
Community Structure in
Large-Scale Complex Networks

Mojtaba Rezvani

A thesis submitted for the degree of
Doctor of Philosophy at

The Australian National University

May 2019

c©Mojtaba Rezvani

Typeset in Palatino by TEX and LATEX 2ε.

Some of the results in Chapter 4 are joint work with Qing Wang and Weifa Liang.
These results have also appeard in [Rezvani et al. 2018]. Chapter 5 is joint work with
Weifa Liang, Wenzheng Xu, Chengfei Liu and Jeffrey Xu Yu. The content of this chap-
ter has also appeared in [Rezvani et al. 2015; Xu et al. 2017]. Chapter 6 is joint work
with Weifa Liang, Chengfei Liu and Jeffrey Xu Yu. The outcome of this chapter has
appeared in [Rezvani et al. 2018]. Chapter 7 is joint work with Qing Wang and Weifa
Liang.

Except where otherwise indicated, this thesis is my own original work.

Mojtaba Rezvani
23 May 2019

Dedicated to my dear parents and my dear wife.

Acknowledgements

I have been fortunate enough to have a significant number of accompanies who sup-
ported me throughout my journey towards achieving these results. It is my pleasure
to express my sincere gratitude to all of them.

I owe my supervisors, Qing Wang, Brendan McKay and Alistair Rendell, a debt
of appreciation for their continuous guidance and encouragement over the past few
years. Qing consistently made her knowledge and support available to me during the
times of confusion and gave me constructive feedback to improve the quality of my
works at different stages. Brendan always shared his wisdom and experience with
me and showed me new ways of thinking about a problem. Alistair also provided me
with an enormous amount of support, both as a supervisor and as the director of the
school.

I am indebted to many of my colleagues at the research school of computer science
who provided me with extensive support, during my time in Canberra. I would like
to thank professor Weifa Liang for his excellent advice on my papers and providing
me with financial support during the first three years of my studies. The staff of the
administration and student offices, Janette, Paul, Natalie, Harriet and Christie were
extremely helpful in getting me through the shortcuts of the bureaucratic processes.
Several colleagues at the Computer Science Students Association, the Student Leader-
ship Team of the graduate and university house, and the Postgraduate and Research
Students Association were beneficial in providing me with various kinds of support.

I would like to show my sincere gratitude to my family for their immense amount
of support and their remarkable companionship. I am grateful for having great par-
ents, Hossein and Khadijeh, who planted the seeds of greatness in me and cultivated
my values. I cherish the understanding and extensive support that I received from my
parents and my siblings, Mohammad, Mohsen, Mehdi, Morteza, Mostafa and Narges.
Most of all, my exceptional gratitude goes out to my loving wife, Fazeleh, who trusted
me and dedicated her endless love to me on such a long and eventful journey. She
selflessly accompanied me during the ups and downs of academic research and un-
abatingly encouraged me throughout the obstacles and challenges of my studies. It
would have been impossible to find the inspiration and motivation needed to deliver
this work without the help of such an incredible lady.

vii

Publications

Primary Publications

Contributions from work presented in this thesis have been published across mul-
tiple peer-reviewed journals and conferences. A list of publications in reverse chrono-
logical order is given below:

[1] M. Rezvani, W. Liang, C. Liu, J. X. Yu, ”Efficient Detection of Overlapping Com-
munities Using Asymmetric Triangle Cuts”, IEEE Transactions on Knowledge and Data
Engineering, 2018.

The concepts, development of the new fitness metric and algorithm, complexity
analysis, implementation and evaluations of this paper are presented in Chapter 6.

[2] M. Rezvani, Q. Wang, W. Liang, ”Hierarchical Community Detection in Large-
Scale Social Networks”, ACM International Conference on Web Search and Data Mining,
2018.

The concepts, development of the cohesive hierarchies and algorithms, complexity
analysis, implementation and evaluations of this paper are presented in Chapter 4.

[3] W. Xu, M. Rezvani, W. Liang, J. X. Yu, and C. Liu, ”Efficient Algorithms for the
Identification of Top-k Structural Hole Spanners in Large Social Networks”, IEEE
Transactions on Knowledge and Data Engineering, 2017.

The development of the new models for the top-k structural hole spanners, and
complexity analysis of this paper are presented in Chapter 5.

[4] M. Rezvani, W. Liang, W. Xu, and C. Liu, ”Indentifying Top-k Structural Hole
Spanners in Large-Scale Social Networks”, ACM International Conference on Information
and Knowledge Management, 2015.

