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Abstract

Networks, which are gaining much popularity in various disciplines, model connec-
tions between different real-world entities. Based on graph theory, we study a series
of problems for understanding networks. Shortest path is among the most funda-
mental notions studied in graph theory. By exploring shortest path structure, we
can better understand the connections between entities. However, it is often com-
putationally expensive to compute shortest paths on large-scale networks which are
common nowadays.

This thesis addresses two problems on large-scale networks in relating to shortest
paths: (1) How are two vertices connected in a graph? We first define the notion of
shortest path graph which contains exactly all shortest paths between two vertices.
This notion empowers us to make full use of shortest path structures for analysing
the connection between vertices. We formalize the shortest-path-graph problem and
propose a novel method, called Query-by-Sketch, which can efficiently leverage of-
fline labelling to guide online searching through a fast-sketching process for solving
the shortest-path-graph problem on complex networks. (2) How is one source vertex
connected to other vertices in a graph? Enumerating all shortest paths between a
source vertex and all other vertices is less informative due the fact that the number
of shortest paths is excessive. In addition to this, coverage centrality fails to measure
how influential a vertex is in the information flow from a source vertex. Thus we
extend the notion of coverage centrality to relative coverage, to measure the impor-
tance a vertex is w.r.t a source vertex. Then we formalize the top-k relative coverage
problem and develop an efficient method to answer top-k relative coverage queries in
a reduced space, and design a bit-parallel optimization to speed up the computation
of relative coverage.

The thesis also theoretically discusses the complexity of proposed methods, and
presents the experimental results of proposed methods using 12 and 6 real-world
datasets for two problems respectively, which illustrates the efficiency and scalability
of proposed methods.

vii



viii



Contents

Acknowledgments v

Abstract vii

1 Introduction 1
1.1 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Shortest Path Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Top-k Relative Coverage . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 7
2.1 Shortest Path Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Single-source Shortest-path Problem and
All-pairs Shortest-path Problem . . . . . . . . . . . . . . . . . . . 7

2.1.2 Point-to-point Shortest-path Problem . . . . . . . . . . . . . . . . 8
2.1.2.1 Exact Methods . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2.2 Approximate Algorithms . . . . . . . . . . . . . . . . . . 10

2.2 Coverage Centrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Shortest Path Graph 13
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Shortest Path Labelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 2-Hop Path Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 Path Labelling Methods . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Query-by-Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.1 Labelling Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.2 Fast Sketching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.3 Guided Searching . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Theoretical Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.1 Proof of Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.3 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 28

ix



x Contents

3.6.2 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . 32
3.6.2.1 Construction Time . . . . . . . . . . . . . . . . . . . . . . 32
3.6.2.2 Labelling Size . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6.2.3 Query Time . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.3 Effects of Sketching . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6.4 Performance with Varying Landmarks . . . . . . . . . . . . . . . 34

3.6.4.1 Construction Time . . . . . . . . . . . . . . . . . . . . . . 35
3.6.4.2 Labelling Size . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6.4.3 Query Time . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Top-k Relative Coverage 39
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5.2 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . 47

4.5.2.1 Candidate Sets . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5.2.2 Query Time . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5.3 Performance under Varying k . . . . . . . . . . . . . . . . . . . . . 49
4.5.3.1 Candidate Sets . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5.3.2 Query Time . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5.4 Analysis on Network Types . . . . . . . . . . . . . . . . . . . . . . 51
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Conclusion and Future Work 53
5.1 Shortest Path Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Top-k Relative Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



Chapter 1

Introduction

Shortest path is one of the most fundamental notions used in graph theory. Exploring
shortest paths between vertices help better understanding connections between enti-
ties in many ways in real-world networks. Specifically, a path between two vertices s
and t is a shortest path if it has the minimum length among all paths between s and t.
It is considered to capture the “closest” connections between vertices. For example, in
a road network where endpoints or intersections of roads are represented as vertices
and roads are represented as edges, the shortest path between two vertices which
correspond with given locations finds applications in navigation systems [Goldberg
and Harrelson, 2005]. Also due to the optimality shortest path has, it serves as a
basis for tackling a series of interesting problems. For example, a company plans to
do advertising on a social web with millions of individuals. Identifying influential
users on shortest paths can help enhancing the spread of content since information
spreads faster through shortest paths [Yu et al., 2015]. Moreover, consider a protein-
protein interaction network in which vertices represent proteins and edges represent
interactions between proteins. Shortest path gives important structural information
about essential proteins which have more interactions with other proteins, and thus
support the selection of possible targets for drug discovery [Estrada, 2006].

1.1 Problems

This thesis aims to answer two research questions based on the shortest path notion:

(1) How do two vertices connect in a graph? To answer this question, we propose
a novel problem, the shortest path graph problem, to explore the shortest path
structure between two vertices.

(2) How does one vertex connect with other vertices in a graph? We formalize the
top-k relative coverage problem to identify the top-k vertices that best “cover” the
shortest path from one given vertex to other vertices.

This thesis proposes exact and efficient algorithms for each problem. Notice that,
in recent years, scalability for graph algorithms has become a necessity due to the
emergency of large-scale networks with millions of vertices and edges. With this in
mind, the methods proposed in this thesis are carefully designed to be scalable on
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2 Introduction

large-scale networks. Proposed methods for solving these two problems are illus-
trated by simple examples in this thesis. This thesis further presents experiments on
real-world networks to evaluate the performance of all proposed methods and the
discussion on the experimental results.

1.1.1 Shortest Path Graph

Computing shortest paths between vertices is a fundamental operation in processing
graph data, and has been used in many algorithms for graph analytics [Yao et al.,
2013; Opsahl et al., 2010; Kolaczyk et al., 2009]. These algorithms are often applied to
support applications that require low latency on graphs with millions or billions of
vertices and edges. Therefore, it is highly desirable – but challenging – to compute
shortest paths efficiently on very large graphs.

Previously, the problem of point-to-point shortest path queries has been well
studied, which is to find a shortest path between two vertices in a graph [Gold-
berg and Harrelson, 2005; Goldberg et al., 2006; Bast et al., 2007; Goldberg, 2007;
Wagner and Willhalm, 2007; Abraham et al., 2010; Wu et al., 2012; Sankaranarayanan
et al., 2009; Sanders and Schultes, 2005]. By leveraging specific properties of road
networks, such as hierarchical structures and near planarity [Fu et al., 2013; Akiba
et al., 2013], previous work has proposed various exact and approximate methods for
answering point-to-point shortest path queries [Cowen and Wagner, 2004; Abraham
et al., 2012]. Nonetheless, these methods often do not perform well on complex net-
works (e.g., social networks, web graphs, and computer networks), because complex
networks exhibit different properties from road networks, such as small diameter
and local clustering [Goldberg and Harrelson, 2005; Fu et al., 2013; Akiba et al.,
2013]. Furthermore, existing methods for point-to-point shortest path queries were
designed with the guarantee of finding only one shortest path, which limits their
usability in practical applications.

(a) (b) (c)

u

v

u

v

u

v

Figure 1.1: An illustration of shortest paths between two vertices u and v whose
distance is 3: (a) one shortest path; (b) three shortest paths; (c) seven shortest paths.

Given two vertices u and v, as depicted in Figure 1.1(a)-(c), they have the same
distance and cannot be distinguished from one another if only one shortest path is
considered. However, when considering all shortest paths, the shortest paths be-
tween these two vertices indeed exhibit considerably different structures in Figure
1.1(a)-(c), which can not only distinguish vertices u and v in different scenarios, but
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also empower us to make full use of such structures to analyse how they are con-
nected. However, enumerating all the shortest paths between u and v is not only
combinatorially challenging, but also leads to highly overlapped paths. Thus, in
this paper, we study the problem of finding the structure of shortest paths between
vertices. Specifically, we use the notion of “shortest path graph" to represent the
structure of shortest paths between two vertices, which is a subgraph containing
exactly all shortest paths between these two vertices.

Interestingly, shortest path graph manifests itself as a basis for tackling various
shortest path related problems, particularly when investigating the structure of the
solution space of a combinatorial problem based on shortest paths, for example, the
Shortest Path Rerouting problem (i.e., to find a rerouting sequence from one shortest
path to another shortest path that only differs in one vertex) [Kamiński et al., 2011;
Bonsma, 2013; Nishimura, 2018], the Shortest Path Network Interdiction problem
(i.e., to find critical edges and vertices whose removal can destroy all shortest paths
between two vertices) [Khachiyan et al., 2008; Israeli and Wood, 2002], and the vari-
ants such as the Shortest Path Common Links problem (i.e., to find links common
to all shortest paths between two vertices) [Labbé et al., 1995; Hansen et al., 1986].
These shortest path related problems are motivated by a wide range of real-world
applications arising in designing and analysing networks. For example, identifying
a rerouting sequence for shortest paths enables the robust design of networks with
minimal cost for reconfiguration, and finding critical edges and vertices help defend
critical infrastructures against cyberattacks.

However, computing shortest path graphs is computationally expensive since it
requires to identify all shortest paths, not just one, between two vertices. A straight-
forward solution for answering shortest-path-graph queries is to compute on-the-fly
all shortest paths between two vertices using Dijkstra algorithm for weighted graphs
[Dijkstra et al., 1959] or performing a breadth-first search (BFS) for unweighted
graphs [Cormen et al., 2009]. This is costly on graphs with millions or billions of
vertices and edges. Another solution is to precompute all shortest paths for all pairs
of vertices in a graph and then assign precomputed labels to vertices such that certain
properties hold, e.g. 2-hop distance cover [Cohen et al., 2003]. However, for large
graphs, storing even just shortest path distances of all pairs of vertices is prohibitive
[Akiba et al., 2013] and storing all shortest paths of all pairs is hardly feasible due to
the demand for much more space overhead.

In conclusion, the first problem we study in this thesis is the shortest path graph
problem, which aims at finding the shortest path graph between two vertices on
large-scale complex networks. More specifically, we need to answer the following
question: How to construct labels for shortest-path-graph queries which should be of reason-
able size (e.g. not much larger than an original graph), within a reasonable time (e.g. not
longer than one day), and can speed up query answering as much as possible?



4 Introduction

1.1.2 Top-k Relative Coverage

Centrality is a fundamental concept in analyzing real-world networks. It measures
how important a vertex is in a network by taking into account its position in the
topological structure of the network. Until now, a variety of graph-theoretic central-
ity measures have been proposed, and some of them are based on exploiting shortest
path structure between vertices in a network, such as betweenness centrality [Free-
man, 1977], closeness centrality [Bavelas, 1950], and coverage centrality [Yoshida,
2014].

Conceptually, betweenness centrality measures the extent to which a vertex lies
on shortest paths between other vertices. Nonetheless, it is limited to revealing only
certain aspects of vertices in a network and cannot discover different roles of a ver-
tex under different perspectives. Consider the graph depicted in Figure 1.2(a) for
example. According to betweenness centrality, vertex 7 is more important than ver-
tex 3. However, vertex 3 appears on shortest paths between more distinct vertex
pairs than vertex 7, which can be measured by coverage centrality. Moreover, instead
of considering shortest paths between all vertex pairs, one may be more interested
in discovering which vertices have influence on the information flow from a specific
source (i.e., vertex) in a large-scale network. Figure 1.2(b) shows that vertex 2 appears
to have more influence on vertex 5 than vertex 0, although vertex 0 is measured to be
more important than vertex 5 according to coverage centrality.
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(b)

Figure 1.2: An illustrative example: (a) betweenness centrality and coverage central-
ity of vertices 3 and 7; (b) relative coverage centrality of vertices 2 and 0 w.r.t. vertex

5.
Thus, the problem we study is the top-k relative coverage problem, which is to

find top-k vertices that best cover the shortest paths between a source vertex and
other vertices in a network. Vertices with high coverage centrality are pivotal in the
connections between vertices, and offer themselves as ideal candidates for landmarks
in shortest path distance labelling methods [Akiba et al., 2013; Farhan et al., 2019].
In many real-world applications, ranking top-k vertices with highest coverage cen-
tralities are also highly sought after, rather than obtaining actual values of coverage
centralities for all vertices. Below, we discuss two of these applications.

• Road network upgrade [Medya et al., 2018a]. Consider the transportation author-
ity of a city, where a new public facility such as a stadium is opened. The top-k
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relative coverage problem can help select locations which are most important in
fast connecting the new stadium with other locations. Then the authority can
upgrade the road network to reduce the travel time between the new facility
and other locations to ease access to the stadium from other locations.

• Content spread enhancement [Yu et al., 2015]. Consider a social network site on
which users may post content items (e.g. videos and photos) and expect others
to receive content items being posted. The top-k relative coverage problem
can help identify a small number of individuals that are most influential in
connecting a user with others. Then strengthening the connections between
users and their influential individuals can boost content spread.

A straightforward solution to the top-k relative coverage problem is to compute
the relative coverage of each vertex in the graph and then select top-k vertices with
maximum relative coverage. However, this is computationally expensive because it
computes all shortest paths between a source vertex and all other vertices.

To sum up, the second problem we study in this paper is the top-k relative cov-
erage problem, which detects vertices that best “cover” the shortest paths from one
source vertex to other vertices. The main challenge is to develop an efficient and
scalable method to solve this problem on large-scale networks.

1.2 Contributions

In this thesis, we study the problems introduced above, aiming to design scalable
methods on unweighted graphs with millions of vertices and edges.

