Exploring Shortest Paths on Large-scale Networks

Ye Wang

School of Computing, Australian National University

4 D K 4 B K 4 B K 4

Introduction

Shortest paths:

• a fundamental notion for graph analytics.

э

Introduction

Shortest paths:

- a basis for tackling various related problems, e.g.,
 - social network analysis
 - find essential proteins in protein-protein interaction networks

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Research Questions

- 1 How do two vertices in a graph connect with each other?
 - Point-to-point shortest path problem
 - ...
 - Shortest path graph problem ¹
- 2 How does one vertex connect with other vertices?
 - Single source shortest path problem
 - ...
 - Top-k relative coverage problem

Shortest Path Graph Problem

Given a graph G and two vertices u, v,

• Vertices with the same distance may be connected by different shortest paths.

Shortest Path Graph Problem

Given a graph G and two vertices u, v,

- Vertices with the same distance may be connected by different shortest paths.
- Enumerating all shortest paths between vertices is combinatorially challenging.

Shortest Path Graph Problem

Given a graph G and two vertices u, v,

- Vertices with the same distance may be connected by different shortest paths.
- Enumerating all shortest paths between vertices is combinatorially challenging.
- Thus, we find shortest path graph G_{uv} a subgraph containing exactly all shortest paths between vertices.

Shortest Path Graph - Related Work

- Search-based methods
 - Dijkstra: O(|E|log|V|) query time
 - Breadth-first search: O(|E|) query time

Shortest Path Graph - Related Work

- Search-based methods
 - Dijkstra: O(|E|log|V|) query time
 - Breadth-first search: O(|E|) query time
- Labelling-based methods
 - Pruned path labelling: $O(|V|^2)$ labelling space
 - Parent pruned path labelling: O(|V||E|) labelling space

Shortest Path Graph - Related Work

Search-based methods

- Dijkstra: O(|E|log|V|) query time
- Breadth-first search: O(|E|) query time
- Labelling-based methods
 - Pruned path labelling: $O(|V|^2)$ labelling space
 - Parent pruned path labelling: O(|V||E|) labelling space
- Hybrid methods?
 - A trade-off

Shortest Path Graph - Research Goal

Design a hybrid method by combining search and labelling to achieve

- Query time efficiency: less than 0.5 seconds
- Labelling space efficiency: comparable size with the original graph
- Scalability: networks with billions of vertices and edges

• Propose a novel method, called Query-by-Sketch

- Propose a novel method, called Query-by-Sketch
- Three key ideas:
 - (1) Labelling scheme;
 - (2) Fast sketching;
 - (3) Guided searching.

- Let G = (V, E) and R be a set of landmarks, and $|R| \ll |V|$. A labelling scheme $\mathcal{L} = (M, L)$ consists of
 - M: a meta-graph over R
 - L: a path labelling over G

Graph

Meta-graph

• • • • • • • • • • •

- Let G = (V, E) and R be a set of landmarks, and $|R| \ll |V|$. A labelling scheme $\mathcal{L} = (M, L)$ consists of
 - M: a meta-graph over R
 - L: a path labelling over G

< ∃⇒

- Let G = (V, E) and R be a set of landmarks, and $|R| \ll |V|$. A labelling scheme $\mathcal{L} = (M, L)$ consists of
 - M: a meta-graph over R
 - L: a path labelling over G

- Let G = (V, E) and R be a set of landmarks, and $|R| \ll |V|$. A labelling scheme $\mathcal{L} = (M, L)$ consists of
 - M: a meta-graph over R
 - L: a path labelling over G

4 **A b b b b b b**

- Let G = (V, E) and R be a set of landmarks, and $|R| \ll |V|$. A labelling scheme $\mathcal{L} = (M, L)$ consists of
 - M: a meta-graph over R
 - L: a path labelling over G

• A sketch S_{uv} for u and v estimates how u and v are connected.