The concepts, development of the new model and algorithms, complexity analysis,
implementation and evaluations of this paper are presented in Chapter 5.

Under Review

[5] M. Rezvani, Q. Wang, W. Liang, ”Community Search in Large-Scale Networks”,
Submitted to IEEE Transactions on Knowledge and Data Engineering, 2018.

The concepts, development of the new models and algorithms, complexity analy-
sis, implementation and evaluations of this paper are presented in Chapter 7.

ix

Secondary Publications
Two other papers were published as a join work with other collaborators. How-

ever, contributions from these publications, even though being closely related are not
presented in this thesis. These are listed below:

[6] M. Rezvani, M. Rezvani, ”A Robust and Fast Reputation System for Online Rating
Systems”, International Conference on Web Information Systems Engineering (WISE), 2017.

[7] A. Bozorgi, H. Haghighi, M. S. Zahedi, M. Rezvani, ”A Community-Based Algo-
rithm for Influence Maximization Problem under the Linear Threshold Model”, Infor-
mation Processing & Management, 2016.

Abstract

Vertices in complex networks can be grouped into communities, where vertices inside
communities are densely connected to each other and vertices from one community
are sparsely connected to vertices in other communities. This is the so-called commu-
nity structure in complex networks. Identifying the community structure of networks
has many applications, ranging from data mining, webpage clustering and market-
ing to extracting proteins with the same functionality in protein-protein-interaction
networks and beyond.

This thesis addresses a number of the primary problems surrounding community
structure in large-scale networks. These problems generally revolve around two of
the principal challenges of the area, accuracy and soundness of modelling and scala-
bility to real-world networks. The problems include identifying top-k structural hole
spanners, detecting the hierarchy of communities, detecting overlapping communi-
ties, and community search in large-scale complex networks. The thesis formally de-
fines the cohesive hierarchies of communities in complex networks. Since scalability
is a major challenge for cohesive hierarchical community detection, the thesis incor-
porates a network sparsification technique to leverage the network size and finds co-
hesive hierarchies of communities in large-scale complex networks. The problem of
identifying top-k structural hole spanners is formally defined in this thesis and sev-
eral scalable algorithms have been presented for this problem. Furthermore, the thesis
delves into the problem of overlapping community detection and proposes an accu-
rate fitness metric to find overlapping communities in large-scale complex networks.
The thesis finally studies the problem of community search and introduces a new al-
gorithm for community search in complex networks.

The thesis develops novel models, algorithms, and evaluation measures for these
problems, and presents the experimental results of these algorithms using real-world
datasets, which outperform considerably on the scalability and accuracy of the state
of the art, in several cases.

xi

xii

Contents

Acknowledgements v

Publications vii

Abstract ix

1 Introduction 1
1.1 Community structure in complex networks 2
1.2 The problems . 4

1.2.1 Hierarchical structure of communities 5
1.2.2 Structural hole spanners . 6
1.2.3 Overlapping community detection 7
1.2.4 Community search . 9

1.3 Contributions . 10
1.4 Outline of this thesis . 13

2 Preliminaries 15

3 Literature Review 19
3.1 Community detection . 19

3.1.1 Hierarchical structural community detection 20
3.1.2 Identifying structural hole spanners 22
3.1.3 Overlapping community detection 23

3.2 Community search . 24

4 Cohesive Hierarchies of Communities in Complex Networks 27
4.1 Overview . 27
4.2 Problem definition . 28
4.3 Cohesive hierarchical community detection 30

4.3.1 The basic algorithm (CHD) . 31
4.3.2 The FACH algorithm . 33

4.4 Approximating information centrality . 35
4.4.1 Theoretical analysis . 36

4.5 Experimental results . 37
4.5.1 Experimental settings . 38
4.5.2 Accuracy and efficiency . 39
4.5.3 Hierarchies: level by level . 41

4.6 Summary . 42

xiii

xiv Contents

5 Structural Holes Spanners in Complex Networks 43
5.1 Overview . 43
5.2 Problem definition . 44
5.3 NP-hardness . 45
5.4 Algorithms for top-k structural hole spanner problem 48

5.4.1 The basic algorithm . 48
5.4.2 Algorithm based on the bounded inverse closeness centrality . . 49
5.4.3 A fast and scalable algorithm . 51

5.5 Performance evaluation . 56
5.5.1 Experimental environment setting 56
5.5.2 Effectiveness of the proposed model 57
5.5.3 Performance on synthetic datasets 58
5.5.4 Performance on real datasets . 59
5.5.5 Impact of parameters on the performance 61
5.5.6 Discussion of experimental results 64