Shortest Path Graph. The first problem we study in this thesis is the shortest path
graph problem which aims at explaining how two vertices are connected. Though
computing shortest paths is a fundamental operation in processing graph data, com-
puting shortest path graphs is computationally expensive since it requires to identify
all shortest paths between two vertices. Our goal is to design an exact solution
that can scale to undirected graphs with millions or billions of vertices and edges.
To achieve high scalability, we propose a novel method, Query-by-Sketch (QbS), which
efficiently leverages offline labelling (i.e., precomputed labels) to guide online search-
ing through a fast sketching process that summarizes the important structural aspects
of shortest paths in answering shortest-path-graph queries. We theoretically prove
the correctness of this method and analyze its complexity. To empirically verify the
efficiency of QbS, we conduct experiments on 12 real-world datasets, among which
the large dataset has 1.7 billion vertices and 7.8 billion edges. The experimental
results show that QbS can answer shortest-path-graph queries in microseconds for
million-scale graphs and less than half a second for billion-scale graphs.

Top-k Relative Coverage. The second problem we study in this thesis is the top-k rel-
ative coverage problem which aims at explaining how one vertex connects with other
vertices. Among a plethora of variations of centrality measures, coverage centrality
measures the importance of a vertex by counting the number of distinct vertex pairs
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whose shortest paths go through the vertex. However, coverage centrality fails to
measure how influential a vertex is in the information flow from a specific source (i.e.,
a vertex). Therefore, we introduce relative coverage based on coverage centrality and
study the top-k relative coverage problem. We propose an efficient method to answer
top-k relative coverage queries, which only requires to compute relative coverage in
a reduced search space. Then we design a bit-parallel optimization method to accel-
erate the computation of relative coverage. We theoretically analyse the complexity
of our methods and experimentally verify their efficiency through experiments on 6
real-world networks.

Notice that, though methods in this thesis are developed for unweighted graphs,
they can be simply extended to deal with directed graphs.

1.3 Thesis Outline

The thesis is organized as follows: We review previous works which are related to
the problems studied in this thesis in Chapter 2. We study the shortest path graph
problem in Chapter 3 and the top-k relative coverage problem in 4. We conclude this
thesis in Chapter 5.

In both Chapter 3 and Chapter 4, we begin with an overview of the specific prob-
lem we study. We then propose and illustrate our methods for solving the problem.
We conclude each chapter with a brief summary.



Chapter 2

Literature Review

Shortest-path computation is a fundamental operation in graph theory. A path be-
tween s and t is a shortest path if it is of minimum length among all paths between
s and t, where the length of a path p is defined as the sum of the weights of all
edges of p. The shortest path distance between two nodes s and t is defined as the
minimum length of a path between s and t, i.e., the length of shortest path between
s and t. In this chapter, we provide a literature review on shortest-path computation
(i.e., several important problems which find shortest paths), and applying shortest-
path-based coverage centrality to analyze graphs.

2.1 Shortest Path Graph

In this section, we briefly review the related work which study shortest-path compu-
tation, including single-source shortest-path, all-pair shortest-path and point-to-point
shortest-path.

2.1.1 Single-source Shortest-path Problem and
All-pairs Shortest-path Problem

The single-source shortest-path (SSSP) problem and the all-pairs shortest-path (ASSP)
problem are two basic versions of the shortest-path computation. The goal of SSSP
problem is to find all shortest paths or distances between a given source vertex s
and all other vertices in a graph. It can be solved efficiently using Dijkstra which is
implemented using Fibonacci heaps on weighted graphs in O(|E|+ |V|log|V|) time,
or using breadth-first search on unweighted graphs in O(|V| + |E|) time [Dijkstra
et al., 1959; Fredman and Tarjan, 1987]. In both methods, all vertices are visited in
ascending order of shortest path distance from s. Since 1959, theoretical develop-
ments for SSSP problem on general directed and undirected graphs have been based
on Dijkstra and breadth-first search [Thorup, 1999]. The goal of ASSP problem is
to compute the shortest paths or distances between all pairs of vertices in a graph.
We can apply Dijkstra to compute all shortest paths by selecting each vertex as the
source, or apply Bellman-Ford, Floyd-Warshall, etc [Cormen et al., 2009]. Specifically,
while Dijkstra can only deal with graphs with negative weights, Bellman-Ford and

7
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Floyd-Warshall can deal with graphs without negative cycles in O(|V|2|E|) time and
O(|V|3) time, respectively.

2.1.2 Point-to-point Shortest-path Problem

As a generalization of SSSP problem and APSP problem, the point-to-point shortest-
path problem finds one shortest path or the distance between two specific vertices.
Both Dijkstra’s algorithm and BFS are very inefficient in computing point-to-point
shortest paths on large networks, since the search space of these two methods con-
tains a large number of unnecessary vertices which are not on the shortest paths. A
simple strategy for reducing search space is to employ bi-directional search which
performs two searches from two given vertices, respectively, based on certain heuris-
tic assumptions [Goldberg and Harrelson, 2005; Jin et al., 2013]. To further accelerate
shortest path computation, a number of methods have been proposed to precompute
and store precomputation information so as to answer point-to-point shortest path
queries online in a shorter time. This leads to a trade-off between the time needed
for precomputation, the space needed for storing the precomputed information and
the online query time.

We categorize algorithms for solving point-to-point shortest path problem on
real-world networks into two types: exact algorithms and approximate algorithms.

2.1.2.1 Exact Methods

Exact methods have been proposed to solve point-to-point shortest path problem on
two types of real-world networks, road networks and complex networks, by exploit-
ing the properties each type of networks has.

Road networks. Due to the fact that a large number of methods have been pro-
posed for finding a point-to-point shortest path on road networks [Goldberg, 2007;
Wagner and Willhalm, 2007; Wu et al., 2012; Sommer, 2014; Li et al., 2017], we can
only highlight influential methods that help to put our methods into perspective.
Notice that, these methods mainly suppose that road networks are weighted and
directed. A* search works like Dijkstra’s algorithm, except that it selects a vertex
v to traverse next according to an estimated distance, defined as the sum of exact
distance between the source vertex and v and estimated distance between v and the
goal vertex [Hart et al., 1968]. Lauther proposed to avoid unnecessary traversal ac-
cording to geographic background (i.e., coordinates of vertices) [Lauther, 2004]. They
divided the network into regions and used arc-flag for edges to indicate the region
each edge route to. To guide the search on networks without additional information,
Gutman et al. defined the notion of reach which encodes the length of shortest paths
a vertex lies in [Gutman, 2004]. Vertices are excluded from the search if they can
not be on the paths long enough for the current query, based on upper bounds on
vertex reaches and lower bounds on distance between the source vertex and the goal
vertex. Almost at the same time, aiming at strengthening the A* search, Goldberg
et al. proposed ALT (A*, landmark and triangle inequality) algorithm which uses
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the landmark-based distance lower bound in combination with the triangle inequal-
ity [Goldberg and Harrelson, 2005]. Though better estimation on distances leads to
fewer vertices being traversed, precomputed distances between landmarks and all
other vertices dominate the space required by ALT. To save the space needed for
storing precomputed information, Sanders et al. took the advantage of inherent road
hierarchy to restrict the search to a smaller subgraph [Sanders and Schultes, 2005].
They introduced the notion of shortcut for representing shortest paths between a ver-
tex pair and constructed highway hierarchies which consists of levels contracted from
the origin graph, based on the fact that vertices in road networks have constant low
degrees. Later, Goldberg et al. further proposed REAL which improved reach based
search by adding shortcuts and combining it with ALT [Goldberg et al., 2006]. How-
ever, it makes the pre-processing more complex (i.e., contains two pre-processing
algorithms, one for reach and one for ALT). Bast et al. proposed transit node routing
which further adapts the highway hierarchies [Bast et al., 2007]. They proposed to
guide the search using transit nodes, which is a set of vertices on sufficiently long
shortest paths and can be detected in top levels of highway hierarchies. Geisberger
et al. obtained contraction hierarchies [Geisberger et al., 2008]. Shortcuts between
vertices are sequentially computed in a total order of vertices and stored as labels.
However, the resulting path may contain several shortcuts, thus additional process-
ing is needed to transform shortcuts to real paths. Bauer et al. proposed SHARC
by combining ideas from highway hierarchies, arc-flag, and REAL [Bauer and Delling,
2010]. Abraham et al. proposed a variant of transit node routing based on modeling
road networks as graphs with low highway dimensions [Abraham et al., 2010]. They
showed how low highway dimensions guarantee the efficiency for previous algo-
rithms (e.g., [Gutman, 2004; Sanders and Schultes, 2005; Bast et al., 2007; Geisberger
et al., 2008]). It can be seen that, methods above targeted at finding a point-to-point
shortest path between two vertices on a road network with specific properties, such
as weighted edges, low vertex degree, low highway dimensions, hierarchical struc-
tures, and near planarity. For networks without such properties, these methods fail
to well perform [Abraham et al., 2010].

Complex networks. Unfortunately, complex networks are known to have different
properties from road networks, such as small-world properties and high highway
dimensions [Abraham et al., 2010], which has thus led to a line of research on point-
to-point shortest path (distance) queries for complex networks [Xiao et al., 2009; Wei,
2010]. Xiao et al. [Xiao et al., 2009] exploited graph symmetry to label shortest paths.
Though the size of labels has been compressed depending on the symmetric prop-
erty, the space cost is still high. Later, Wei [Wei, 2010] introduced a method based
on tree decomposition for point-to-point shortest path queries. However, most of
complex networks have a large component in which vertices are densely connected,
making it hard to be decomposed into tree-like structures. Several methods have
been proposed for finding shortest path distances on complex networks (e.g., [Akiba
et al., 2013; Fu et al., 2013; Akiba et al., 2012; Hayashi et al., 2016; Farhan et al., 2019]).
Some of them considered answering point-to-point shortest path queries as an exten-
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sion of answering distance queries, although they did not provide any experiments.
For example, Akiba et al. [Akiba et al., 2013] proposed pruned landmark labelling
(PLL) which constructs a 2-hop labelling for distance queries by conducting pruned
BFSs. Fu et al. [Fu et al., 2013] proposed IS-label, a labelling for distance queries
on weighted graphs based on an independent set of vertices. Both of these methods
discussed labellings for point-to-point shortest path queries by extending labellings
for distance queries with parent information, which however require a high space
overhead and do not scale to large graphs.

In this thesis, we study the shortest-path-graph problem, which is computation-
ally more difficult than the point-to-point shortest path problem, and little attention
has previously been given. Our method precomputes a small-sized distance labelling
and can handle complex networks with up to billions of vertices.

2.1.2.2 Approximate Algorithms

Due to the high computational costs of computing point-to-point shortest paths or
distances, a number of approximate methods for point-to-point shortest path queries
have been proposed in the past, including landmark-based methods [Gubichev et al.,
2010; Zhao et al., 2011; Tretyakov et al., 2011]. Specifically, Gubichev et al. [Gu-
bichev et al., 2010] proposed to pre-compute shortest paths from each vertex to each
landmark, and then concatenate shortest paths from two given vertices to the same
landmarks to compute approximate shortest paths. They also proposed cycle elim-
ination and tree-based sketch to boost the accuracy. Zhao et al. [Zhao et al., 2011]
proposed a method, called Rigel, to estimate shortest path distances between ver-
tices. They also extended Rigel for approximating shortest paths. Tretyakov et al.
[Tretyakov et al., 2011] used shortest path trees rooted at landmarks to approximate
shortest path distances and search for one shortest path.

2.2 Coverage Centrality

In this section, we briefly discuss the related work on shortest-path based centralities
and the computation on coverage centrality.

Centrality measures have been extensively studied in the last few decades. As
shortest paths are useful to indicate the fast communication between vertices, several
centrality measures based on shortest paths have been proposed, such as between-
ness centrality, closeness centrality and coverage centrality [Bavelas, 1950; Freeman,
1977; Yoshida, 2014]. Each of them reveals certain aspects of vertices in a network,
and can discover different roles of a vertex under different perspectives.

The notion of (shortest-path) coverage centrality was first introduced by Yoshida
[Yoshida, 2014] in the context of finding a set of k vertices with the maximum group
centrality. However, the exact methods for computing such a set w.r.t. group cover-
age centrality take O(k|V|2|E|) time, where |V| is the number of vertices and |E| is
the number of edges in a graph. Thus, Yoshida proposed an approximation method
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for finding such vertices in almost linear time [Yoshida, 2014]. Later, Takaguchi et
al. [Takaguchi et al., 2016] extended the notion of coverage centrality to temporal
networks as they considered such a notion as an important indicator for under-
standing the structure of temporal networks. To compute the centrality of tem-
poral vertices, they proposed both exact and approximate methods, which require
O(|V|2log|E|) and O(log2|V|) queries to a reachability oracle, respectively. Based
on defining a restricted sample space, Chehreghani et al. proposed an approximate
algorithm which can estimate coverage centrality of one vertex in a directed graph
in O(|E|+ |V|log|V|) time [Chehreghani et al., 2018]. Another line of research has
focused on controlling the coverage centrality of vertices via modifications to a graph
[Medya et al., 2018b; D’Angelo et al., 2019; Medya et al., 2017]. For example, Medya
et al. [Medya et al., 2018b] studied the coverage centrality maximization problem
aiming to improve the group centrality of a target vertex set via adding a small num-
ber of edges into a graph, and D’Angelo et al. [D’Angelo et al., 2019] examined
the coverage centrality maximization problem specifically on undirected networks to
address the challenge relating to the lack of submodularity in undirected networks.
As these problems are NP-hard and APX-hard, only approximation methods were
proposed [Medya et al., 2018b; D’Angelo et al., 2019].
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Chapter 3

Shortest Path Graph

3.1 Overview

To understand how two vertices are connected in a graph, we study the shortest path
graph problem on large-scale complex networks in this chapter.