Label	Labelling Entries
L(4)	(1,1) (3,1)
L(5)	(1,1) (3,3)
L(6)	(1,1)
L(7)	(1,2)(2,2)
L(8)	(2,1)
L(9)	(2,1)
L(10)	(2,2) (3,3)
L(11)	(2,3) (3,2)
L(12)	(3,1)
L(13)	(1,3)(3,1)
L(14)	(1,2) (3,2)

A I > A I > A

• Searching shortest paths on the sparsified graph $G^- = [G \setminus R]$

< ロ > < 同 > < 回 > < 回 > < 回 >

• Searching shortest paths on the sparsified graph $G^- = [G \setminus R]$

• • • • • • • • • • • • •

• Searching shortest paths on the sparsified graph $G^- = [G \setminus R]$

< D > < P > < B > < B > < B</p>

- Searching shortest paths on the sparsified graph $G^- = [G \setminus R]$
- Searching shortest paths captured by the sketch

- Searching shortest paths on the sparsified graph $G^- = [G \setminus R]$
- Searching shortest paths captured by the sketch

Exploring Shortest Paths on Large-scale Netv

- Searching shortest paths on the sparsified graph $G^- = [G \setminus R]$
- Searching shortest paths captured by the sketch

Exploring Shortest Paths on Large-scale Netv

We evaluate Query-by-sketch (QbS) against the baselines:

- Search-based methods:
 - Bi-directional BFS (Bi-BFS)
- Labelling-based methods:
 - Pruned path labelling (PPL)
 - Parent pruned path labelling (ParentPPL)

周 ト イ ヨ ト イ ヨ ト

• Datasets: 12 real-world complex networks

Dataset	$ V $	$ E^{un} $	max. deg	avg. deg	avg. dist
Douban (DO)	0.2M	0.3M	287	4.2	5.2
DBLP (DB)	0.3M	1.1M	343	6.6	6.8
Youtube (YT)	1.1M	3.0M	28,754	5.27	5.3
WikiTalk (WK)	2.4M	4.7M	100,029	3.89	3.9
Skitter (SK)	1.7M	11.1M	35,455	13.08	5.1
Baidu (BA)	2.1M	17.0M	97,848	15.89	4.1
LiveJournal (LJ)	4.8M	43.1M	20,334	17.79	5.5
Orkut (OR)	3.1M	117M	33,313	76.28	4.2
Twitter (TW)	41.7M	1.2B	2,997,487	57.74	3.6
Friendster (FR)	65.6M	1.8B	5,214	55.06	4.8
uk2007 (UK)	106M	3.3B	979,738	62.77	5.6
ClueWeb09 (CW)	1.7B	7.8B	6,444,720	9.27	7.5

Ye Wang

Exploring Shortest Paths on Large-scale Netv

Q1: How efficiently can QbS construct labelling?

Dataset	Construction Time (sec.)				
Dalasel	QbS	PPL	ParentPPL		
Douban	0.3	154	2,736		
DBLP	1.1	2,610	11,049		
Youtube	4.4	22,601	DNF		
WikiTalk	4.9	8,662	DNF		
Skitter	12.7	86,326	DNF		
Baidu	18.9	DNF	ROM		
LiveJournal	52.2	DNF	ROM		
Orkut	73.2	DNF	ROM		
Twitter	1,345	DNF	ROM		
Friendster	2,354	DNF	ROM		
uk2007	1,485	ROM	ROM		
ClueWeb09	17,060	ROM	ROM		

Q2: How does QbS perform in terms of labelling size?

Dataset	QbS	PPL	ParentPPL	G
Douban	2.98MB	0.4GB	0.8GB	2.5MB
DBLP	6.08MB	1.2GB	2.4GB	8.0MB
Youtube	22.2MB	1.7GB	_	23MB
WikiTalk	46.4MB	2.1GB	—	36MB
Skitter	52.7MB	9.2GB	—	85MB
Baidu	45.6MB	_	—	130MB
LiveJournal	93.6MB	_	—	329MB
Orkut	62.1MB	_	—	894MB
Twitter	1.54GB	_	_	9.0GB
Friendster	1.23GB	_	—	13.0GB
uk2007	2.06GB	_	—	24.8GB
ClueWeb09	31.9GB		_	58.2GB

Q3: How does QbS perform in terms of query time?