5.6 Summary . 64

6 Overlapping Community Structure in Complex Networks 65
6.1 Overview . 65
6.2 Problem definition . 67

6.2.1 Overlapping community fitness metrics 67
6.2.2 A new fitness metric based on triangle cuts for overlapping com-

munity detection . 68
6.2.3 Problem formulation . 70

6.3 NP-hardness . 70
6.4 Algorithm . 73

6.4.1 Algorithm description . 73
6.4.2 An example of the algorithm execution 76
6.4.3 Algorithm analysis . 77

6.5 Experimental results . 79
6.5.1 Experimental environment settings 79
6.5.2 Performance evaluation of different algorithms 81
6.5.3 Separation and free rider effects on the communities found by

different algorithms . 83
6.6 Summary . 85

7 Community Search in Complex Networks 87
7.1 Overview . 87
7.2 Community search problem . 88

7.2.1 NP-hardness . 90
7.2.2 A novel propinquity measure . 91
7.2.3 Discussion on free rider effect . 93

7.3 Community search algorithm . 94
7.3.1 Identifying the community profile 95

Contents xv

7.3.1.1 Clique-based algorithm 96
7.3.1.2 Fast algorithm . 96

7.3.2 Expanding communities . 97
7.3.3 Algorithm analysis . 97

7.4 Experimental results . 99
7.4.1 Experimental settings . 99
7.4.2 Quality evaluation . 101
7.4.3 Time efficiency . 104
7.4.4 Number of detected communities 105
7.4.5 Impact of parameters ` and k . 106

7.5 Summary . 108

8 Conclusion and future works 109
8.1 Hierarchical community detection . 109
8.2 Structural hole spanners . 110
8.3 Overlapping community detection . 110
8.4 Community search . 111
8.5 Concluding remarks . 111

A Appendix 113

Bibliography 119

xvi Contents

Chapter 1

Introduction

A network, which is also referred to as a graph in mathematics, consists of a set of
entities, called vertices, and the relationships between those entities, called edges. Net-
works were studied as early as 1735 A.D., when Euler solved the Seven Bridges of
Königsberg problem using a network model in which each land mass area was repre-
sented as a vertex, and each bridge was represented as an edge. Nowadays, networks
are used as a modelling tool in a wider range of applications, such as transportation,
communication infrastructures, power grids, information flow, social interactions and
prediction of prospective friendships between people [Bondy et al. 1976]. The term
complex network refers to a network that has a non-trivial topological structure which
does not appear in simple networks such as lattices and cliques but frequently occurs
in real-world networks.

Complex networks are quite prevalent these days, as a networks are used as com-
mon representation for a variety of complex systems [Fortunato 2010; Strogatz 2001]
such as information networks [Tong et al. 2012], technological networks [Boccaletti
et al. 2006], and biological networks [Fell and Wagner 2000]. A social network of peo-
ple is an instance of a complex network, where members of the social network repre-
sent the set of vertices, and different types of relationships between members such as
friendship, follower/followee, messaging and endorsement represent the set of edges
of this network. The World Wide Web forms a network where webpages are the ver-
tices, and the hyperlinks among webpages form the edges. Fig. 1.1a illustrates a small
part of the complex network of webpages in the World Wide Web. In a similar manner,
citation among research articles forms a complex network, where each research article
represents a vertex, and every citation from one article to another represents an edge
between the corresponding vertices. Fig. 1.1b represents a small network of research
articles and the citations between them. In biology, researchers have created networks
of proteins based on the chemical interactions between proteins, where proteins are
represented by vertices, and there is an edge between two proteins if there is a certain
chemical interaction between those proteins. The availability of such networked data
has provided us with an opportunity to understand the underlying structure of these
complex systems.

Despite the differences in the way these complex networks are constructed, they all
share several characteristics. One of the interesting characteristics is the small-world
phenomenon, which states that the longest distance between any pair of vertices is

1

2 Introduction

(a) Citation network

au.yahoo.com

www.flickr.com www.tumblr.com

au.jora.com www.ebay.com

www.booking.com

(b) World Wide Web network

BET1

YDR100W YGL161C

YPL095C

YGL198WYDR084C

(c) Protein network

Figure 1.1: Examples of complex networks. (a) shows a citation network, which con-
sists of research papers as vertices and citations as edges; (b) illustrates a world Wide
Web network, in which webpages are represented by vertices, and hyperlinks are rep-
resented by edges; (c) demonstrates a protein-protein interaction network, where pro-
teins are represented by vertices and there is an edge between two vertices if there is
a chemical interaction between proteins.

usually a small constant [Watts and Strogatz 1998]. Furthermore, navigability is one
of the important characteristics in small-world networks [Kleinberg 2000]. Complex
networks often share other characteristics such as clustering coefficient and power-
law degree distribution, which can help us to make sense of the non-trivial nature of
such networks.