Computing a shortest path graph is computationally expensive since all shortest
paths between two vertices should be found. For search-based methods such as Di-
jkstra [Dijkstra et al., 1959] and breadth-first search which compute all the shortest
paths on the fly without precomputation, their query time complexities are high, thus
these methods are not feasible when we require low latency on large-scale networks.
In order to speed up the online computation of shortest paths, labelling-based meth-
ods have been proposed. These methods first precompute labels such that certain
properties hold, and then answer a point-to-point shortest-path (distance) query by
examining the labelling information without searching the graph. The state-of-the-
art work is pruned landmark labelling, in which a 2-hop distance cover is constructed
to encode shortest distance information [Akiba et al., 2013]. But the 2-hop distance
cover is inadequate to characterize labels required by shortest-path-graph queries.
We extend pruned landmark labelling and propose pruned path labelling to support
the computation of shortest path graph. We also propose a method, called parent
pruned path labelling, which keep additional parent information in labels to further
accelerate query time. But storing labels for computing every shortest path is hardly
feasible due to the demand for much more space, and as a result, the labelling sizes
of these two methods are hundreds of times larger than the origin graph. This shows
the need for a trade-off between query time and labelling size, and motivates us to
develop a hybrid method.

To achieve high scalability, we propose a novel method, Query-by-Sketch (QbS),
which efficiently leverages offline labelling (i.e., precomputed labels) to guide online
searching through a fast sketching process that summarizes the important structural
aspects of shortest paths in answering shortest-path-graph queries. This method con-
sists of three phases, as illustrated in Figure 3.1: (a) labelling - constructing a labelling
scheme, which is compact and of a small size, using a small number of landmarks
through precomputation, (b) sketching - using labelling to efficiently compute a sketch
that summarizes the important structural aspects of shortest paths in a query answer,

13
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Table 3.1: Frequent used notations.

Notation Description

G = (V, E) A graph
dG(u, v) Distance between u and v in G
R Set of landmarks
L(v) Label of v
V(G) Set of vertices in G
E(G) Set of edges in G
PG

uv Set of all shortest paths between u and v in G
Guv Shortest path graph between u and v

and (c) searching - computing shortest paths on a sparsified graph under the "guide"
of the sketch. We develop efficient algorithms for these phases, and combine them
effectively to handle shortest-path-graph queries on very large graphs. We theoreti-
cally prove the correctness of our proposed methods, and analyze the complexity of
each algorithm. Then we experimentally evaluate the performance of our proposed
methods on 12 real-world networks, among which the largest one has billions of
vertices and edges. It is shown that QbS has significantly better scalability than the
baseline methods.
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Figure 3.1: An illustration of our method Query-by-Sketch (QbS) for answering
shortest-path-graph queries.

Outline. The rest of this chapter is organized as follows. In Section 3.2, we present
the preliminaries and problem definition. Section 3.3 discusses several labelling-
based methods and their limitations. Our Query-by-Sketch method is introduced in
Section 3.4. Section 3.5 presents the proof of correctness and the analysis of com-
plexity. Section 3.6 discusses the experimental results. We conclude this chapter in
Section 3.7.

3.2 Preliminaries

Table 3.1 lists the notations that are frequently used in this section. Let G = (V, E)
be an unweighted graph, where V and E represent the set of vertices and edges
in G, respectively. Without loss of generality, we assume that G is undirected and
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connected since our work can be easily extended to directed or disconnected graphs.
We use V(G) and E(G) to refer to the set of vertices and edges in G, respectively, Puv

the set of all shortest paths between u and v, and dG(u, v) the shortest path distance
between u and v in G.

Distance labelling. Let R ⊆ V be a subset of special vertices in G, called landmarks.
For each vertex v ∈ V, the label of v is a set of labelling entries L(v) = {(r1, δvr1), . . . ,
(rn, δvrn)}, where ri ∈ R and δvri = dG(v, ri). We call L = {L(v)}v∈V a labelling over
G. The size of a labelling L is defined as size(L)=Σv∈V |L(v)|. In viewing that each
labelling entry (ri, δvri) corresponds to a hop from a vertex v to a landmark ri with
the distance δvri , Cohen et al. [Cohen et al., 2003] proposed 2-hop distance cover, which
has been widely used in labelling-based approaches for distance queries.

Definition 3.2.1. [2-hop distance cover] A labelling L over a graph G = (V, E) is a
2-hop distance cover iff, for any two vertices u, v ∈ V, the following holds:

dG(u, v) = min{δur + δvr|(r, δur) ∈ L(u), (r, δvr) ∈ L(v)}.

Informally, 2-hop distance cover requires that, for any two vertices in a graph,
their labels must contain at least one common landmark r that lies on one of their
shortest paths.

Shortest-path-graph problem. In this work, we study shortest-path-graph queries.
We first define the notion of shortest path graph.

Definition 3.2.2. [Shortest path graph] Given any two vertices u and v in a graph G,
the shortest path graph (SPG) between u and v is a subgraph Guv of G, where (1) V(Guv) =⋃

p∈Puv
V(p) and (2) E(Guv) =

⋃
p∈Puv

E(p).

A shortest path graph Guv is different from an induced subgraph G[V ′] where
V ′ =

⋃
p∈Puv

V(p). Every edge in Guv must lie on at least one shortest path between u
and v, whereas G[V ′] may contain edges that do not lie on any shortest path between
u and v.

Definition 3.2.3. [Shortest-path-graph problem] Let G = (V, E) and u, v ∈ V. Then
the shortest-path-graph problem is, given a query SPG(u, v), to find the shortest path
graph Guv over G.

3.3 Shortest Path Labelling

In this section, we discuss several labelling-based methods for the shortest path graph
problem. The purpose is to discuss their limitations and possible sources of difficul-
ties.

3.3.1 2-Hop Path Cover

Originally, 2-hop distance cover was proposed for reachability and distance queries
[Cohen et al., 2003]. Below, we discuss how it can be used to find shortest paths and
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(a) (b)

Figure 3.2: (a) A graph G in which the answer of ∀SPQ(3, 7) is colored in green;
(b) Labels over G, where labels for a 2-hop distance cover are colored in black and

additional labels from a 2-hop path cover are colored in green.

why it is insufficient for all-shortest-path queries.

Example 3.3.1. Consider a query SPG(3, 7) on a graph G depicted in Figure 3.2 (a). The
query answer is colored in green. In Figure 3.2(b), labels of a 2-hop distance cover over G are
colored in black. Starting from vertices 3 and 7, we can find vertex 1 because (1, 1) ∈ L(3)
and (1, 3) ∈ L(7), dG(3, 7) = 1 + 3 = 4. Then, we have to stop since the label of vertex 1
does not contain entries to other vertices. Thus, using the labels of the 2-hop distance cover
can compute only one shortest path between 3 and 7, failing to find vertices 2, 4 and 5 in the
answer.

Finding a shortest path graph that exactly contains all shortest paths between two
vertices requires us to accurately encode every shortest path between two vertices into
labels. Thus, to answer shortest-path-graph queries, we generalize 2-hop distance
cover to a property called 2-hop path cover.

Definition 3.3.2. [2-hop path cover] Let G = (V, E) be a graph and L a labelling over
G. We say L is a 2-hop path cover iff L is a 2-hop distance cover and, for any two vertices
u, v ∈ V and any path p ∈ PG

uv with p 6= (u, v), the following holds:

dG(u, v) = min{δur + δvr|(r, δur) ∈ L(u),

(r, δvr) ∈ L(v), r ∈ V(p)\{u, v}},
(3.1)

Compared with 2-hop distance cover, 2-hop path cover further requires that, for
any shortest path p between any two vertices u and v that contains more than one
edge, the labels of u and v should contain a common landmark r that lies on p, but
not be u or v.

Example 3.3.3. Consider Figure 3.2 again, in which a 2-hop path cover contains labels
colored both in black and in green. According to the labels of vertices 1 and 7, vertex 2 can
be found. Then by the labels of 2 and 7, we can further find vertex 5. Similarly, vertex 4 can
be found through the labels of 2 and 3. Thus, using the labels of the 2-hop path cover, we can
find the query answer for SPG(3, 7).
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3.3.2 Path Labelling Methods

To answer shortest-path-graph queries, a naive labelling-based method is, for each
vertex v ∈ V, to conduct a breadth-first search (BFS) from v and store the distances
between v and all other vertices in the label of v, i.e. L(v) = {(u, δvu)|u ∈ V}, which is
a 2-hop path labelling. Although shortest-path-graph queries can be answered using
L, it is inefficient, particularly when a graph is large. The time and space complexity
of constructing such labels are O(|V||E|) and O(|V|2) respectively. Answering one
shortest-path-graph query would cost O(|V|2) in the worst case. A question that
naturally arises is: can we follow the idea of Pruned Landmark Labelling (PLL)
[Akiba et al., 2013], which has been shown to be successful for distance queries, to
develop a pruning strategy for shortest-path-graph queries for improving efficiency?
We will thus introduce two pruned path labelling methods for shortest-path-graph
queries in the following.

Pruned path labelling. Inspired by Pruned Landmark Labelling (PLL) [Akiba et al.,
2013], we conduct pruning during the breadth-first searches, i.e. pruned BFSs, for
shortest-path-graph queries. We abbreviate this pruned path labelling method by
PPL.

PPL works as follows. Given a pre-defined landmark order [v1, v2, . . . , v|V|] over
all vertices in G, we conduct a pruned BFS from each vertex one by one as described
in Algorithm 1. In each pruned BFS rooted at vk, we use depth[v] to denote the dis-
tance between vk and v. Further, Lk−1 refers to the labels that have been constructed
through the previous pruned BFSs from vertices [v1, . . . , vk−1], and dLk−1(vk, u) de-
notes the distance between vk and u being queried using labels in Lk−1. When
dLk−1(vk, u) < depth[u], the label (vk, depth[u]) is pruned (Lines 6-7) because labels
in Lk−1 have already covered the shortest paths between vk and u. In other words,
vk is only added into the labels of vertices u when dLk−1(vk, u) ≥ depth[u] (Line 8).
Note that, unlike PLL, in the case of dLk−1(vk, u) = depth[u], the label (vk, depth[u])
cannot be pruned in PPL; otherwise, 2-hop path cover is not guaranteed, i.e., not all
shortest paths are covered by labels. When dLk−1(vk, u) ≤ depth[u], no further edges
are traversed from u because paths in this expansion have already been covered by
labels in Lk (Lines 6-7 and 9-10).

To answer a query SPG(u, v), we need to compute vertices and edges of Guv from
a pruned path labelling L recursively. Assume that dG(u, v) 6= 1; otherwise we finish
with Guv containing only one edge (u, v). We begin with E(Guv) = ∅. We find the
common landmarks in their labels that are on the shortest paths, e.g., computing a
set Vuv = {r|r = min(δur + δvr), (r, δur) ∈ L(u), (r, δvr) ∈ L(v)}. Then we query the
shortest paths between u, v and these common landmarks, i.e., (u, r) and (v, r) for
each r ∈ Vuv. The query ∀SPQ(u, v) is computed by combining the shortest paths
between u, v and the landmarks, i.e., E(Guv) =

⋃
r∈Vuv

(E(Gur) ∪ E(Gvr)).

Example 3.3.4. When using PPL to answer the query ∀SPQ(3, 7) on the graph G in
Figure 3.2(a), we start with (3, 7) and obtain V3,7 = {1, 2}. This leads to four new
queries (3, 1), (7, 1), (3, 2) and (7, 2). The distance between 3 and 1 is 1. Thus, E(G3,7) =
{(1, 3)} ∪ E(G7,1) ∪ E(G3,2) ∪ E(G7,2). For the new query (7, 1), we obtain V7,1 = {2},
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Algorithm 1: PrunedBFS
Input: G = (V, E); a landmark vk; a labelling Lk−1

1 Q← ∅;
2 Q.push(vk);
3 depth[vk]← 0, depth[v]← ∞ for all v ∈ V\{vk};
4 Lk(v)← Lk−1(v) for all v ∈ V;
5 while Q is not empty do
6 dequeue u from Q;
7 if dLk−1(vk, u) < depth[u] then
8 continue;

9 Lk(u)← Lk(u) ∪ {(vk, depth[u])};
10 if dLk−1(vk, u) = depth[u] then
11 continue;

12 for all (u, vi) ∈ E s.t. depth[vi] = ∞ do
13 depth[vi]← depth[u] + 1;
14 enqueue vi to Q;

15 return Lk;

leading to another queries (7, 2) and (1, 2). Similarly, for (3, 2) and (7, 2) we obtain queries
(1, 2), (2, 3), (2, 5) and (2, 7). Note that the labels of vertex 3 are visited more than once,
i.e. when querying (3, 7) and (3, 2). Further, because 3 and 7 have multiple shortest paths
between them, more than one common vertex on their shortest paths are found from their
labels, i.e. {1, 2}. As a result, edges (2, 5) and (5, 7) are handled multiple times, i.e., when
querying (2, 7) and (1, 7).

PPL has the same time and space complexity for constructing labels as the naive
labelling-based method. However, due to pruning in the BFSs, PPL can often con-
struct labels more efficiently with a significantly reduced labelling size. Nonetheless,
the query time of PPL is still slow because all shortest paths between two vertices can
only be found through searching vertices and edges using labels in a recursive man-
ner. When there exists more than one shortest path between the query vertices, labels
of some vertices are searched repeatedly and edges are found repeatedly, leading to
unnecessary computational cost, e.g., vertex 3 and edges {(2, 5)(5, 7)} as discussed
in Example 3.3.4.

