t. the question qt from the value matrix Mv

t .

Yield the summary vector ft, i.e., how well the student has mastered
latent concepts relevant to the question before attempting it.
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Sequential Key-Value Memory Networks (SKVMN)

Write:

Occur each time after the student has attempted a question.

Update the concept states of the student using the knowledge growth
vt gained through attempting the question.

Lead to the transition of the value matrix from Mv
t to Mv

t+1.
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Sequential Key-Value Memory Networks (SKVMN)

Hop-LSTM:

An exercise history may contain a long sequence of exercises.

By hopping across irrelevant exercises, recurrent models can be applied
on a shorter and more relevant sequence.

Sequential dependencies among exercises are identified via the
attention vectors of their questions.
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Experiments

In our experiments, we aim to answer the following questions:

RQ1: What is the optimal size for a key-value memory of SKVMN?

RQ2: How does SKVMN perform on predicting a student’s answers of
questions, given an exercise history?

RQ3: How does SKVMN perform on discovering the correlation between
latent concepts and questions?

RQ4: How does SKVMN perform on tracing the dynamics of a student’s
knowledge state?
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Experiments

Five datasets:

Dataset #Questions #Students #Exercises
#Exercises
per student

Synthetic-5 50 4, 000 200, 000 50
ASSISTments2009 110 4, 151 325, 637 78
ASSISTments2015 100 19, 840 683, 801 34
Statics2011 1, 223 333 189, 297 568
JunyiAcademy 722 199, 549 25, 628, 935 128

Three baselines:

− Bayesian knowledge tracing (BKT) [UMUAI1994]

− Deep knowledge tracing (DKT) [NIPS2015]

− Dynamic key-value memory networks (DKVMN) [WWW2017]
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[RQ1:]What is the optimal size for a key-value memory of
SKVMN?

Dataset d N
SKVMN DKVMN

AUC (%) m AUC (%) m

Synthetic-5

10 50 83.11 15K 82.00 12k
50 50 83.67 30k 82.66 25k

100 50 84.00 57k 82.73 50k
200 50 83.73 140k 82.71 130k

ASSISTments2009

10 10 83.63 7.8k 81.47 7k
50 20 82.87 35k 81.57 31k

100 10 82.72 71k 81.42 68k
200 20 82.63 181k 81.37 177k

ASSISTments2015

10 20 74.84 16k 72.68 14k
50 10 74.50 31k 72.66 29k

100 50 74.24 66k 72.64 63k
200 50 74.20 163k 72.53 153k

Statics2011

10 10 84.50 92.8k 82.72 92k
50 10 84.85 199k 82.84 197k

100 10 84.70 342k 82.71 338k
200 10 84.76 653k 82.70 649k

JunyiAcademy

10 20 82.50 16k 79.63 14k
50 10 82.41 31k 79.48 29k

100 50 82.67 66k 79.54 63k
200 50 82.32 163k 80.27 153k
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[RQ2:] How does SKVMN perform on predicting a
student’s answers of questions, given an exercise history?

Dataset BKT DKT DKVMN SKVMN

Synthetic-5 62.0± 0.02 80.3± 0.1 82.7± 0.1 84.0± 0.04
ASSISTments2009 63.1± 0.01 80.5± 0.2 81.6± 0.1 83.6± 0.06
ASSISTments2015 64.2± 0.03 72.5± 0.1 72.7± 0.1 74.8± 0.07
Statics2011 73.0± 0.01 80.2± 0.2 82.8± 0.1 84.9± 0.06
JunyiAcademy 65.0± 0.02 79.2± 0.1 80.3± 0.4 82.7± 0.01

Key observations:

1 DL models generally performed better than probabilistic models.

2 Memory-augmented models performed better than RNN-based models.

3 The use of sequential dependencies among exercises in our model
enhanced the prediction accuracy.
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[RQ3:] How does SKVMN perform on discovering the
correlation between latent concepts and questions?

(DKVMN) (SKVMN)
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[RQ4:] How does SKVMN perform on tracing the
dynamics of a student’s knowledge state?

Exercise Answers Correct Incorrect
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Conclusion

We have proposed a novel knowledge tracing method called
Sequential Key-Value Memory Network (SKVMN):

− Trace knowledge states over multiple latent concepts;

− Enhance the sequence modelling capacity;

− Enhance memory read and writing capacity;

− Discover the correlation between latent concepts and questions.

Our experiments show that SKVMN outperformed the
state-of-the-art methods on 5 datasets.
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