Unravelling the underlying structure of complex networks can provide us with
interesting information about these networks and help us understand the complex
nature of such networks. For example, the majority of members of social networks
spend a noticeable amount of their time browsing the network and viewing the con-
tents shared by others. Such information can be used in data mining applications,
whereas meaningful results can be generated for different purposes including mar-
keting, information propagation analysis and opinion mining. In World Wide Web,
the hyperlink network of webpages can be used to extract useful information from
the web, including webpages with high content commonality, web ranking for search
engines and wbepage clustering. In academia, studying networks of researchers and
their interactions can reveal popular research topics and active researchers in com-
munities. Moreover, biologists have started realising the importance of studying the
relationships between organisms and the connection patterns between proteins in
protein-protein interaction networks.

1.1 Community structure in complex networks

The non-trivial topological structure of complex networks is due to an irregular dis-
tribution of edges that creates an interesting structure [Fortunato 2010], since edges
appear with high density among groups of vertices, while they appear with less den-

§1.1 Community structure in complex networks 3

(a) Collaboration net-
work [Girvan and
Newman 2002]

(b) Network of dol-
phins [Arenas et al. 2008]

(c) PPI network [Jonsson
et al. 2006]

Figure 1.2: Examples of communities in complex networks.

sity between groups. This leads to the so-called community structure characteristic of
complex networks. For instance, students in a university and their relationships can
form a network, where students within the same discipline tend to be highly con-
nected to each other, while they have a lesser tendency to connect to students in other
disciplines. Similarly, studies in a network of bloggers have shown that bloggers can
be grouped into communities, where bloggers that advocate a certain political party
usually fall in the same community [Kumar et al. 2004]. Metabolic networks of organ-
isms can also be decomposed into highly connected communities, where communities
form a hierarchy in which communities at lower levels of the hierarchy are more co-
hesive, and vertices within those communities are closer to each other [Ravasz et al.
2002]. Such hierarchical community structure is commonly observed in other complex
networks as well.

Fig. 1.2a shows a small collaboration network of some researchers at the Santa Fe
Institute. It can be observed in Fig. 1.2a that different disciplinary research groups can
be distinguished using the community structure of this network, since researchers of
each discipline are well-separated from researchers in the other disciplines based on
their collaborations. Similar communities can be found from collaboration networks
of academics across the world to identify the research topics that are being pursused
in academia. Fig. 1.2b represents a network of bottlenose dolphins living in New
Zealand, studied by Lusseau [Lusseau 2003], where each vertex represents a dolphin,
and two vertices are connected by an edge if the correspoding dolphins have been
observed together. It can be seen in Fig. 1.2b that the community structure reveals the
biological classification of dolphins proposed by Lusseau [Lusseau 2003]. Likewise,

4 Introduction

the community structure of a protein-protein interaction network in Fig. 1.2c reveals
that functional groups of proteins tend to have more connections to each other, while
having less connection to other functional groups.

The existence of community structure in complex networks implies fewer con-
nections between different communities, compared to connections between vertices
inside communities. As a result, structural holes are formed, which refer to the gaps
formed by the lack of connections between communities. Recent studies [Bozorgi et al.
2016; Guille et al. 2013] have shown that information, rumours and disease circulate
quickly inside communities and spread to other communities through weak connec-
tions. This exposes great opportunities for individuals who bridge different commu-
nities to benefit from different sources of information and a chance to manipulate the
communication between communities. Such individuals are known as structural hole
spanners and identifying them is useful in a wide range of applications [Burt 1992].

The emergence of structural hole spanners in complex networks and the member-
ship of vertices in multiple communities show that communities may have overlaps
with each other [Xie et al. 2013]. In a social network, a person may take part in sev-
eral social groups such as family, classmates and friends. However, since overlapping
communities are usually highly connected to each other, identifying the overlapping
regions between communities in complex networks is yet another challenging prob-
lem.

The aforementioned networks are increasing in size, and finding efficient, yet scal-
able algorithms for studying them is a huge challenge. In the light of the important
role that communities play in many applications, it is a crucial task to find a systematic
approach to detect communities in a large-scale network. As a result, the community
detection problem arises in computer science [Fortunato 2010], as the problem of find-
ing densely connected modules that are sparsely connected to other groups.