Path labelling with parents. One common technique to accelerate query time for
shortest path queries is to keep additional parent information in labels so as to pro-
vide a clearer direction towards shortest paths. For example, Akiba et al. [Akiba et al.,
2013] extended the label of each vertex v ∈ V to a set of triples (r, δvr, wvr) where wvr

is the “parent" vertex of r on a shortest path from v to r. To find shortest path graphs,
this would require us to store all the parent vertices of a vertex, rather than just one
parent vertex as in the previous work for finding one shortest path. To be precise,
we store a set of triples {(ri, δvri , Wvri)}1≤i≤|V| where Wvri is a set of “parent" vertices
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of v on a shortest path from v to a landmark ri. To reduce space overhead, for each
of such shortest paths, we choose to store the “parent" vertices of v, rather than the
“child" vertices of ri, because landmarks often have a high degree [Akiba et al., 2013].
To distinguish from PPL, we abbreviate this path labelling method with additional
parent information by ParentPPL.

The time complexity of ParentPPL for constructing labels remains to be O(|V||E|)
but the space complexity becomes O(|V||E|). In practice, additional parent informa-
tion only helps speed up query time on small graphs. Even for a graph with millions
of vertices and edges, ParentPPL would run out of time (same as PPL) or space,
failing to construct labels. We will discuss this further in Section 3.6.

3.3.3 Discussion

For 2-hop labelling-based methods such as PPL and ParentPPL, the structure (i.e.,
shortest paths) of a graph is encoded into distance information of labels under the
guarantee of 2-hop path cover. Although shortest paths can be recovered through
computing distances between pairs of vertices, these methods are inefficient. This
is because they recursively split each path into two sub-paths and compute vertices
on sub-paths via distance information in labels, which leads to redundant or un-
necessary searches. Although storing parent information can often accelerate query
time, it makes labelling size larger and does not scale over large networks. Therefore,
we need to find a method for which (1) the labelling size is small, (2) the structure
of shortest paths can be recovered in an efficient way, i.e., reducing redundant and
unnecessary computation, and (3) it can scale over large networks.

3.4 Query-by-Sketch

In this section, we present an efficient and scalable method for solving the shortest-
path-graph problem, called Query-by-Sketch (QbS). Conceptually, this method con-
sists of three key components: labelling, sketching and searching, which will be dis-
cussed in Sections 3.4.1, 3.4.2 and 3.4.3, respectively. The main idea behind this
method is to construct a labelling scheme through pre-computation, and then an-
swer shortest-path-graph queries by performing online computation that involves
two steps: fast sketching and guided searching.

3.4.1 Labelling Scheme

Let G = (V, E) be a graph, R ⊆ V be a set of landmarks, and |R| << |V| (i.e.,
|R| is sufficiently smaller than |V|). We first preprocess the graph G to obtain a
compact representation of the shortest paths among landmarks, called a meta-graph
of G. Then, based on such a meta-graph, we define a labelling scheme to assign a
label to each vertex in G such that, given a pair of any vertices u, v ∈ V, we can
efficiently compute a sketch for answering SPG(u, v).
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Figure 3.3: (a) A graph with three landmarks {1, 2, 3} (highlighted in green), (b) a
meta-graph, and (c) a path labelling.

Definition 3.4.1. [Meta-graph] A meta-graph is M = (R, ER, σ) where R is a set of
landmarks, ER ⊆ R × R is a set of edges s.t. (r, r′) ∈ ER iff at least one shortest path
between r and r′ does not go through any other landmarks, and σ : ER 7→ N assigns each
edge in ER a weight, i.e. σ(r, r′) = dG(r, r′).

Conceptually, a meta-graph represents how landmarks are connected through
their shortest paths in a graph G.

Definition 3.4.2. [Labelling scheme] A labelling scheme L = (M, L) consists of a
meta-graph M and a path labelling L that assigns to each vertex u ∈ V\R a label L(u) s.t.

L(u) = {(r, δur)|r ∈ R, δur = dG(u, r),

∃p ∈ Pur(V(p) ∩ R = {r})}.
(3.2)

Note that, to accurately present how vertices are linked to landmarks, we only
allow that (r, δur) is in the label L(u) iff there exists at least one shortest path between
u and r that does not contain other landmarks.

Example 3.4.3. Figure 3.3 depicts a graph (a) and the meta-graph (b) and the path labelling
(c) of this graph. The edge (1, 3) in the meta-graph is assigned with a weight 2, i.e. σ(1, 3) =
2, since there is one shortest path between 1 and 3 which goes through 4. The label of 4 in
the path labelling contains (1, 1) and (3, 1). The labelling entry (2, 2) is not included in the
label of 4 because every shortest path between 4 and 2 goes through another landmark, i.e. 1
or 3.

Algorithm 2 describes the pseudo-code of our algorithm for constructing a la-
belling scheme. Given a graph G and a set of landmarks R, we conduct a BFS from
each landmark ri ∈ R. We use two queues QL and QN to keep track of visited ver-
tices, which respectively need to be labeled and not to be labeled. All vertices, except
for ri, are initialized as being unvisited (Line 5). For each vertex u ∈ QL at the n-th
level of the BFS, we set its unvisited neighbors v being visited (Line 10). If v is a land-
mark, we push v into QN and add an edge into ER and store the distance between
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Algorithm 2: Constructing a labelling scheme L
Input: G = (V, E); a set of landmarks R ⊆ V
Output: A labelling scheme L = (M, L) with M = (R, ER, σ).

1 ER ← ∅;
2 L(v)← ∅ for all v ∈ V
3 for all ri ∈ R do
4 QL ← ∅;
5 QN ← ∅;
6 QL.push(ri);
7 depth[ri]← 0; depth[v]← ∞ for all v ∈ V\{ri};
8 n = 0;
9 while QL and QN are not empty do

10 for all u ∈ QL at depth n do
11 for all unvisited neighbors v of u do
12 depth[v]← n + 1;
13 if v is a landmark then
14 QN .push(v);
15 ER ← ER ∪ {(ri, v)};
16 σ(ri, v)← depth[v];

17 else
18 QL.push(v);
19 L(v)← L(v) ∪ {(ri, depth[v])};

20 for all u ∈ QN at depth n do
21 for all unvisited neighbors v of u do
22 depth[v]← n + 1;
23 QN .push(v);

24 n← n + 1;

ri and v to the edge in σ. Otherwise, we push v into QL and add a label in L for v
(Lines 11-17). Then, We check unvisited neighbors of each vertex u ∈ QN at the n-th
level, and push v into QN without adding a label in L or an edge in M (Lines 18-21).
This process is conducted level-by-level on the BFS (Line 22).

Example 3.4.4. Figure 3.4 shows how our algorithm conducts BFSs to construct labels. The
BFS from landmark 1 is depicted in Figure 3.4(a), in which vertices {4, 5, 6, 7, 13, 14} are
labelled because the other vertices are either landmarks or have landmarks in all their shortest
paths to landmark 1. We add edges (1, 2) and (1, 3) into the meta-graph. In the BFS from
landmark 2 in Figure 3.4(b), vertices {7, 8, 9, 10, 11} are labelled because the shortest paths
between 2 and vertices in {4, 5, 6, 12, 13, 14} all go through landmark 1 or 3. The BFS from
landmark 3 is depicted in Figure 3.4(c), which works in a similar manner.
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Figure 3.4: An illustration of labelling: (a), (b) and (c) describe the BFSs rooted at the
landmarks 1, 2 and 3, respectively, where light and dark green vertices denote the

landmarks, and yellow vertices denote those being labelled.

3.4.2 Fast Sketching

Let L = (M, L) be a labelling scheme on a graph G. For a given query SPG(u, v),
we proceed to answer SPG(u, v) in two steps; (1) computing a sketch for two vertices
u and v from the labelling scheme L efficiently; (2) computing the exact answer by
conducting a guided search based on the sketch for two vertices u and v. Hence, the
purpose of such a sketch is to provide an efficient and principled way of searching
the answer of SPG(u, v), which is particularly important in very large networks.

Definition 3.4.5. [Sketch] A sketch for SPG(u, v) on L is Suv = (VS, ES, σS) where
VS = {u, v} ∪ R is a set of vertices, ES is a set of edges, and σS : ES 7→N with σS(u′, v′) =
dG(u′, v′), satisfying the condition that ES contains only edges lying on the paths between u
and v with the minimal length as defined below:

d>uv = min
(r,r′)
{δru + dM(r, r′) + δr′v|(r, δru) ∈ L(u), (r′, δr′v) ∈ L(v)}; (3.3)

Accordingly, we have the following corollary.

Corollary 3.4.6. d>uv ≥ dG(u, v) holds.

Algorithm 3 describes how to construct a sketch. Let u and v be a pair of vertices.
We start with VS = ∅ and ES = ∅. Then, for each pair of landmarks {r, r′}, we
compute the minimum length πrr′ of paths between u and v that go through r and
r′ using the labels in L and the meta graph M (Lines 2-5). After that, we obtain the
minimum length of paths between u and v that go through at least one landmark,
i.e., d>uv (Line 6), and add the edges in these paths into ES, the vertices in these paths
into VS, and the corresponding distances are associated with the edges (Lines 7-13).

Example 3.4.7. Figure 3.5(b) shows the sketch between two vertices 6 and 11. The sketch has
the edges (1, 6), (1, 3), (3, 11), (2, 3) (1, 2) and (2, 11) because we have the following shortest
paths between 6 and 11 with δ6,1 + dM(1, 3) + δ11,3 = 5 and δ6,1 + dM(1, 2) + δ11,2 = 5.
We thus have d>6,11 = 5, and d>6,11 = dG(6, 11).
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Algorithm 3: Computing a sketch Suv

Input: L = (M, L), two vertices u and v.
Output: A sketch Suv = (VS, ES, σS)

1 VS ← ∅, ES ← ∅;
2 for all {r, r′} ⊆ R do
3 πrr′ ← +∞;
4 if (r, δur) ∈ L(u) and (r′, δvr′) ∈ L(v) then
5 πrr′ ← δur + dM(r, r′) + δvr′ ;

6 d>uv ← min{πrr′ |{r, r′} ⊆ R};
7 for all {r, r′} ⊆ R and πrr′ = d>uv do
8 ES ← ES ∪ {(u, r), (v, r′)};
9 σS(u, r)← δur, σS(v, r′)← δvr′ ;

10 for all (ri, rj) in the shortest path graph of (r, r′) in M do
11 ES ← ES ∪ {(ri, rj)};
12 σS(ri, rj)← σ(ri, rj);

13 VS ← V(ES);
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Figure 3.5: An illustration of sketching and searching: (a) the sparsified graph G− of
the graph G shown in Figure 3.3(a); (b) the sketch for SPG(6,11) on the graph G; (c)
the bi-directional BFS on G−, (d) the recover search based on L, (e) the reverse search

based on G−, and (f) shows the query answer of SPG(6,11)
.
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3.4.3 Guided Searching

Guided by Suv, we conduct a search to compute the exact answer of SPG(u, v), based
on the following observations:

• Such a search can be conducted on a sparsified graph G[V\R] by removing all
landmarks in R and all edges incident to these landmarks from G. dG[V\R](u, v)
may potentially be greater than dG(u, v); however, the number of search steps
in this sparsified graph can be upper bounded by d>uv due to the fact that
dG(u, v) = min(dG[V\R](u, v), d>uv).

• Suv can guide how to conduct a bi-directional search on the sparsified graph
G[V\R]. Specifically, for t ∈ {u, v}, we have

d∗t = max
(r,t)∈ES

σS(r, t)− 1, (3.4)

which suggests the number of search steps from the u and v sides, respectively.
Here, we subtract 1 because r can be found via labels of vertices in at most
σS(r, t)− 1 steps.

Given a query SPG(u, v) on a graph G, the answer Guv can thus be computed by
searching over the sparsified graph G− = G[V\R] and the label scheme L, guided
by the sketch Suv, as follows:

Guv =


GLuv if dG−(u, v) > d>uv;

G−uv ∪ GLuv if dG−(u, v) = d>uv;

G−uv otherwise.

(3.5)

We use GLuv to refer to shortest paths between u and v that go through at least one
landmark in R.

Generally, a guided search has three stages: (1) Bi-directional search, which has
a forward search from the u side and a backward search from the v side [Goldberg
and Harrelson, 2005], under the guide of Suv w.r.t. Eq. 3.4. This search terminates
when common vertices are found or the upper bound d>uv is reached. (2) Reverse
search, which reverses the previous bi-directional search back to u and v in order
to compute shortest paths in G−uv. (3) Recover search, which recovers the relevant
labelling information under the guide of Suv in order to compute shortest paths
in GLuv. As we do not know initially which of the three cases of Eq. 3.5 holds, a
bi-directional search is always performed. This search provides us with dG−(u, v),
though we abort once dG−(u, v) > d>uv can be guaranteed. Then depending on the
values of dG−(u, v) and d>uv, a reverse search, a recover search, or both of them are
performed to compute G−uv and GLuv as in Eq. 3.5.

Algorithm 4 presents our guided search algorithm. We maintain two queues Pu

and Pv which contain the set of all vertices traversed from u and v, respectively. du

and dv indicate the levels of traversal being conducted in the BFSs rooted at u and v,
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Algorithm 4: Searching on G[V\R]
Input: G− = G[V\R], Suv, L = (M, L)
Output: A shortest path graph Guv

1 d>uv, d∗u, d∗v ← get_bound(Suv);
2 Pu ← ∅, Pv ← ∅, du ← 0, dv ← 0;
3 Enqueue u to Qu and v to Qv;
4 depthu[w]← ∞, depthv[w]← ∞ for all w ∈ V\R;
5 depthu[u]← 0, depthv[v]← 0;
6 while du + dv < d>uv do
7 t← pick_search(Pu, Pv, d∗u, d∗v, du, dv);
8 if t = u then
9 Qu ← f orward_search(Qu);

10 if t = v then
11 Qv ← backward_search(Qv);

12 Pt ← Pt ∪Qt

13 ; dt ← dt + 1;
14 deptht[w]← dt for w ∈ Qt;
15 if Pu ∩ Pv is not empty then
16 break;

17 if Pu ∩ Pv 6= ∅ then
18 G−uv ← reverse_search(Pu ∩ Pv, G−, depthu, depthv);

19 if du + dv = d>uv then
20 Z ← ∅;
21 for all (r, t) ∈ ES with t ∈ {u, v} do
22 dm ← min{σS(r, t)− 1, dt};
23 for all w with deptht[w] = dm, (r, δwr) ∈ L(w), δwr + dm = σS(r, t) do
24 Z ← Z ∪ {(w, r)};

25 GLuv ← recover_search(Suv,L, Z, G−, depthu, depthv);

26 Guv ← G−uv ∪ GLuv;
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respectively. Two queues Qu and Qv keep vertices being searched from u and v at the
du and dv level, respectively. Initially Pu and Pv are empty, and u and v are enqueued
into Qu and Qv respectively. depthu and depthv denote the depths of all vertices in
the BFSs rooted at u and v.

