

BatchHL: Answering Distance Queries on Batch-Dynamic Networks at Scale

Muhammad Farhan ¹ Qing Wang ¹ Henning Koehler ²

¹School of Computing, Australian National University

²School of Mathematical and Computational Sciences, Massey University

• **Problem:** Let $G \hookrightarrow G'$ denote that G is changed to G' by a *batch* update, to answer the shortest path distance $d_{G'}(s, t)$.

• **Problem:** Let $G \hookrightarrow G'$ denote that G is changed to G' by a *batch* update, to answer the shortest path distance $d_{G'}(s, t)$.

• **Problem:** Let $G \hookrightarrow G'$ denote that G is changed to G' by a *batch* update, to answer the shortest path distance $d_{G'}(s, t)$.

< A > < E

Applications

World Wide Web Networks

Existing Approaches

э

イロト イポト イヨト イヨト

Existing Approaches

< 日 > < 同 > < 回 > < 回 > < 回 > <

Existing Approaches

Muhammad Farhan

• Distance Labelling:

Given a set of landmarks $R \subseteq V$, precompute a label L(v) for every vertex $v \in V$ in G.

• Distance Labelling:

Given a set of landmarks $R \subseteq V$, precompute a label L(v) for every vertex $v \in V$ in G.

< 1 k

- 4 ∃ ▶

• 2-Hop Cover Labelling:

Distance through a common landmark in L(s) and L(t).

$$d_G(s,t) = \min_{r \in L(s) \cap L(t)} \{\delta(r,s) + \delta(r,t)\}$$

< 1 k

3 1 4 3 1

• 2-Hop Cover Labelling:

Distance through a common landmark in L(s) and L(t).

$$d_G(s,t) = \min_{r \in L(s) \cap L(t)} \{\delta(r,s) + \delta(r,t)\}$$

< (17) > < (27 >)

Definition (Highway)

A highway *H* is a pair (R, δ_H) , where *R* is a set of landmarks and δ_H is a *distance decoding function*, i.e. $\delta_H : R \times R \to \mathbb{N}^+$, such that for any $\{r_1, r_2\} \subseteq R$ we have $\delta_H(r_1, r_2) = d_G(r_1, r_2)$.

Definition (Highway Cover)

Let G = (V, E) be a graph and $H = (R, \delta_H)$ a highway. For any vertex $u \in V \setminus R$ and any $r \in R$, there must exist $r' \in R$ in L(u) such that r' is on a shortest path between u and r (r and r' may be the same).

Two steps for answering $d_G(s, t)$ in a graph G:

- (1) Computing an upper bound distance using the precomputed (offline) highway cover labelling;
- (2) Computing $d_G(s, t)$ using the (online) bidirectional search over a sparsified graph $G[V \setminus R]$.

• Find a path of the minimal length through a highway H:

$$d_{st}^{\top} = \min_{\substack{(r_i,\delta(r_i,s)) \in L(s) \\ (r_j,\delta(r_j,t)) \in L(t)}} \{\delta(r_i,s) + \delta_H(r_i,r_j) + \delta(r_j,t)\}$$

< □ > < □ > < □ > < □ > < □ > < □ >

• Find a path of the minimal length through a highway H:

L

L

$$d_{st}^{\top} = \min_{\substack{(r_i,\delta(r_i,s)) \in \mathcal{L}(s) \\ (r_j,\delta(r_j,t)) \in \mathcal{L}(t)}} \{\delta(r_i,s) + \delta_{\mathcal{H}}(r_i,r_j) + \delta(r_j,t)\}$$

What is d_{st}^{\top} for s = 3 and t = 7?