Although there is a plethora of methods for community detection in complex net-
works, the state-of-the-art methods suffer from either inefficiency or inaccuracy in
finding communities. Due to the massive growth of networks in size, many of the ex-
isting approaches are not feasible in real-world networks. This means that such meth-
ods are incapable of finding communities in large networks with millions of vertices
and edges [Yang and Leskovec 2013]. Other methods of community detection sacri-
fice the accuracy of the communities to obtain scalability. As a result, these methods
find communities that do not match with the real community structure in networks.
This thesis deals with several problems related to the community structure in complex
networks, such as detection and searching of communities. The thesis pays a special
attention to scalability, as well as accuracy. In the following section, the problems
studied in this thesis are described.

1.2 The problems

This thesis aims to find accurate, efficient, yet scalable algorithms for studying the
community structure of complex networks. More specifically, the thesis studies the

§1.2 The problems 5

problems of hierarchical and overlapping structure of communities, identifying struc-
tural hole spanners and community search and formal defines each problem. The
complexities of these proposed problems are analysed and efficient and accurate al-
gorithms for dealing with these problems in complex networks are devised in this
thesis. The proposed algorithms are scalable to networks with millions of vertices
and hundreds of millions of edges. The thesis further conducts extensive experiments
on a wide range of real-world and synthetic networks to evaluate the performance of
the proposed algorithms and discusses the experimental results.

1.2.1 Hierarchical structure of communities

It is well-known that communities in a network often exhibit a hierarchical struc-
ture [Fortunato 2010; Ravasz et al. 2002; Sales-Pardo et al. 2007; Schaeffer 2007]. For
instance, metabolic networks of organisms can be decomposed into highly connected
communities, where communities form a hierarchy in which communities at lower
levels of the hierarchy are more cohesive, and vertices within those communities are
closer to each other [Ravasz et al. 2002]. Researchers in a collaboration network can
be grouped into communities based on their research areas, from general areas such
as computer science to more specific ones such as database and data mining, where
information circulates more quickly among them. Therefore, small and cohesive com-
munities are nested into larger and less cohesive communities in a hierarchical man-
ner. Despite the indisputable role of hierarchical community detection in many ap-
plications, and with the presence of an ever-growing body of research for detecting
communities in social networks, existing methods for hierarchical community detec-
tion are far from perfect. First of all, the existing methods for hierarchical community
detection fail to scale in real-world networks containing millions or billions of ver-
tices. Secondly, the existing methods for flat community detection are not directly
applicable for detecting hierarchies of communities, i.e. using a flat community de-
tection algorithm on a community often leads to the same community, instead of other
sub-communities.

Traditionally, hierarchical community detection methods find hierarchies by re-
moving/merging edges and vertices of a network one by one, which can be very time
consuming. For example, Girvan and Newman [Girvan and Newman 2002; New-
man and Girvan 2003] suggested starting with a given network as a community and
partitioning the network by removing edges in decreasing order of their betweenness
centrality. Similarly, Fortunato et al. [Fortunato et al. 2004] advocated to remove edges
in order of impact of their removal on the information centrality (mean distance) of
a network. Newman [Newman 2004] proposed an approach, where communities are
merged if the modularity of the resulting community can be increased, starting from
vertices. However, repeatedly calculating modularity, difference in modularity, be-
tweenness and information centralities in a large network is computationally infeasi-
ble.

Furthermore, existing approaches may fail to reveal a cohesive hierarchical struc-
ture among communities. In order to capture cohesiveness, existing approaches for

6 Introduction

In
fo

rm
a
ti
o
n
 C

e
n
tr

a
lit

y

V1

V2

V3

V4

V5

V6

2

4

6

8

Level of the hierarchical tree
1 2 3 4V1

V2

V3

V4

V5

V6

V4

V5

V6

V3

V2

V1

Figure 1.3: A hierarchical structure of communities in Amazon, where from the root
to its leaves connections within communities become denser and the values of their
information centrality increase.

flat community detection can be adjusted to detect a hierarchical structure among
communities. For example in k-truss [Cohen 2008], where every edge in a community
forms at least k− 2 triangles, and k-core [Cheng et al. 2011], where the degree of ev-
ery vertex in a community is at least k, one can identify a hierarchy of communities
by starting with k = 1 and increasing the value of k to obtain more cohesive com-
munities at the lower levels of the hierarchy. Fig. 1.3 shows a hierarchical structure
of communities detected in a real-world network Amazon, where k-core and k-truss
both fail to detect the hierarchical structure of communities. It can be seen that for
k < 4, the whole network is in a single k-core community, while k-truss is unable to
detect any community for k > 4 and k < 3. Thus, the aforementioned method is
unable to guarantee a strong cohesion among vertices in lower levels of the hierarchy,
thereby sacrificing the quality of communities for the sake of efficiency.