A bi-directional search is first conducted (Lines 6-15). In each iteration, the bi-
directional search is guided by d∗u and d∗v as well as the relative sizes of Pu and Pv to
decide the next step (Line 7). We choose t where d∗t > dt and t ∈ {u, v}. If both u
and v satisfy this condition, or none of them satisfy this condition, then the choice of
a forward search (t = u) and a backward search (t = v) is determined by the sizes
of Pu and Pv. Accordingly, Pu or Pv are expanded (Line 12). The bi-directional search
terminates either when du + dv reaches the upper bound d>uv or Pu ∩ Pv is not empty.
This approach extends the Optimized Bidirectional BFS algorithm of [Hayashi et al.,
2016] by incorporating bounds obtained from our sketch.

If Pu ∩ Pv is not empty, we have dG−(u, v) ≤ d>uv and thus start a reverse search
(Lines 16-17). For each vertex x ∈ Pu ∩ Pv, we compute the shortest paths between u
and x and between v and x according to the depths of vertices in depthu and depthv,
respectively. For example, a neighbour x′ of x in G− is on the shortest path between
x and u if depthu[x]− 1 = depthu[x′], and thus we find such x′ and compute shortest
paths between x′ and u in the same manner. If du + dv = d>uv, we have dG−(u, v) ≥ d>uv
and start a recover search (Lines 18-24). For each edge (r, t) in the sketch Suv and
t ∈ {u, v}, we search for all vertices w with deptht[w] = min{σS(r, t) − 1, dt} and
σS(r, t) = δwr + deptht[w] (Lines 19-23). Each w is a vertex closest to landmark r
among all vertices on at least one shortest path between r and t in our previous
bi-directional search. Z stores (w, r) pairs to guide the recover searches. In the
recover search (Line 24), for each edge (r, r′) in Suv where r, r′ ∈ R, we recover
the shortest paths between r and r′ according to L. For each (w, r) ∈ Z, we find
shortest paths between w and r according to G− and labelling information L. For
example, for a neighbour w′ of w in G−, w′ is on the shortest path between w and r if
(r, δw′r) ∈ L(w′) and δw′r + 1 = δwr. The shortest paths between w and u (resp. v) is
computed according to depthu[ ] (resp. depthv[ ]), but the search for parts of shortest
paths that have already been found in the reversed search can be skipped. We also
compute the shortest paths between relevant landmarks.

Example 3.4.8. Figure 3.5(c)-(e) illustrates how our guided searching finds the answer for
a query SPG(6,11). The sparsified graph G− is depicted in Figure 3.5(a) and the sketch is
depicted in Figure 3.5(b). The sketch provides the upper bound d>6,11 = 5, d∗6 = 0 and d∗11 = 2
because σS(1, 6) = 1 and σS(2, 11) = 3, respectively. The bi-directional BFS is depicted in
Figure 3.5(c), in which d6 = 2, d11 = 3, P6 = {5, 7, 8, 14}, and P11 = {10, 12, 9, 8}.
The queues P6 and P11 meet at vertex 8, and thus dG−(6, 11) = 5. The reverse search is
depicted in Figure 3.5(e), which goes back to 6 and 11 from P6 ∩ P11 = {8}. The recover
search is depicted in Figure 3.5(d), which finds shortest paths going through the landmarks
{1, 2, 3} with Z = {(12, 3), (9, 2), (6, 1)} and recovers shortest paths between landmarks in
the sketch. The final query answer is depicted in Figure 3.5(f).
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3.5 Theoretical Discussion

We prove the correctness of QbS and analyze its complexity. We also discuss how to
parallelize the labelling construction process.

3.5.1 Proof of Correctness

In the following, we prove the theorem for the correctness of QbS.

Theorem 3.5.1. Given any query SPG(u,v) on a graph G, the answer Guv can be computed
using QbS.

Proof sketch. We first prove that a labelling scheme constructed by Algorithm 2 sat-
isfies Definition 3.4.2. Suppose that we conduct a BFS rooted from r ∈ R. Given a
landmark r′ ∈ R\{r}, if ∃p ∈ Prr′(V(p) ∩ R = {r, r′}) holds, there must exist w ∈ QL
with depth[w] + 1 = depth[r′] and (w, r′) ∈ E (Lines 8-9, 11), and accordingly an edge
(r, r′) is added into M (Lines 13-14). Otherwise, r′ is directly pushed into QN (Lines
19-21). Given a vertex v ∈ V\R that is not a landmark, if ∃p ∈ Prv(V(p) ∩ R = {r})
holds, there must exist w ∈ QL with depth[w] + 1 = depth[v] and (w, v) ∈ E (Lines
8-9, 15), and accordingly a label (r, depth[v]) is added into L (Lines 16-17). Otherwise,
v is directly pushed into QN (Lines 19-21).

Now we prove that a sketch constructed by Algorithm 3 satisfies Definition 3.4.5.
First, Algorithm 3 (Lines 2-7) finds pairs of landmarks (r, r′) that minimise {δur +
dM(r, r′) + δr′v|(r, δur) ∈ L(u) and (r′, δr′v) ∈ L(v)} (i.e., satisfying Eq. (3) in Defi-
nition 3.4.5). Then it adds (u, r), (r′, v) and all edges on the shortest paths between
(r, r′) on a meta-graph into the sketch (Lines 8-12).

Finally, we prove that Guv can be constructed by Algorithm 4. Each shortest path
between u and v that does not go through any landmark can be constructed from
G− using a bi-directional BFS and its reverse search (Lines 6-15 and 16-17). For each
shortest path between u and v that goes through at least one landmark, all such
landmarks must be included in Suv and such shortest paths are computed using the
recover search (Lines 18-24).

3.5.2 Complexity Analysis

The time complexity of constructing a BFS from one landmark in Algorithm 2 is
O(|V| + |E|) and the overall time complexity of Algorithm 2 is O(|R||V| + |R||E|).
The time complexity of constructing a sketch in Algorithm 3 is O(|R|4) and can
be reduced to O(|R|2) by precomputing shortest path distances and shortest paths
between landmarks on a meta-graph constructed by Algorithm 3, i.e., computation
on Lines 10-12 is saved. The space complexities for storing meta-graph will increase
from O(|R|2) to O(|R|4). The time complexity of conducting a guided search in
Algorithm 4 is O(|E|+ |R||V|).

Note that, in this work, the number of landmarks is small, i.e., |R| = 20 by
default, which is much smaller than the number of nodes or edges in the original



28 Shortest Path Graph

graph. Thus, we can see that, constructing a label scheme by Algorithm 2 is indeed
O(|E|), computing a sketch is constant time, and performing a guided search be-
comes O(|E∗|+ |V|) where |E∗| denotes the number of edges in the sparsified graph
after removing edges incident to landmarks from G.

3.5.3 Parallelization

Given a graph G and a set of landmarks R in G, a nice property of our labelling
scheme L is that there is only one such labelling scheme. Formally, we prove the
lemma below.

Lemma 3.5.2. Let L be a labelling scheme on a graph G w.r.t. a set of landmarks R. L is
deterministic.

Proof sketch. A labelling scheme L consists of a meta-graph M = (R, ER, σ) and a
path labelling L. From Definition 3.4.1, an edge (r, r′) ∈ ER if and only if there
exists at least one shortest path between r and r′ that does not go through any other
landmarks in R\{r, r′}. From Definition 3.4.2, a label (r, δur) ∈ L(u) if and only if
there exists at least one shortest path between u and r that does not go through any
other landmarks in R\{r}. Therefore, L is deterministic w.r.t G and R.

For a fixed set of landmarks, the labelling construction in Algorithm 2 yields the
same label scheme, regardless of the ordering of landmarks. This deterministic na-
ture of labelling scheme enables us to speed up the construction of labelling scheme
by paralleling Algorithm 2. If we use one thread for constructing labels from one
landmark, then we can leverage the thread-level parallelism to perform BFSs from
different landmarks simultaneously.

3.6 Experiments

We evaluated our method QbS to answer the following questions:

(Q1) How efficiently can our proposed method answer shortest-path-graph queries,
while still achieving construction time efficiency and low labelling space over-
head?

(Q2) How well can sketching help improve the performance of answering shortest-
path-graph queries?

(Q3) How does the number of landmarks affect the performance (construction time,
labelling size and query time) of our proposed method?

3.6.1 Experimental Setup

We implemented our proposed methods in C++ 11 and compiled using g++. We
performed all experiments on a Linux server which has Intel Xeon W-2175 with
2.5GHz and 512GB of main memory.
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(a)

Dataset Network Type

Douban (DO) social undirected
DBLP (DB) co-authorship undirected

Youtube (YT) social undirected
WikiTalk(WK) communication directed
Skitter (SK) computer undirected
Baidu (BA) web directed
LiveJournal (LJ) social directed
Orkut (OR) social undirected

Twitter (TW) social directed
Friendster (FR) social undirected
uk2007 (UK) web directed
ClueWeb09 (CW) computer directed

(b)

Dataset |V| |E| |Eun| max. deg avg. deg avg. dist |G|

Douban 0.2M 0.3M 0.3M 287 4.2 5.2 2.5MB
DBLP 0.3M 1.1M 1.1M 343 6.6 6.8 8.0MB

Youtube 1.1M 3.0M 3.0M 28,754 5.27 5.3 23MB
WikiTalk 2.4M 5.0M 4.7M 100,029 3.89 3.9 36MB
Skitter 1.7M 11.1M 11.1M 35,455 13.08 5.1 85MB
Baidu 2.1M 17.8M 17.0M 97,848 15.89 4.1 130MB
LiveJournal 4.8M 68.5M 43.1M 20,334 17.79 5.5 329MB
Orkut 3.1M 117M 117M 33,313 76.28 4.2 894MB

Twitter 41.7M 1.5B 1.2B 2,997,487 57.74 3.6 9.0GB
Friendster 65.6M 1.8B 1.8B 5,214 55.06 4.8 13.0GB
uk2007 106M 3.7B 3.3B 979,738 62.77 5.6 24.8GB
ClueWeb09 1.7B 7.8B 7.8B 6,444,720 9.27 7.5 58.2GB

Table 3.2: Details of datasets, where |Eun| is the number of edges in a graph being
treated as undirected, and |G| denotes the size of a graph G with each edge appearing

in the adjacency lists and being represented by 8 bytes.

Datasets. We conducted experiments on 12 real-world graph datasets from various
types of complex large networks, including social networks, computer networks, web
networks, co-authorship networks and communication networks. Table 3.2 presents
the details of these datasets, among which the largest one has 1.7 billion vertices
and 7.8 billion edges. We treated graphs in these datasets as being undirected.
All the datasets used in our experiments are publicly available from Koblenz Net-
work Collection [Kunegis, 2013], Stanford Networks Analysis Project [Leskovec and
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Figure 3.6: Distance distribution of 10,000 randomly selected pairs of vertices on all
the datasets.

Krevl, 2014], Dynamically Evolving Large-scale Information Systems Project 1 and
the Lemur Project2.

Queries. We randomly sampled 10,000 pairs of vertices from all pairs of vertices in
each graph, i.e., V ×V, to evaluate the average query time on each graph. Figure 3.6
shows the distance distribution of these 10,000 randomly sampled pairs of vertices
in each graph dataset. We can see that the distances of these pairs of vertices mostly
fall into the range of 2-9.

Baselines. We considered the following baselines:

(1) Labelling-based methods. Pruned landmark labelling (PLL) is the state-of-
the-art method for computing exact distance queries [Akiba et al., 2013]. We
thus use the methods Pruned Path Labelling (PPL) and Pruned Path Labelling with
Parent information (ParentPPL) as discussed in Section 3.3 as our baselines.

(2) Search-based methods. We use bi-directional BFS as the baseline which con-
ducts search from the directions of two vertices alternatively [Goldberg and
Harrelson, 2005]. We denote it as Bi-BFS.

1See http://law.di.unimi.it/datasets.php for datasets
2See https://lemurproject.org/clueweb09/index.php
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To evaluate the parallel speed-up of construction time, we use QbS to refer to our
method with a sequential labelling construction and QbS-P to refer to our method
with a parallel labelling construction, with up to 12 threads in our experiments. In
PPL and ParentPPL, we use 32 bits and 8 bits to represent a landmark and a distance
in their labels, respectively, and 32 bits to store each parent in ParentPPL. In QbS and
QbS-P, we use |R|*8 bits to store the label of each vertex.

Landmarks. In PPL and ParentPPL, landmarks are ordered in descending order
of degrees. In QbS, we choose vertices with the largest degrees as landmarks for
two reasons: (1) removing high-degree vertices sparsifies a graph much more than
low-degree vertices; (2) computing distances from two vertices to high-degree land-
marks provides a good estimation of the shortest distance between these two vertices
[Potamias et al., 2009]. We set |R| = 20 in QbS by default.
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Figure 3.7: Pair coverage ratios using our method QbS under 20-100 landmarks
where light color denotes the ratio of all the shortest paths between a vertex pair
go through landmarks and grey color denoted the ratio of some but not all shortest

paths between a vertex pair go through landmarks.