Landmark	5	10
Distance	2	2
Landmark	5	
Distance	3	
	Landmark Distance Landmark Distance	Landmark 5 Distance 2 Landmark 5 Distance 3

• Find a path of the minimal length through a highway H:

$$d_{st}^{\top} = \min_{\substack{(r_i,\delta(r_i,s)) \in \mathcal{L}(s) \\ (r_j,\delta(r_j,t)) \in \mathcal{L}(t)}} \{\delta(r_i,s) + \delta_{\mathcal{H}}(r_i,r_j) + \delta(r_j,t)\}$$

What is d_{st}^{\top} for s = 3 and t = 7? Landmark 5 10 $3 \rightarrow 5 \rightarrow 7$: L(7)Distance 2 2 length 5 $3 \rightarrow 5 \rightarrow 10 \rightarrow 7$: Landmark 5 L(3) length 6 3 Distance

$$d_{st}^{\top} = 5$$

- 4 間 ト - 4 三 ト - 4 三 ト

- Sparsify graph G by removing all landmarks in R, i.e. $G' = G[V \setminus R]$
- Conduct a bidirectional search on G' which is bounded by $d_{st}^{\top} 1$

 $d_{G'}(3,7)=5$

• Aim:

Efficient maintenance of highway cover distance labelling for a very large dynamic network undergoing batches of updates?

• Aim:

Efficient maintenance of highway cover distance labelling for a very large dynamic network undergoing batches of updates?

Changed Graph G'

Label	Entries				
L(1)	(5, 1)				
L(6)	<mark>(5, 1)</mark> (10, 1)				
L(7)	<mark>(5, 2)</mark> (10,2)		5	8	10
L(9)	(8.1)	5	0	1	1
-(-)	(0, 1)	8	1	0	2
		10	1	2	0

Highway Labelling

э

3 1 4 3 1

- Unify an edge insertion and deletion (a, b) into a single process
 - both share the same pattern for affected vertices

- Unify an edge insertion and deletion (a, b) into a single process
 - both share the same pattern for affected vertices

• Searches for vertices affected by edge insertions and deletions in a batch combine in a single search

Muhammad Farhan

- Unify an edge insertion and deletion (a, b) into a single process
 - both share the same pattern for affected vertices

• Searches for vertices affected by edge insertions and deletions in a batch combine in a single search

- Unify an edge insertion and deletion (a, b) into a single process
 - both share the same pattern for affected vertices

• Searches for vertices affected by edge insertions and deletions in a batch combine in a single search

- Unify an edge insertion and deletion (a, b) into a single process
 - both share the same pattern for affected vertices

• Searches for vertices affected by edge insertions and deletions in a batch combine in a single search

• New shortest path of the same length as existing ones won't change the distance

Improved Batch Search

• To identify such cases, we track whether a shortest path to r passes through (1) another landmark and (2) a deleted edge

Improved Batch Search

• To identify such cases, we track whether a shortest path to r passes through (1) another landmark and (2) a deleted edge

Addition Case - Pruning

Improved Batch Search

• To identify such cases, we track whether a shortest path to r passes through (1) another landmark and (2) a deleted edge

$$\begin{split} H &= (\delta_{H}(\mathbf{r},\mathbf{r}') = 2) \\ L &= - \frac{a}{(\mathbf{r},1)} \frac{b}{(\mathbf{r},1)} \frac{c}{(\mathbf{r},1)} \frac{d}{(\mathbf{r},1)} \frac{c}{(\mathbf{r},1)} \frac{c}{(\mathbf{r},1)} \frac{c}{(\mathbf{r},1)} \frac{c}{(\mathbf{r},2)} \frac{c}{(\mathbf{r},1)} \frac{c}{(\mathbf{r},2)} \frac{c}{(\mathbf{$$

$$H = \{\delta_H(\mathbf{r},\mathbf{r}') = 2$$

	а	b	с	d	e	f	g	h	i
L =	(r, 1)	(r, 1)	(r, 1)		(r, 2)	(r, 1)	(r, 2)	(r, 3)	
			(r',1)	(r', 1)		(r', 2)	(r', 1)	(r', 2)	(r', 2)

æ

< E.