The first problem studied in this thesis is the problem of identifying a cohesive
hierarchical structure among communities in complex networks. The main challenges
for solving this problem are accuracy and efficiency in large-scale networks.

1.2.2 Structural hole spanners

In a complex network, vertices that bridge different communities gain the benefit of
obtaining access to different sources of resources. It is known that communities play a
significant role in information diffusion within a network; information within a com-
munity circulates very quickly and diffuses to other communities through community
boundaries or bridges. There is a consensus among social scientists [Burt 1992] that a
person who plays a bridge role between different communities in social networks can
acquire more potential resources from these communities and has more control over
the information that is being transmitted. Burt [Burt 1992] studied social structures of
many organizations by introducing the notion of structural holes as positions that can
bridge diverse groups and bring benefits to the beholder. It is shown that information
within a single community tends to be homogeneous. Non-redundant information is
often obtained through the contacts of people in different communities [Rinia et al.

§1.2 The problems 7

2001]. Therefore, a person who develops relations with people from multiple commu-
nities will gain more benefits. Structural hole spanners were studied initially by Lou et
al. [Lou and Tang 2013], and are referred to as a few people who fill the structural holes
can bridge different communities. For example, a community in an academic collabo-
ration network represents the group of people with the similar research interests, and
people (structural hole spanners) who bridge different communities are more potent
to combine ideas from different research groups and create interdisciplinary works.

Structural hole spanners have a wide range of applications. For example, in com-
munity detection, identifying central hubs that connect different groups can help iso-
late and identify communities [Andersen and Lang 2006; Wang et al. 2011]. In Epi-
demic diseases and rumors spreading, quarantining structural hole spanners can stop
the spread of infection and rumors into other communities [Budak et al. 2011; Guille
et al. 2013; Marathe and Vullikanti 2013]. In viral marketing, the most influential struc-
tural hole spanners can speed-up new product marketings to different groups [Kempe
et al. 2003; Tang et al. 2014; Tang et al. 2013]. In graph compression, structural holes are
good candidates for k-shattering [Kang and Faloutsos 2011] as they connect diverse
parts of the network together, and their removal results in a network being discon-
nected.

Existing works on structural hole spanners can be categorised in two groups: (a)
community-based approaches and (b) structure-based approaches. On the one hand,
community-based approaches are highly dependent on the communities identified
by community detection methods. On the other hand, structure-based approaches
find structural hole spanners merely based on the topological structure of networks,
and it has been shown that these approaches sometimes fail to accurately identify
the structural hole spanners. For example, Goyal et al. [Goyal and Vega-Redondo
2007] considered a structural hole spanner as a vertex that lies on a large number
of shortest paths, and Kleinberg et al. [Kleinberg et al. 2008] considered a structural
hole spanner as a vertex that lies on a large number of shortest paths with length two.
However, Fig. 1.4 illustrates that, although these two methods suggest vertex v1 as the
best structural hole spanner, vertex v2 bridges more communities and is considered
as a better structural hole spanner.

The thesis studies the problem of identifying the top-k structural hole spanners,
which are the top-k vertices that bridge a wide range of communities, in a complex
network with the aim of finding an algorithm that is scalable and independent of the
community structure in complex networks.

1.2.3 Overlapping community detection

Recent studies [Rezvani et al. 2015; Xie et al. 2013; Yang and Leskovec 2013] have
shown that some vertices in a complex network can join multiple communities to bro-
ker ideas and access resources from other communities. As a result, communities in
complex networks are overlapping, rather than being exclusive with each other. The
detection of overlapping communities from a complex network thus becomes a funda-
mental problem in the big data era, as it has many real applications. For example, for

8 Introduction

v1

v2

Figure 1.4: Illustration of structural hole spanners; each closed area represents a com-
munity, and vertices v1, v2 represent structural hole spanners that span multiple com-
munities.

targeted advertisements in a consumer network, detecting overlapping communities
helps identifying groups of members with similar shopping preferences, and they will
become suitable audiences for an advertisement campaign, as they usually share sev-
eral shopping preferences [Aggarwal et al. 2004]. In WWW, webpages with high con-
tent commonality can be obtained by detecting overlapping communities of hyperlink
networks [Dourisboure et al. 2007]. In author-collaboration networks, communities
reveal research areas and topics that are pursued by different researchers [Newman
2004]. There are many other applications of overlapping communities, including dis-
ease spread controls [Salathé and Jones 2010], product recommendations, and mining
of structural hole spanners [Rezvani et al. 2015; Xu et al. 2017].