Dataset
Construction Time (sec.)

QbS-P QbS PPL ParentPPL

Douban 0.05 0.3 154 2,736
DBLP 0.12 1.1 2,610 11,049
Youtube 0.47 4.4 22,601 DNF
WikiTalk 0.61 4.9 8,662 DNF
Skitter 1.51 12.7 86,326 DNF
Baidu 2.04 18.9 DNF OOE
LiveJournal 6.48 52.2 DNF OOE
Orkut 10.85 73.2 DNF OOE
Twitter 199.8 1,345 DNF OOE
Friendster 416.5 2,354 DNF OOE
uk2007 178.5 1,485 OOE OOE
ClueWeb09 1,819 17,060 OOE OOE

Table 3.3: Comparison of construction time. DNF and OOE refer to running out of
time (>24 hours) and running out of memory, respectively.
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Dataset
Average Query Time (ms.)

QbS PPL ParentPPL Bi-BFS

Douban 0.037 1.414 0.038 0.585
DBLP 0.097 1.782 0.052 2.995
Youtube 0.218 5.314 - 23.809
WikiTalk 0.693 3.536 - 6.984
Skitter 0.951 16.978 - 44.685
Baidu 0.845 - - 174.412
LiveJournal 1.095 - - 84.967
Orkut 4.237 - - 207.541
Twitter 164.333 - - 4,817.774
Friendster 11.972 - - 3,600.362
uk2007 77.830 - - 5,264.101
ClueWeb09 480.443 - - DNF

Table 3.4: Comparison of construction time and query time. DNF refers to running
out of time (>24 hours).

3.6.2 Performance Comparison

We conducted experiments to compare construction time, labelling size and query
time of our method against the baselines.

3.6.2.1 Construction Time

Table 3.3 shows that our method QbS can efficiently construct a label scheme on all
the datasets, scaling over large networks with billions of vertices and edges. Com-
pared with PPL and ParentPPL, our method QbS uses a significantly less amount of
time (i.e., 2-4 orders of magnitude faster) to construct labelling information. More-
over, PPL failed to construct labels for 7 out of 12 datasets and ParentPPL failed
for 10 out of 12 datasets. This is because these methods need to meet the 2-hop path
cover property. The reason why ParentPPL is much slower than PPL is because a ver-
tex often has more than one parent and finding all parents takes more time though
the time complexity remains unchanged. We can also see that, compared with QbS,
QbS-P can further improve construction time (i.e., 6-12 times faster), leading to much
better scalability than QbS.

3.6.2.2 Labelling Size

Table 3.5 presents the comparison results for the labelling sizes of QbS, PPL and
ParentPPL on all the datasets. We use size(∆) to denote the size of precomputed
shortest path graphs between landmarks as discussed in Section 3.5.2. We observe
that: 1) the labelling sizes of QbS are hundreds of times smaller than the labelling
sizes of PPL and ParentPPL; 2) the labelling sizes of ParentPPL are about twice as the
labelling sizes of PPL. For dense graphs, such as Twitter, the sizes of precomputed
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shortest paths in QbS are relatively larger than the ones in sparse graphs. This is
due to the existence of many shortest paths between landmarks in dense graphs.
Nonetheless, it is important to notice that, the sizes of precomputed shortest paths
between landmarks (i.e. size(∆) in Table 3.5) are small in QbS, compared with the
sizes of labelling (i.e. size(L) in Table 3.5). For meta-graphs, since each meta-graph
contains at most |R|2 edges, the space overhead for storing edges and weights of a
meta-graph is very small. Indeed, even when we have |R|=100, the size of a meta-
graph would still be smaller than 0.01MB. In summary, these results show that QbS
can scale well over very large networks in terms of the labelling size.

Dataset
QbS

PPL ParentPPLsize(L) size(∆)

Douban 2.95MB 0.03MB 0.4GB 0.8GB
DBLP 6.05MB 0.03MB 1.2GB 2.4GB
Youtube 21.6MB 0.6MB 1.7GB −
WikiTalk 45.7MB 0.7MB 2.1GB −
Skitter 32.4MB 20.3MB 9.2GB −
Baidu 40.8MB 4.8MB − −
LiveJournal 92.5MB 1.1MB − −
Orkut 58.6MB 3.5MB − −
Twitter 0.78GB 0.76GB − −
Friendster 1.22GB 0.01GB − −
uk2007 1.98GB 0.08GB − −
ClueWeb09 31.4GB 0.48GB − −

Table 3.5: Comparison of labelling sizes. size(L) denotes the size of a labelling
scheme L and size(∆) the size of precomputed shortest-path graphs between land-

marks in QbS.
3.6.2.3 Query Time
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Figure 3.8: Labelling sizes using QbS under 20-100 landmarks on all the datasets.

Table 3.4 presents the comparison results of our method with the baselines in
terms of query time. Compared with the search-based method Bi-BFS, our method
QbS can answer queries much more efficiently, i.e., 10-300 times faster than Bi-BFS.
Particularly, QbS is able to answer queries within milliseconds for 8 out of 12 datasets,
and less than 0.5 seconds for the other datasets which have up to 1.7 billion vertices
and 7.8 billion edges. We notice that, Twitter has significantly higher query time than
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Friendster and uk2007. This is because, compared with the other graphs, Twitter
has larger shortest-path graphs as shown by size(∆) in Table 3.5 due to densely
connected vertices with very high degrees. For labelled-based methods, the query
times of both PPL and ParentPPL are much faster than Bi-BFS. However, neither PPL
nor ParentPPL is scalable. PPL can only answer queries for the first 5 datasets, while
ParenetPPL can only answer queries for the first 2 datasets which have less than 1
million vertices. This is because that constructing labelling information required by
these methods is computationally expensive for very large graphs.

3.6.3 Effects of Sketching

We conducted an experiment to understand how sketching improves the perfor-
mance of query answering in our method.

Figure 3.7 presents the pair coverage ratios of our method QbS using 20-100 land-
marks. Here, pair coverage ratio refers to the proportion of queries in which the
shortest paths between two vertices go through at least one landmark, among 10,000
queries used in our experiments. We distinguish two cases: (i) Queries in which all
shortest paths between two vertices go through at least one landmark; (ii) Queries in
which some but not all shortest paths between two vertices go through at least one land-
mark. Pair coverage ratios reflect the effectiveness of sketching used in our method
QbS since a sketch cannot guide queries in which none of shortest paths between
two vertices go through landmarks.

From Figure 3.7, we can see that: (1) When the number of landmarks increases,
the pair coverage ratios go up for both Case (i) and Case (ii); nonetheless, the increas-
ing rate generally slows down. (2) For datasets in which graphs have high degree
vertices compared with their other vertices, such as Youtube, WikiTalk, Baidu, Twit-
ter, and ClueWeb09, their pair coverage ratios are generally higher than the other
datasets. This is because these high degree vertices are more likely on the shortest
paths of the other vertices. For Friendster, as it does not have high degree vertices,
the pair coverage ratios are quite low. (3) For datasets in which graphs are sparse
after removing landmarks that are vertices of high degrees, such as Youtube, Wik-
iTalk, Baidu and ClueWeb09, the percentage of pair coverage ratio for Case (i) among
pair coverage ratios for both cases is higher than the other datasets. In Friendster,
the degrees of vertices are more evenly distributed; hence, landmarks hardly capture
all shortest paths between two vertices and the pair coverage ratios for Case (i) are
extremely low. However, the reasons why query time on Friendster is still fast are
twofold: (1) QbS does not store parent information for reverse search since most par-
ent vertices do not lead to shortest paths being recovered, and (2) QbS uses sketches
to guide which side to expand for bi-directional searches.

3.6.4 Performance with Varying Landmarks

We also conducted experiments to evaluate how the number of landmarks may affect
the performance of our method.
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Figure 3.9: Construction times using QbS under 0-100 landmarks on all the datasets.
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Figure 3.10: Average query times using our method QbS under 0-100 landmarks on
all the datasets.

3.6.4.1 Construction Time

The construction times of our method QbS against different numbers of landmarks
(from 20 to 100) are shown in Figure 3.9. Generally, the construction time grows
linearly. In Figure 3.9(a)-(b), for datasets with millions of edges, QbS can construct
labels under 100 landmarks within at most a few minutes. In Figure 3.9 (c), for
datasets with billions of edges, QbS can construct labels within a few hours. It can
be seen that the construction time is almost linear in the number of landmarks on
each dataset, which confirms the scalability of QbS.

3.6.4.2 Labelling Size

We compared the labelling sizes of QbS against different numbers of landmarks in
Figure 3.8. For a labelling scheme L = (M, L), we use |R|*8 bits to store labels of
each vertex. For M, as discussed in Section 3.6.2.2, the labelling size of a meta-graph
is very small, compared with the labelling size of ∆ and L. It increases when the
number of landmarks becomes larger. Nonetheless, even when |R|=100, the labelling
size of a meta-graph would still be smaller than 0.01MB. For ∆, since we store the
shortest paths between |R|2 pairs, it grows fast when the number of landmarks in-
creases. However, compared with the size of labels in L as shown in Table 3.5, ∆ is
small. The sizes of shortest paths between vertices with lower degrees are smaller
than the ones between vertices with higher degrees. Thus, the labelling size of ∆ does
not increase quadratically in the number of landmarks. The sizes of path labelling L
are linear in terms of the number of landmarks.
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3.6.4.3 Query Time

The impact of varying landmarks on query time is shown in Figure 3.10. When
the number of landmarks increases, there are generally three cases: 1) the query
times increase, e.g., Douban, DBLP and Orkut; 2) the query times decrease, e.g.,
WikiTalk, Twitter and ClueWeb09; 3) the query times have no significant changes,
e.g., LiveJournal and uk2007. If a graph has very high degree vertices, selecting
more landmarks often decreases query times because removing more landmarks can
further sparsify the graph significantly. For example, in Twitter, 38 million edges
are incident to 20 landmarks, while 100 landmarks have around 123 million edges;
accordingly, the query time under 100 landmarks is half as the query time under 20
landmarks. If degrees of vertices in a graph are evenly distributed such as Orkut,
more landmarks do not necessarily improve query time; instead, due to increased
computational cost for computing a sketch, query time often increases.

3.6.5 Remarks

In general, QbS has three sources of efficiency gains when answering shortest-path-
graph queries:

(1) QbS enables queries to traverse on a graph whose parts with high centrality
are sparsified. Thus, although removing a small number of landmarks alone
does not significantly reduce the number of edges in a whole graph (e.g., 3.2%
of edges are removed with 20 landmarks in Twitter), the number of edges tra-
versed by queries is significantly reduced (e.g., around 30% less of edges being
traversed by queries in QbS against Bi-BFS).

(2) QbS uses a sketch to guide the search for each query, further reducing the
number of edges being traversed. Take Twitter for example, after adding the
guide of sketches on a sparsified graph, 66% less of edges are traversed in QbS
against Bi-BFS.

(3) QbS can avoid the computation of shortest paths between high-degree land-
marks when two or more landmarks appear on one shortest path, since these
shortest paths can be precomputed as discussed in Section 3.5.2.

In our experiments, the performance of QbS varies in datasets, depending on how the
characteristics of datasets support these sources of gains to speed up query efficiency.

3.7 Conclusions

In this chapter, we have proposed a novel method, Query-by-Sketch (QbS), to an-
swer shortest-path-graph queries on large graphs. QbS constructs a labelling scheme
through pre-computation, and then answers queries by performing online computa-
tion that involves fast sketching and guided searching. We have analysed the com-
plexity and correctness of our method. We have proven that our labelling scheme is
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deterministic and can be constructed through a parallelized process. We have con-
ducted experiments on 12 large real-world graphs to empirically verify the scalability
and efficiency of QbS.
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Chapter 4

Top-k Relative Coverage

4.1 Overview

The shortest path structure between one vertex and other vertices can be used to anal-
yse how this vertex connects with other vertices in a graph. Previously, the Dijkstra
and breath-first search algorithms can be applied to compute the shortest paths be-
tween a specific vertex and all other vertices. However, for large-scale networks, it is
not only computationally expensive to compute these paths, but also hard to extract
useful information (e.g., important vertices or edges) from these paths. Though sev-
eral centrality measures have been proposed to identify important vertices that fre-
quently appears on shortest paths (e.g., closeness centrality [Bavelas, 1950], between-
ness centrality [Freeman, 1977] and coverage centrality [Yoshida, 2014]), vertices that
are identified as important according to these centralities may not be important to a
specific vertex.

Therefore, based on coverage centrality [Yoshida, 2014], we formally define the
relative coverage. We study a novel problem, called the top-k relative coverage prob-
lem, which finds vertices that are influential in connecting one vertex with all other
vertices based on shortest paths. By exploiting the problem structure, we propose
an efficient method which only requires to compute the relative coverage of ver-
tices in a small candidate set, i.e., eliminating unnecessary computations on vertices
that cannot be in a top-k query answer. Then, to speed up the computation, we
further propose a bit-parallel method which, different from thread-level parallelism,
can compute the relative coverage of up to 64 vertices simultaneously using compact
bit vector encoding. To evaluate the performance of our methods, we conduct exper-
iments on 6 real-world datasets, among which the largest one has millions of vertices
and edges.

Outline. The rest of this chapter is organized as follows. In Section 4.2, we define
relative coverage based on the coverage centrality and formalize the top-k relative
coverage problem. We first develop an efficient algorithm to tackle the top-k relative
coverage problem in Section 4.3 and then propose an optimisation method to speed
up the computation of relative coverage in Section 4.4. Section 4.5 discusses the
experimental result. We conclude this chapter in Section 4.6.