< A

$$H=\{\delta_H(\mathbf{r},\mathbf{r}')=2\}$$

	а	b	с	d	e	f	g	h	i
г =	(r, 1)	(r, 1)	(r, 1) (r'1)	(r 1)	(r, 2)	(r, 1)	(r, 2)	(r, 3)	(~ 7)
			(1,1)	(1,1)		(1,2)	(1,1)	(1,2)	(1,2)

< □ > < □ > < □ > < □ > < □ > < □ >

æ


```
H=\{\delta_H(\mathbf{r},\mathbf{r}')=2\}
```

	а	b	с	d	e	f	g	h	i
L =	(r, 1)	(r, 1)	(r, 1)		(r, 2)	(r, 1)	(r, 2)	(r, 3)	
			(r',1)	(r', 1)		(r', 2)	(r', 1)	(r', 2)	(r', 2)

returns {r', d, e, f, g, h, i}

< □ > < □ > < □ > < □ > < □ > < □ >

æ

	а	b	с	d	е	f	g	h	i
L =	(r, 1)	(r, 1)	(r, 1) (r,1)	(r', 1)	(r, 2)	(r, 1) (r', 2)	(r, 2) (r', 1)	(r, 3) (r', 2)	(r', 2)

3

<ロト <問ト < 目と < 目と

 $H = \{\delta_H(r, r') = 2\}$

	а	b	с	d	е	f	g	h	i
L =	(r, 1)	(r, 1)	(r, 1)		(r, 2)	(r, 1)	(r, 2)	(r, 3)	
			(r',1)	(r', 1)		(r', 2)	(r', 1)	(r', 2)	(r', 2)

 $H = {\delta_H(\mathbf{r}, \mathbf{r'}) = 2}$

	а	b	с	d	е	f	g	h	i
г =	(r, 1)	(r, 1)	(r, 1)		(r, 2)	(r, 3)	(r, 2)	(r, 3)	
			(r',1)	(r', 1)		(r', 2)	(r', 1)	(r', 2)	(r', 2)

3

イロト イヨト イヨト イヨト

Batch Repair

 $H = \{\delta_H(\mathbf{r}, \mathbf{r'}) = 2\}$

	а	b	с	d	е	f	g	h	i
L =	(r, 1)	(r, 1)	(r, 1)		(r, 2)	(r, 1)	(r, 2)	(r, 3)	
			(r',1)	(r', 1)		(r', 2)	(r', 1)	(r', 2)	(r', 2)

$$\begin{split} H &= (a_H(r,r) = c_J \\ L &= \frac{a}{(r,1)} \frac{b}{(r,1)} \frac{c}{(r,1)} \frac{d}{(r,1)} \frac{e}{(r,1)} \frac{r}{(r,1)} \frac{r}{(r,1)} \frac{r}{(r,2)} \frac{r}{(r,2)} \frac{r}{(r,2)} \frac{r}{(r,2)} \frac{r}{(r,2)} \frac{r}{(r,2)} \frac{r}{(r,2)} \frac{r}{(r,2)} \\ \end{split}$$

イロト イヨト イヨト イヨト

 $H = \{\delta_H(\mathbf{r}, \mathbf{r'}) = 2\}$

	а	b	с	d	е	f	g	h	i
г =	(r, 1)	(r, 1)	(r, 1)		(r, 2)	(r, 3)	(r, 2)	(r, 3)	
			(r',1)	(r', 1)		(r', 2)	(r', 1)	(r', 2)	(r', 2)

2

Batch Repair

 $H = \{\delta_H(\mathbf{r}, \mathbf{r'}) = 2\}$

	а	b	с	d	е	f	g	h	i
L =	(r, 1)	(r, 1)	(r, 1)		(r, 2)	(r, 1)	(r, 2)	(r, 3)	
			(r',1)	(r', 1)		(r', 2)	(r', 1)	(r', 2)	(r', 2)

$$\begin{split} H &= \left\{ \begin{aligned} \delta_{H}(\mathbf{r},\mathbf{r}') &= 2 \right\} \\ \mathrm{L} &= \begin{array}{c|c|c|c|c|c|} a & b & c & d & e & f & g & h & i \\ \hline (\mathbf{r},1) & (\mathbf{r},1) & (\mathbf{r},1) & (\mathbf{r},2) & (\mathbf{r},3) & (\mathbf{r},\mathbf{Y}) \\ (\mathbf{r}',1) & (\mathbf{r}',1) & (\mathbf{r}',1) & (\mathbf{r}',2) & (\mathbf{r}',2) \\ \hline \end{aligned}$$