Datasot		Average Query Time (mag				
Dalasel	QbS	PPL	ParentPPL	Bi-BFS		
Douban	0.037	1.414	0.038	0.585		
DBLP	0.097	1.782	0.052	2.995		
Youtube	0.218	5.314	-	23.809		
WikiTalk	0.693	3.536	-	6.984		
Skitter	0.951	16.978	-	44.685		
Baidu	0.845	-	-	174.412		
LiveJournal	1.095	-	-	84.967		
Orkut	4.237	-	-	207.541		
Twitter	164.333	-	-	4,817.774		
Friendster	11.972	-	-	3,600.362		
uk2007	77.830	-	-	5,264.101		
ClueWeb09	480.443	-	-	DNF		

Q4: How well can "sketching" help improve the performance?

< 6 b

Q5: How does the number of landmarks affect the performance?

Q5: How does the number of landmarks affect the performance?

4 D K 4 B K 4 B K 4

Research Questions

1 How do two vertices in a graph connect with each other?

- Point-to-point shortest path problem
- ...
- Shortest path graph problem
- 2 How does one vertex connect with other vertices?
 - Single source shortest path problem
 - ...
 - Top-k relative coverage problem

4 **A** N A **B** N A **B** N

Top-k Relative Coverage Problem

Given a graph G and a vertex s,

- Centrality measures how important a vertex is in a network.
 Coverage centrality: CC(u) = {(s,t)|s,t ∈ V, u ∈ P_{st}}.
- However, vertices that are important in a network may not be important to a specific vertex.
- Thus, we find top-k vertices which are most influential in connecting a vertex s with other vertices, called top-k relative coverage.

Relative coverage: $RC(u|s) = \{t | t \in V, u \in P_{st}\}.$

< ロ > < 同 > < 回 > < 回 > < 回 >

Top-k Relative Coverage - Applications

- Road network upgrade.
- Content spread enhancement.

Top-k Relative Coverage - Related Work

- Shortest-path-based centralities:
 - betweenness centrality [Freeman1977]
 - coverage centrality [Yoshida2014]
- Computing coverage centrality:
 - temporal coverage centrality [Takaguchi2016]
 - approximate coverage centrality [Chehreghan2018]
- Controlling coverage centrality:
 - coverage centrality maximization [Medya2018, D'Angelo2019]

How to compute relative coverage of a vertex *u* w.r.t *s*?

< D > < P > < B > < B > < B</p>

How to compute relative coverage of a vertex u w.r.t s?

- Detect the cover set $T_{u|s} = \{t | t \in V, u \in P_{st}\}$ in a BFS.
 - A vertex v is in $T_{u|s}$, then $Succ_s(v)$ are in $T_{u|s}$.

4 D K 4 B K 4 B K 4

Can we reduce the search space? Select candidates.

• If $u' \in Succ_s(u)$, $T_{u'|s} \subseteq T_{u|s}$: RC(u'|s) < RC(u|s).

< 回 > < 三 > < 三 >

Can we reduce the search space? Select candidates.

- If $u' \in Succ_s(u)$, $T_{u'|s} \subseteq T_{u|s}$: RC(u'|s) < RC(u|s).
 - Which vertex can be v_1 ?

< ロ > < 同 > < 回 > < 回 > < 回 >

Can we reduce the search space? Select candidates.

- If $u' \in Succ_s(u)$, $T_{u'|s} \subseteq T_{u|s}$: RC(u'|s) < RC(u|s).
 - Which vertex can be v_1 ?
- In the top-k result $X_k = \{v_1, v_2, ..., v_k\}, Pred_s(v_k) \subseteq \{s, v_1, v_2, ..., v_{k-1}\}.$
 - Which vertex can be v_i ?