39
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Notations Definitions and Descriptions

G = (V, E) a graph with a vertex set V and an edge set E
N(v) neighbors of v in G
d(s, t) shortest path distance between s and t
Pst set of vertices on any shortest path between s and t
CC(u) coverage centrality of u
RC(u|s) relative coverage of u w.r.t. s
Preds(v) set of predecessors of v w.r.t. s
Succs(v) set of successors of v w.r.t. s

Table 4.1: Frequent used notations.

4.2 Preliminaries

Let G = (V, E) denote an unweighted graph where V and E represent the set of
vertices and edges, respectively. Without loss of generality, we assume that G is
undirected since our work can be easily extended to directed graphs. We use N(v) to
denote the set of neighbors of v. Given two vertices s, t ∈ V, we use d(s, t) to denote
the length of the shortest paths between s and t, and Pst the set of all vertices on the
shortest paths between s and t.

Given a vertex u ∈ V, the coverage centrality of u measures the importance of u by
the number of distinct vertex pairs whose shortest paths contain vertex u [Yoshida,
2014]. Formally, it is defined as:

CC(u) = |{(s, t)|s, t ∈ V, u ∈ Pst}|. (4.1)

In this work, we define relative coverage to describe the importance of a vertex u
w.r.t. a given vertex s:

RC(u|s) = |{(s, t)|t ∈ V, u ∈ Pst}|. (4.2)

Intuitively, the relative coverage of a vertex u w.r.t. a given vertex s measures the
relative importance of u w.r.t. s, which corresponds to the number of distinct vertices
which have at least one shortest path to s going through the vertex u. For clarity, we
call such a set of vertices the cover set of RC(u|s) on a graph G.

Based on the terminology above, we formalize the top-k relative coverage query.

Problem 4.2.1. Given a graph G = (V, E), a vertex s ∈ V and k � |V|, a top-k relative
coverage query, denoted as Q = (G, s, k), is to find a sequence of vertices {v1, v2 . . . , vk}
from V\{s}such that:

(1) ∑1≤i≤k RC(vi|s) is maximized, and

(2) RC(vi|s) ≥ RC(vi+1|s) for i = 1, . . . , k− 1.
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4.3 Proposed Method

In this section, We first discuss how to compute relative coverage. Then, we pro-
pose a method to answer top-k relative coverage queries efficiently. We analyze the
complexity of our method.

Given a vertex s ∈ V, we define the predecessors Preds(v) and successors Succs(v)
of a vertex v w.r.t. the vertex s as:

Preds(v) = {u ∈ N(v)| d(s, u) = d(s, v)− 1}; (4.3)

Succs(v) = {u ∈ N(v)| d(s, u) = d(s, v) + 1}. (4.4)

The following lemma states that, if a vertex u lies on one shortest path between
two vertices s and v, then u must also lie on at least one shortest path between s and
any successor of v.

Lemma 4.3.1. If u ∈ Psv, then u ∈ Pst for each t ∈ Succs(v).

Proof. Since u ∈ Psv implies that d(s, u) + d(u, v) = d(s, v), we know u lies on one
shorest path between s and v. By t ∈ Succs(v), we know that d(s, t) = d(s, v) + 1.
Therefore, we have d(s, u) + d(u, v) + d(v, t) = d(s, t) and u ∈ Pst.

Based on Lemma 4.3.1, we propose an algorithm for computing RC(u|s), which
performs a BFS rooted at s to detect vertices in its cover set. Let T denote the set
of all vertices in the cover set and T = V − T (i.e., vertices that are not in the cover
set). We maintain two queues QT and QT, which keeps track of vertices in T and T,
respectively. Algorithm 5 describes the pseudo-code of the algorithm, where depth
indicates the levels being conducted in the BFS rooted in s and ds[ ] denotes the
depth of all vertices in the BFS rooted in s. First, ds[ ] of each v ∈ V, except for
s, is initialized as +∞. During the search on nth-level, we find each vertex u with
ds[u] = n in QT and then add their neighbor v with ds[v] = +∞ into QT. Similarly,
we find each vertex u with ds[u] = n in QR and add their neighbor v with ds[v] = +∞
into QR. RC[u] equals to the number of vertices in T.

Example 4.3.2. Figure 4.1 illustrates how our algorithm conducts a BFS rooted at vertex 5 to
compute RC(3|5). The given graph is depicted in Figure 4.1(a). The cover set of RC(3|5) is
depicted in Figure 4.1(b), i.e., T = {0, 3, 7, 8, 9, 16, 17, 18} and |T| = 8. The arrows indicate
the traversal from vertices to their successors w.r.t the root vertex 5.

Next, we discuss how to answer a top-k relative coverage query in an efficient
way. A naive method for finding top-k vertices with maximum relative coverage
is to compute the relative coverage value of each vertex in a graph and then pick
k vertices with highest values. However, this naive method is inefficient since it
requires to enumerate the relative coverage values of all vertices for answering one
top-k relative coverage query. A question arising is: can we reduce the search space for
top-k vertices in the answer of a top-k relative coverage query by considering only a small
subset of vertices in a graph while still guaranteeing to find the correct answer?
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Algorithm 5: Single-RC
Input: G, s, u.
Output: RC[u]

1 ds[v]← +∞ for all v ∈ V;
2 ds[s]← 0;
3 QT.add(s);
4 depth← 0;
5 while QT ∪QT 6= V do
6 for v ∈ QT s.t. ds[v] = depth do
7 for neighbor w of v s.t. ds[w] = +∞ do
8 ds[w]← ds[v] + 1;
9 QT.add(w);

10 for v ∈ QT s.t. ds[v] = depth do
11 for neighbor w of v s.t. ds[w] = +∞ do
12 ds[w]← ds[v] + 1;
13 if v = u then
14 QT.add(v);
15 continue;

16 QT.add(w);

17 depth← depth + 1;

18 RC[u]← |QT|;

Given a top-k relative coverage query Q = (G, s, k), the answer of this query is
a sequence of vertices {v1, v2 . . . , vk} that must meet the two conditions stipulated
in Problem 4.2.1. Since RC(vi|s) ≥ RC(vj|s) holds for 1 ≤ i < j ≤ k, we observe
a property where each vertex vi in the sequence ”depends on" the previous vertices
(v1, . . . , vi−1). The following lemma formulates this property.

Lemma 4.3.3. For a query Q = (G, s, k), the top-k vertices in its answer {v1, v2 . . . , vk}
must satisfy the condition Preds(vi) ⊆ {s} ∪

⋃i−1
j=1{vj} where i ∈ [1, k].

Proof. We know that, for each u ∈ Preds(v), RC(v|s) < RC(u|s) must hold. Thus,
if vi is the i-th vertex in the answer, its predecessors Preds(vi) must be in {s} ∪
{v1, . . . , vi−1} since these predecessors have higher relative coverage values w.r.t. ver-
tex s.

Thus, when answering a top-k relative coverage query, there is no need to com-
pute the relative coverage for all the vertices and then select the top-k vertices. In-
stead, by Lemma 4.3.3, we can eliminate vertices whose predecessors do not depend
on s and the previously selected vertices in the sequence, thereby restricting the
search space of finding vertices in the top-k sequence.

For clarity, let Basis(vi) = {s} ∪ ⋃i−1
j=1{vj} denote the basis of the i-th vertex vi

in the top-k sequence. Then, we define that each i-th vertex vi is associated with a
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Figure 4.1: An illustration of computing RC(3|5) using Algorithm 5, where the source
vertex 5 is colored in blue and the vertices in the cover set are colored in yellow.

RC(3|5) = 8 since there are 8 vertices in its cover set.

candidate set Ci = {v ∈ V|Preds(v) ⊆ Basis(vi)} − Basis(vi). Intuitively, the candidate
set Ci is a subset of vertices in V that are the candidates for the i-th vertex vi. By
Lemma 4.3.3, we know that Ci must contain the i-th vertex vi in the answer of a
top-k relative coverage query. This thus enables us to iteratively compute the top-k
vertices, and in each i-th iteration only compute the relative coverage for vertices in
the candidate set Ci and then select the vertex with the highest relative coverage as
xi. Further, since candidate sets in different iterations may be overlapping, to avoid
repeated computations, we only need to compute relative coverage for each newly
added vertex in ∆Ci = Ci − Ci−1 at each i-th iteration and start with ∆C1 = C1 as
the base case. This design can greatly reduce the computational needs for answering
top-k relative coverage queries.

Algorithm 6 describes the pseudo-code of our proposed algorithm for answering
top-k relative coverage queries. We use Ans to denote the top-k sequence which is
the answer to the query Q = (G, s, k). RC[ ] stores the relative coverage values of
vertices. The algorithm conducts the iterations in Lines 4-9. At each iteration, the
relative coverage value of each newly added vertex in the candidate set (i.e., ∆Ci)
is computed, and then the vertex x ∈ Ci with the highest relative coverage value is
picked and added into Ans (in Lines 5-8). The iterations terminate when the top-k
vertices are selected.

Example 4.3.4. Consider the graph depicted in Figure 4.2 and a top-k relative coverage query
Q = (G, 5, 4) (i.e. s = 5 and k = 4) on the graph. We have C1 = {2, 11, 14} in Figure
4.2(a). Since vertex 2 has the largest relative coverage w.r.t vertex 5 in C1, vertex 2 is selected,
i.e., x1 = 2. Then C2 = C1\{2} ∪ {1, 4} since Pred5(1) = Pred5(4) = {2}, as shown in
Figure 4.2(b), vertex 12 is not in C2 because vertex 14 in Pred5(12) is not previously selected.
Then we pick vertex 1 as x2. Similarly, C3 = C2\{1} ∪ {10} as shown in Figure 4.2(c), and
we pick vertex 11 as x3. Finally, we have C4 = C3\{11} in Figure 4.2(d) and select vertex 6
for x4. Hence, the answer for this query Q = (G, 5, 4) is (2, 1, 11, 6).

Complexity analysis. The time complexity of Algorithm 5 for computing the relative
coverage of one vertex is O(|V|+ |E|). Accordingly, the time complexity of Algorithm
6 for answering a top-k relative coverage query is O(|V|2 + |V||E|+ |V|log|V|) in the



44 Top-k Relative Coverage

Algorithm 6: RC-Query
Input: G, s, k.
Output: Ans.

1 Ans← an empty list;
2 RC[v]← 0 for each v ∈ V;
3 i← 1;
4 while i ≤ k do
5 for each u ∈ ∆Ci do
6 RC[u]← Single-RC(G,s,u);

7 x ← arg maxu∈Ci RC[u];
8 Ans.add(x);
9 i← i + 1;
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Figure 4.2: An illustration of how to answer a top-k relative coverage query Q =
(G, 5, 4). Red vertices are in the candidate set. Green vertices are with the largest

relative coverage among all vertices in the previous candidate set.
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worst case.

4.4 Optimization

Although candidate sets help avoid unnecessary computation on relative coverage of
vertices, the size of a candidate set may be large, particularly in complex networks
whose vertices are densely connected. Therefore, in this section, we present an op-
timization technique to speed up the computation of relative coverage. Inspired by
the bit-parallel BFSs in [Akiba et al., 2013], we compute relative coverage of multiple
vertices (i.e., at most 64 vertices) simultaneously by traversing all vertices in a graph
once while performing bit-wise operations on bit-vectors.

Let ∆Ci be a set of newly added candidate vertices at the i-th iteration. We par-
tition ∆Ci into subsets of size b, i.e., ∆Ci =

⋃n
j=1 Uj, where b ≤ 64. Then, for each

subset Uj, we compute RC(u|s) for u ∈ Uj by maintaining an array Ij such that:

Ij[v] = {u ∈ Uj|u ∈ Psv}. (4.5)

In other words, u ∈ Ij[v] indicates that v is in the cover set of a candidate vertex u. We
represent the value of each Ij[v] by a bit vector with b bits, where each bit indicates
the inclusion (i.e., “1") or exclusion (i.e., “0") of v in the cover set of a candidate vertex
u ∈ Uj since |Uj| = b.

The pseudo code for bit-paralleling the computation of relative coverage is de-
scribed in Algorithm 7. For each subset Uj in the partition of ∆Ci, Ij[v] for each
v ∈ V is initialized. Then Ij[u] for each u ∈ Uj is assigned with the value {u}. As in
Algorithms 5 and 6, RC[] stores the relative coverage values of vertices w.r.t. s, ds[]
and Preds[] denote the distances between vertices and s and predecessors of vertices
w.r.t. s, respectively, and depth indicates the levels in the BFS rooted at s. We tra-
verse vertices according to ds[] in ascending order. Notice that for a vertex v′ with
ds[v′] ≤ ds[u] for all u ∈ Uj, I[v′] is guaranteed to be empty. Thus, in this algorithm
we traverse from the level minu∈Uj ds[u] (Line 5). During level-by-level traverse, for
each vertex v, we add vertices in Ij[v] into Ij[w] where w is the successor of v w.r.t
s (Lines 9-10). When the traversal is finished, we check whether u ∈ Ij[v] for each
v ∈ V to obtain the relative coverage value for each u ∈ Uj w.r.t. s (Lines 12-13). Note
that ds[] and Succs[] in Algorithm 7 only need to be computed once by traversing a
BFS rooted at s.

Complexity analysis. Since Ij[v] for each v ∈ V can be represented using a 64-bit
vector, and accordingly a set union operation between Ij[v] and Ij[w] (Line 10 of
Algorithm 7) can be computed in O(1) time by bit-wise OR and AND on bit vectors,
the time complexity and space complexity of Algorithm 7 are O(|E| + b|V|) and
O(|V|), respectively.
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Algorithm 7: BitParallel-RC
Input: G, s, Uj.
Output: RC[u] for u ∈ Uj.