 $H = \{\delta_H(\mathbf{r}, \mathbf{r}') = 2\}$

	а	b	с	d	e	f	g	h	i
L =	(r, 1)	(r, 1)	(r, 1)		(r, 2)	(r, 3)	(r, 2)	(r, 3)	(10)
			(r,1)	(r, 1)		(r, 2)	(r, 1)	(r, 2)	(r, 2)

$$\begin{split} H &= \left(\delta_{H}\left(\mathbf{r},\mathbf{r}' \right) = 2 \right) \\ \mathbf{L} &= - \frac{\mathbf{a} \quad \mathbf{b} \quad \mathbf{c} \quad \mathbf{d} \quad \mathbf{e} \quad \mathbf{f} \quad \mathbf{g} \quad \mathbf{h} \quad \mathbf{i} \\ \left(\mathbf{r},\mathbf{1} \right) \quad \left(\mathbf{r},\mathbf{1} \right) \quad \left(\mathbf{r},\mathbf{r} \right) \quad \left(\mathbf{r},\mathbf{r} \right) \quad \left(\mathbf{r},\mathbf{2} \right) \quad \left$$

イロト イヨト イヨト イヨト

æ

Dataset			Fully Dynamic Batch Update Time (sec.)						Incremental Batch Update Time (sec.)					Decremental Batch Update Time (sec.)				
Dataset	V	E	BHL ^p	BHL ⁺	BHL	UHL+	FulFD	FULPLL	BHL ^p	BHL+	UHL+	IncFD	INCPLL	BHL ^p	BHL ⁺	UHL+	DECFD	DECPLL
Youtube	1.1M	3M	0.046	0.070	0.208	0.091	1.249	9.110	0.003	0.008	0.048	0.154	0.194	0.070	0.169	0.239	3.181	9.850
Skitter	1.7M	11M	0.147	0.601	0.902	1.587	5.986	8.770	0.002	0.006	0.069	0.117	1.312	0.163	0.751	2.382	14.15	31.50
Flickr	1.7M	16M	0.024	0.026	0.130	0.099	2.152	6.300	0.003	0.008	0.072	0.053	1.259	0.030	0.041	0.107	3.364	13.40
Wikitalk	2.4M	5M	0.029	0.025	0.101	0.134	2.926	4.550	0.002	0.005	0.097	0.029	0.081	0.046	0.044	0.147	5.674	9.820
Hollywood	1.1M	114M	0.008	0.014	0.115	0.056	4.423	-	0.001	0.002	0.046	0.090	27.53	0.017	0.031	0.071	8.401	-
Orkut	3.1M	117M	0.537	1.775	5.855	4.539	13.30	-	0.005	0.014	0.127	0.367	-	0.677	0.035	5.921	23.94	-
Enwiki	4.3M	101M	0.508	1.681	10.50	3.952	121.7	-	0.008	0.012	0.168	0.316	4.916	0.770	3.079	8.194	251.2	-
Livejournal	4.8M	68M	0.221	0.306	0.873	0.379	4.736	-	0.006	0.010	0.202	0.244	-	0.299	0.570	0.731	4.736	-
Indochina	7.4M	194M	0.543	1.181	1.547	9.575	20.63	-	0.015	0.011	0.308	0.141	4.680	0.553	1.346	19.20	44.92	-
Twitter	42M	1.5B	13.29	49.62	115.7	125.6	5103	-	0.125	0.024	13.09	0.263	-	19.17	68.85	231.8	9460	-
Friendster	66M	1.8B	0.409	0.410	0.811	21.93	23.27	-	0.163	0.035	20.96	0.254	-	0.420	0.738	21.87	30.38	-
UK	106M	3.7B	14.45	41.46	40.79	56.50	110.1	-	0.218	0.055	4.349	0.258	-	14.99	42.29	75.20	257.3	-
Italianwiki	1.2M	35M	0.001	0.001	0.025	0.051	6.623	-	-	-	-	-	-	-	-	-	-	-
Frenchwiki	2.2M	59M	0.003	0.004	0.067	0.098	5.289	-	-	-	-	-	-	-	-	-	-	-