The key to identifying high-quality overlapping communities in large-scale net-
works is an accurate fitness metric, which measures the quality of identified commu-
nities, in terms of the density of internal edges within a community and sparsity of
edges leaving the community. Examples of well-known fitness metrics include Classic
Density [Saha et al. 2010], Relative Density [Mihail et al. 2002], Conductance [Kannan
et al. 2004], Subgraph Modularity [Luo et al. 2008], and Local Modularity [Newman
2006]. We here assume that all fitness metrics measure the strength of communities.
Since some of these fitness metrics (such as conductance) measure the weakness of a
community (a smaller fitness value is preferred), we here use the reciprocal value of
these fitness metrics to maximize the strength of communities.

Existing fitness metrics for overlapping community detection introduce the fol-
lowing two issues. One issue with conductance and local modularity fitness metrics
is the separation effect, which means that an overlapping region is assigned to only one
of the many communities. Another issue is the presence of the free rider effect [Wu
et al. 2015] or resolution limit [Fortunato and Barthelemy 2007], which means that a
community can be merged with a denser community, and the fitness value of the re-
sulting merged community is better. Bandyopadhyay et al. [Bandyopadhyay et al.
2015] proposed an algorithm FOCS that expands neighborhoods of vertices, using the
subgraph modularity fitness metric. Wu et al. [Wu et al. 2015] however showed that
the modularity metric and other existing metrics suffer from the free rider effect [Wu
et al. 2015]. Fig. 1.5 illustrates an example in which some of the existing fitness metrics
cause either free rider effect or separation effect.

§1.2 The problems 9

V1

V2

V3 V4

Fitness metrics Detected communities Remarks

Classic density (CD) V1 , V1 ∪V2 Free rider effect

Relative density (RD) V1 , V1 ∪V2 Free rider effect

Subgraph modularity (SM) V1 , V1 ∪V2 Free rider effect

Local modularity (LM) V2 , V1 −V2 Separation effect

Conductance (CN) V1 , V2 −V1 Separation effect

Figure 1.5: A small network and different fitness metrics for its communities. While
communities V1 and V2 share two vertices, fitness metrics CD, RD and SM obtain
larger fitness values for communities V1, V1 ∪V2 (free rider effect), and fitness metrics
LM and CN obtain larger values for V2, V1 − V2 and V1, V2 − V1, respectively (sepa-
ration effect).

The problem of overlapping community detection in complex network is studied
in this thesis and a scalable algorithm based on asymmetric triangle-cuts is proposed
for this problem that can accurately find overlapping communities, while it minimises
the occurrence of free-rider and separation effects.

1.2.4 Community search

Given a number of vertices in a network, how can we find communities (i.e. densely
connected subgraphs) that are related to these vertices? This is the so-called commu-
nity search problem, which has attracted an increasing amount of attention in recent
years [Barbieri et al. 2015; Cui et al. 2014; Huang et al. 2015; Shan et al. 2015a; Shan
et al. 2015b; Sozio and Gionis 2010; Wu et al. 2015]. In practice, community search has
a wide range of applications. For instance, in the disease control with a given set of
infected members, we are interested in identifying and quarantining a group of mem-
bers that are most likely to become infected, thereby stopping the spread of diseases.
Similarly, in collaboration networks, one might be interested in finding communities
around influential researchers in different areas to detect potential interdisciplinary
areas that are forming and key researchers who shape the ideas. Communities can
also be used to identify the hidden communication patterns between individuals and
reveal information flows among users of social networks.