1 Ij[v]← ∅ for each v ∈ V;
2 for each u ∈ Uj do
3 Ij[u]← {u};
4 RC[u]← 0;

5 depth← minu∈Uj ds[u];
6 dmax ← maxv∈Vds[v] ;
7 while depth < dmax do
8 for each v s.t. ds[v] = depth do
9 for each w ∈ Succs[v] do

10 Ij[w]← Ij[v] ∪ Ij[w];

11 depth← depth + 1;

12 for each v ∈ V do
13 RC[u]← RC[u] + 1 for each u ∈ Uj;

4.5 Experiments

We have conducted experiments to evaluate our proposed method, aiming to answer
the following questions:

(Q1) How efficiently can our proposed method in Section 4.3 answer top-k relative
coverage queries?

(Q2) How effectively can our optimization method in Section 4.4 improve the per-
formance of our proposed method?

(Q3) How does k affect the sizes of candidate sets and query performance?

(Q4) How does the performance of our proposed method vary across different types
of networks?

4.5.1 Experimental Setup

We implement all algorithms in C++ 11 and compile them using g++. All experi-
ments are conducted on a Linux sever which has Intel Xeon W-2175 with 2.5GHz
and 512GB of main memory.
Datasets. Table 4.2 shows the details of 6 real-world datasets we use in our experi-
ments, among which the largest dataset YouTube has over 1.13 million vertices and
2.99 million edges. All of the graphs in these datasets are unweighted. We treat
these graphs as being undirected by ignoring the direction of each edge and as be-
ing connected by only using the largest connected component as G. For each graph,
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(a)

Dataset Network Type Source

EuroRoad road network [Rossi and Ahmed, 2015]
Facebook social network [Leskovec and McAuley, 2012]
CondMat collaboration network [Leskovec et al., 2007]
USRoad road network [Rossi and Ahmed, 2015]
EmailEu communication network [Leskovec et al., 2007]
YouTube social network [Yang and Leskovec, 2015]

(b)

Dataset |V| |E| avg.deg max.deg avg.dist diameter

EuroRoad 1.04K 1.31K 2.5 10 18.7 62
Facebook 4.04K 88.23K 43.7 1,045 43.7 8
CondMat 21.36K 91.31K 8.5 280 5.3 15
USRoad 126.15K 161.95K 2.6 7 223.8 617
EmailEu 224.83K 340.36K 3.0 7,636 4.1 14
YouTube 1.13M 2.99M 5.3 28,754 5.3 24

Table 4.2: Details of datasets.

we randomly select 1,000 vertex pairs to compute its average distance which is also
presented in Table 4.2.

Queries. For each dataset, we randomly sample 500 vertices to compute top-k rela-
tive coverage queries. We choose k ∈ {5, 10, 15, 20} in our experiments for answering
the question Q3, and set k = 10 in the other experiments.

Methods. We compare the following methods in our experiments: (1) AllRC: we
perform Algorithm 5 for all vertices in a graph and then sort all vertices according
to their relative coverage values to pick top-k vertices for answering a query; (2)
CandRC: we perform Algorithm 6 to answer queries, which restricts the search space
to candidate sets; (3) optCandRC: we perform an optimised version of Algorithm 6
which uses the bit-parallel algorithm, i.e., Algorithm 7, to speed up the computation
of relative coverage (in Lines 5-6 of Algorithm 6), where b = 64.

4.5.2 Performance Comparison

To verify the efficiency of our proposed method, we conduct experiments to explore
the sizes of candidate sets generated by our proposed method. We also compare the
query times of different methods to answer the questions Q1 and Q2.

4.5.2.1 Candidate Sets

Table 4.3 presents the ratio of the average size of candidate sets to the total num-
ber of vertices in a network, i.e., |⋃k

i=1 Ci|/|V|, on all datasets. We observe that our
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Dataset |∪k
i=1Ci |
|V|

Average Query Time
AllRC CandRC optCandRC

EuroRoad 2.36% 42.74ms 1.30ms 0.75ms
Facebook 45.54% 5.924s 2.68s 0.038s
CondMat 1.50% 56.913s 0.939s 0.055s
USRoad 0.01% DNF 0.248s 0.160s
EmailEu 1.37% DNF 76.628s 4.259s
YouTube 1.74% DNF DNF 132.758s

Table 4.3: The average ratio of candidate sets to the total number of vertices and
average query time for answering top-k relative queries, where k = 10 and DNF

means not finishing 500 queries in 24 hours.

proposed method can significantly reduce the search space on all datasets. Gener-
ally, candidate sets contain 1% – 3% vertices for these datasets except Facebook and
USRoad. Facebook has nearly half of vertices on average (i.e. 45.54%) included in
a candidate set, while USRoad has only 0.01% vertices on average in a candidate
set. The reason why Facebook and USRoad have such different ratios from the other
datasets is due to their different graphs structures. Facebook is a dense graph with
vertices being densely connected, which is evidenced by the highest average degree
(i.e. 43.7) and the lowest average distance (i.e. 3.7) in comparison with the others, as
depicted in Table 4.2. On the contrary, USRoad is a sparse graph with a low average
degree (i.e. 2.6) and the highest average distance (i.e. 223.8) among all the datasets.

4.5.2.2 Query Time

Table 4.3 also shows the average query time for answering top-k relative queries. We
can see the following: (1) optCandRC is the fastest method and CandRC is faster
than AllRC. Compared to AllRC, CandRC can answer queries over 40 times faster
except for Facebook in which CandRC is only around 2 times faster. This is because
that, CandRC only computes relative coverage of vertices in candidate sets while
AllRC computes relative coverage of all vertices in a graph. Moreover, optCandRC
is around 2-70 times faster than CandRC due to the fact that optCandRC speeds up
the computation of CandRC by bit-paralleling the computation of relative coverage
for at most 64 vertices a time, thereby reducing repeated vertex traversal. (2) Neither
AllRC nor CandRC scale to large-scale networks; however, optCandRC can scale to
networks with millions of vertices and edges. Specifically, AllRC and CandRC fail
to answer queries for 3 datasets and 1 dataset among all 6 datasets, respectively. In
contrast, optCandRC can answer queries in less than 3 minutes on average for large-
scale networks such as YouTube, and such an average query time (i.e., 3 minutes) is
reasonably acceptable for real-world applications.
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4.5.3 Performance under Varying k

To answer the question Q3, we conduct experiments under different k to compare
the query time of CandRC and optCandRC, and discuss how the size of candidate
sets changes under different k.

4.5.3.1 Candidate Sets

The average sizes of candidate sets |⋃k
i=1 Ci| under different k are shown in Figure

4.3. We have the following observations. (1) It shows that the average size of can-
didate sets grows almost linearly on all datasets. This indicates the scalability of
our proposed method in terms of k. For example, the size of candidate sets grows
fastest on the largest dataset YouTube; nonetheless, only less than 3% of vertices are
included in the candidate set even when k increases to 20. (2) We also confirm that
a network with a larger average degree and a larger maximum degree often lead to
a larger candidate set under the same k. For example, the average size of candidate
sets of Facebook is larger than the average sizes of candidate sets of CondMat and
USRoad because the average degree of Facebook is larger, although CondMat and
USRoad have larger numbers of vertices than Facebook.
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Figure 4.3: The average size of candidate sets under different k on all datasets.

4.5.3.2 Query Time

The average query times under different k on all datasets are illustrated in Figure
4.4. (1) The average query times of both CandRC and optCandRC grow almost
linearly. This is because their average sizes of candidate sets grow almost linearly.
(2) The faster the average size of candidate sets grows, the bigger performance gap
optCandRC and CandRC may have. This is because optCandRC can not display the
superiority of its bit-parallel computation when the number of vertices newly added
into a candidate set in an iteration is small. For example, optCandRC improves the
query time of CandRC over 10 times on CondMat, but only improves around 2 times
on USRoad.



50 Top-k Relative Coverage

0 5 10 15 20
k

0

1

2

3

Qu
er

y 
Ti

m
e 

(m
s)

(a) EuroRoad

0 5 10 15 20
k

0

1

2

3

4

Qu
er

y 
Ti

m
e 

(s
)

(b) Facebook

0 5 10 15 20
k

0

0.6

1.2

1.8

Qu
er

y 
Ti

m
e 

(s
)

(c) CondMat

0 5 10 15 20
k

0.0

0.1

0.2

0.3

0.4

0.5

Qu
er

y 
Ti

m
e 

(s
)

(d) USRoad

0 5 10 15 20
k

0

40

80

120

Qu
er

y 
Ti

m
e 

(s
)

(e) EmailEu

0 5 10 15 20
k

0

50

100

150

200

Qu
er

y 
Ti

m
e 

(s
)

(f) YouTube

CandRC optCandRC

Figure 4.4: Comparison of the average query time for CandRC and optCandRC under
different k on all datasets. The average query time for CandRC on YouTube is not

shown in (f) since 500 queries cannot be finished in 24 hours.
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4.5.4 Analysis on Network Types

We analyse how CandRC and optCandRC perform across different types of networks
to answer the question Q4.

In Table 4.2, two road networks EURoad and USRoad distinguish themselves
from the other networks (social, collaboration and communication networks) which
are generally referred to as complex networks in the literature [Akiba et al., 2013].
We can see that, the maximum degrees of road networks are significantly (indeed
orders of magnitude) smaller than the maximum degrees of complex networks, and
the average distances of road networks are much larger than the average distances
of complex networks. These indicate that vertices in complex networks are more
densely connected than road networks.

In our proposed method CandRC, newly added vertices in ∆Ci are restricted to
neighboring vertices of the most recently selected vertex xi−1, i.e., the i− 1-th vertex
in the top-k sequence. Thus, |∆Ci| must be not greater than the maximum degree
in a dataset. Moreover, vertices that has shorter distances to the given vertex s in a
query are more likely to be in the top-k sequence. Therefore, for the road networks
EuroRoad and USRoad, their average sizes of candidate sets are order of magnitude
smaller than the ones for the other networks under the same value of k and also
grow slowly since they do not have high-degree vertices, i.e., the maximum degrees
in EuroRoad and USRoad are 10 and 7, respectively, as shown in Table 4.2. As a
result, as depicted in Figure 4.4, EuroRoad and USRoad have a smaller performance
gap between CandRC and optCandRC in comparison with the other networks.

4.6 Conclusions

We have defined the relative coverage w.r.t a source vertex s – to quantify the im-
portance of a vertex v via the number of vertices that have the vertex v lying on
their shortest paths to the source vertex s. Then, we have studied the top-k relative
coverage problem by proposing a method to answer top-k relative coverage queries
efficiently, and further developing an optimization method using bit-parallel tech-
nique. We have also conducted experiments on 6 real-world datasets to evaluate the
performance of our proposed methods.
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Chapter 5

Conclusion and Future Work

In this thesis, we studied two novel problems which are related to shortest paths
on large-scale networks. Specifically, we solved the shortest path graph problem
on complex networks and top-k relative coverage problem. In the following we
summarise our conclusions for each of these problems.

5.1 Shortest Path Graph

In Chapter 3, we aimed to understand how two vertices are connected in a graph. We
studied a novel problem, the shortest path graph problem, which finds a subgraph
that contains exactly all shortest paths between two vertices. We proposed a scalable
method for answering shortest-path-graph queries, called Query-by-Sketch (QbS).
It is a hybrid method which efficiently combines labelling and searching to handle
shortest-path-graph queries on very large graphs. This method consists of three
phases: labelling, sketching and searching. We proved the correctness of QbS and
discussed its complexities. We conducted experiments on 12 real-world datasets to
verified its efficiency and scalability.

Previously, the point-to-point shortest-path problem which finds one shortest
path or shortest distance between two vertices has been widely studied. But vertices
with same distance may be connected by different shortest path structures. Com-
pared with one shortest path or distance which has limited usability, the shortest
path graph shows the important topological structure between two vertices in detail,
and can serve as a basis for solving problems related to shortest paths, e.g., identify-
ing important vertices or edges.

5.2 Top-k Relative Coverage

In Chapter 4, we aimed to understand how one vertex is connected with other ver-
tices in a graph. We extended the coverage centrality to relative coverage, to measure
the importance of a vertex w.r.t a given source vertex. Then we studied a novel prob-
lem, the top-k relative coverage, which finds k vertices that best “cover" the shortest
paths between a specific source vertex and all other vertices in the graph. We intro-
duced a method for efficiently answering top-k relative coverage on large-scale net-
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works, which only requires to compute relative coverage in a reduced search space.
We further designed a bit-parallel optimization method to accelerate the computa-
tion of relative coverage. We theoretically analyse the complexity of our methods and
experimentally verify their efficiency through experiments on 6 real-world networks.

When a graph is large, enumerating all shortest paths from a source vertex is
less informative since the number of paths is excessive and these paths are highly
similar, the top-k relative coverage problem provides us a way to efficiently identify
influential vertices based on shortest paths.

5.3 Future Work

One of the interesting directions for future research is to study shortest path graph
problem on road networks. Previously, a large number of methods have been pro-
posed for finding point-to-point shortest paths on road network. However, one short-
est path is insufficient for analysing how two vertices are connected. For example,
one may be interested in the safest route such that the traffic is smooth, and picking
one shortest path between two locations at random may lead him to a busy district in
which traffic jam happens. The shortest path graph gives more choices in rerouting,
or detecting the hub of transportation.

Another direction is to extend the top-k relative coverage to identify the most
influential vertices w.r.t a set of vertices, instead of just one source vertex. It has
a wider range of applications than the top-k relative coverage problem. For exam-
ple, the transportation authority may be interested in strengthening the connection
between several public places.
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