æ

イロト イヨト イヨト イヨト

Datasat			Fully Dynamic Batch Update Time (sec.)						Incremental Batch Update Time (sec.)					Decremental Batch Update Time (sec.)				
Dataset	V	E	BHLP	BHL ⁺	BHL	UHL+	FulFD	FULPLL	BHL ^p	BHL ⁺	UHL+	INCFD	INCPLL	BHL ^p	BHL ⁺	UHL+	DECFL	DECPLL
Youtube	1.1M	3M	0.046	0.070	0.208	0.091	1.249	9.110	0.003	0.008	0.048	0.154	0.194	0.070	0.169	0.239	3.181	9.850
Skitter	1.7M	11M	0.147	0.601	0.902	1.587	5.986	8.770	0.002	0.006	0.069	0.117	1.312	0.163	0.751	2.382	14.15	31.50
Flickr	1.7M	16M	0.024	0.026	0.130	0.099	2.152	6.300	0.003	0.008	0.072	0.053	1.259	0.030	0.041	0.107	3.364	13.40
Wikitalk	2.4M	5M	0.029	0.025	0.101	0.134	2.926	4.550	0.002	0.005	0.097	0.029	0.081	0.046	0.044	0.147	5.674	9.820
Hollywood	1.1M	114M	0.008	0.014	0.115	0.056	4.423	-	0.001	0.002	0.046	0.090	27.53	0.017	0.031	0.071	8.401	-
Orkut	3.1M	117M	0.537	1.775	5.855	4.539	13.30	-	0.005	0.014	0.127	0.367	-	0.677	0.035	5.921	23.94	-
Enwiki	4.3M	101M	0.508	1.681	10.50	3.952	121.7	-	0.008	0.012	0.168	0.316	4.916	0.770	3.079	8.194	251.2	-
Livejournal	4.8M	68M	0.221	0.306	0.873	0.379	4.736	-	0.006	0.010	0.202	0.244	-	0.299	0.570	0.731	4.736	-
Indochina	7.4M	194M	0.543	1.181	1.547	9.575	20.63	-	0.015	0.011	0.308	0.141	4.680	0.553	1.346	19.20	44.92	-
Twitter	42M	1.5B	13.29	49.62	115.7	125.6	5103	-	0.125	0.024	13.09	0.263	-	19.17	68.85	231.8	9460	-
Friendster	66M	1.8B	0.409	0.410	0.811	21.93	23.27	-	0.163	0.035	20.96	0.254	-	0.420	0.738	21.87	30.38	-
UK	106M	3.7B	14.45	41.46	40.79	56.50	110.1	-	0.218	0.055	4.349	0.258	-	14.99	42.29	75.20	257.3	-
Italianwiki	1.2M	35M	0.001	0.001	0.025	0.051	6.623	-	-	-	-	-	-	-	-	-	-	-
Frenchwiki	2.2M	59M	0.003	0.004	0.067	0.098	5.289	-	-	-	-	-	-	-	-	-	-	-

- Much improved update time for all three settings.
- Decremental batch updates are much more faster.

Comparison of the total time of querying and updating the labelling with the baseline methods.

Contributions

An efficient batch update method for answering distance queries on graphs undergoing batch updates, which has the following benefits

- (1) Unifying edge insertion and deletion
- (2) Avoiding unnecessary and repeated computations
- (3) Exploiting the potential for parallelism
- Future works
 - Extension of the proposed approaches to road networks
 - Selection of highly central vertices
 - Guided search by investigating properties of the proposed approaches

Thank You

Muhammad Farhan

Distance Queries on Batch-Dynamic Graphs

23 / 23

æ

< □ > < □ > < □ > < □ > < □ > < □ >