< ロ > < 同 > < 回 > < 回 >

Can we reduce the search space? Select candidates.

- If $u' \in Succ_s(u)$, $T_{u'|s} \subseteq T_{u|s}$: RC(u'|s) < RC(u|s).
 - Which vertex can be v_1 ?
- In the top-k result $X_k = \{v_1, v_2, ..., v_k\}, Pred_s(v_k) \subseteq \{s, v_1, v_2, ..., v_{k-1}\}.$
 - Which vertex can be v_i ?

Can we reduce the search space? Select candidates.

- If $u' \in Succ_s(u)$, $T_{u'|s} \subseteq T_{u|s}$: RC(u'|s) < RC(u|s).
 - Which vertex can be v_1 ?
- In the top-k result $X_k = \{v_1, v_2, ..., v_k\}, Pred_s(v_k) \subseteq \{s, v_1, v_2, ..., v_{k-1}\}.$
 - Which vertex can be v_i ?

Can we reduce the search space? Select candidates.

- If $u' \in Succ_s(u)$, $T_{u'|s} \subseteq T_{u|s}$: RC(u'|s) < RC(u|s).
 - Which vertex can be v_1 ?
- In the top-k result $X_k = \{v_1, v_2, ..., v_k\}, Pred_s(v_k) \subseteq \{s, v_1, v_2, ..., v_{k-1}\}.$
 - Which vertex can be v_i ?

How to compute RC of $U = \{u_1, u_2, ..., u_b\}$ w.r.t *s* efficiently?

Compute one-by-one: For each $u_i \in U$, compute $RC(u_i|s)$ by performing a BFS rooted in s.

• • • • • • • • • • • •

How to compute RC of $U = \{u_1, u_2, ..., u_b\}$ w.r.t *s* efficiently?

Compute one-by-one: For each $u_i \in U$, compute $RC(u_i|s)$ by performing a BFS rooted in s.

- Sequential: O(|U||E|) time
- Parallel: O(|U||V|) space

To compute RC of $U = \{u_1, u_2, ..., u_b\}$ w.r.t $s \ldots$

Bit-parallel!

For each $v \in V$, detect whose cover set v is in.

• O(|E|) time and O(|V|) space.

(a) < (a) < (b) < (b)

We evaluate OptCandRC against the baselines:

- AlIRC: compute the relative coverage of all vertices
- CandRC: compute the relative coverage of candidates

Dataset	$ V $	E	avg.deg	max.deg	avg.dist	diameter
EuroRoad	1K	1K	2.5	10	18.7	62
Facebook	4K	88K	43.7	1,045	43.7	8
CondMat	21K	91K	8.5	280	5.3	15
USRoad	126K	162K	2.6	7	223.8	617
EmailEu	225K	340K	3.0	7,636	4.1	14
YouTube	1M	ЗM	5.3	28,754	5.3	24

Datasets: 6 real-world networks.

A (10) A (10)

Q1: How efficient is our proposed method in terms of the size of candidates and query time?

Dataset	$ \cup_{i=1}^k C_i $	Average Query Time			
Dalasei	V	AIIRC	CandRC	optCandRC	
EuroRoad	2.36%	42.74ms	1.30ms	0.75ms	
Facebook	45.54%	5.924s	2.68s	0.038s	
CondMat	1.50%	56.913s	0.939s	0.055s	
USRoad	0.01%	DNF	0.248s	0.160s	
EmailEu	1.37%	DNF	76.628s	4.259s	
YouTube	1.74%	DNF	DNF	132.758s	

(日)

Q2: How does k affect the performance?

< 6 k

- B

H 5

< 6 b

Conclusion:

- study the shortest path graph problem for exploring the connections between two vertices
- study the top-k relative coverage problem for identifying influential vertices w.r.t one vertex

Future Work:

- study the shortest path graph problem on road networks
- identify important vertices w.r.t a set of vertices

< 回 > < 回 > < 回 > -