Despite the importance of community search, existing algorithms dealing with
this problem have their limitations. Existing community search algorithms focus
on identifying densely connected communities that contain the given query vertices.
This, however, overlooks the fact that vertices in such communities may relate to the
query vertices in rather different ways. For example, k-core [Cui et al. 2014] and k-
truss [Huang et al. 2014; Huang et al. 2015] have been widely used to search commu-
nities in a network. As depicted in Fig. 1.6, querying k-core (k = 3) for two vertices u
and v may result in a community E that includes many irrelevant vertices such as ver-
tex z. This is because the minimum degree among all vertices is 3. Similarly, querying
k-truss (k = 2) for u and v results in a community D that includes vertices that are
irrelevant to v such as w, as these vertices from a different community form triangles

10 Introduction

with u. Wu et al. [Wu et al. 2015] coined the free rider effect to characterize the relevance
between query vertices and communities found using a fitness metric that evaluates
the quality of communities. Nonetheless, the free rider effect still occurs in community
search methods that do not incorporate a fitness metric, such as k-core and k-truss. In
order to address the free rider issue in k-truss community search, Huang et al. [Huang
et al. 2015] suggested the use of connected k-truss with minimum diameter. However,
when query vertices belong to different communities, this approach also suffers from
the free rider effect. Fig. 1.6 shows that searching communities for vertices u, v and z,
using minimum diameter connected k-truss, returns the community F with all vertices
in the figure, including x that is irrelevant to the query vertices.

Furthermore, existing methods for community search either consider queries with
only one vertex, or find only one community per search. None of these methods
are capable of finding communities accurately when query vertices belong to differ-
ent communities. Specifically, these methods suffer from two main limitations: (i)
the number of query vertices is restricted to one vertex per search [Akbas and Zhao
2017; Cai et al. 2017; Cui et al. 2014; Huang et al. 2014; Lim and Datta 2013; Liu et al.
2016]; or (ii) the number of detected communities is restricted to one community per
search [Barbieri et al. 2015; Huang et al. 2015; Shan et al. 2015a; Shan et al. 2015b; Sozio
and Gionis 2010; Wu et al. 2015; Zheng et al. 2017]. For example, Cui et al. [Cui et al.
2014] formulated the community search problem with a single-vertex query as find-
ing a k-core that includes the given query vertex with maximum possible value of k.
Sozio et al. [Sozio and Gionis 2010] and Barbieri et al. [Barbieri et al. 2015] attempted
to address the limitation on query size by defining the problem of community search
as finding only one k-core that includes a given set of query vertices, with the maxi-
mum value of k. In a similar manner, Huang et al. [Huang et al. 2014] used the notion
of a connected k-truss with k-triangle-connectivity, and Shan et al. [Shan et al. 2015b]
adopted the notion of γ-quasi k-clique where each edge in the community forms at
least a predefined number of triangles with other edges in the community. However,
in reality one may be interested in finding all relevant communities (not necessarily
only one) for a group of query vertices. For instance, when querying communities
for three vertices u, v and z in Fig. 1.6, a single community that contains all query
vertices, such as E or F, does not reveal how these query vertices are related to each
other, while two communities A and C shed light on the structure of communities for
these query vertices.

The thesis finally studies the problem of community search for a given query of
vertices, instead of community detection over all vertices of a network. As a result,
two accurate, yet scalable algorithms for searching communities over complex net-
works are proposed.

1.3 Contributions

In this thesis, we study the problems introduced above, with close attention to scala-
bility, as well as to accuracy. Since the shortest path in complex networks, to a great

§1.3 Contributions 11

F

(3-core)

(2-truss)
A

B

D
E

C

x

v

u

w

z

Figure 1.6: An illustrative example that shows querying k-core and k-truss communi-
ties for vertices u and v can result in communities D and E, respectively, which include
vertices irrelevant to the queried ones such as w and z.

extent, reveals the underlying structure of a network, we explore how to use the short-
est paths to solve each of these problems.

Hierarchical community detection. The first problem that we study in this thesis
is the detection of a hierarchical community structure for complex networks. De-
spite the importance of hierarchical communities, existing approaches are not scalable
to networks with millions of vertices or fail at accurately modelling the hierarchical
structure of communities. We thus define the notion of a cohesive hierarchy based on
an intuition about the hierarchical structure of communities, that is, communities are
more densely connected to each other in lower levels of the hierarchy. Using our intu-
ition about the hierarchical structure of communities, we formally define the problem
of hierarchical community detection as the problem of identifying a cohesive hierar-
chy, where the sum of information centralities of detected communities is maximised.
We then show that the problem of identifying a cohesive hierarchy in a network is
NP-hard and propose a heuristic baseline algorithm for this problem. Using a fast
sparsification technique, we develop yet another scalable algorithm for hierarchical
community detection that uses a sparsified network for finding communities at higher
levels of the hierarchy. We also develop an approximation algorithm for the informa-
tion centrality of a given network. We finally conduct extensive experiments on real-
world networks. Our experimental results show that the proposed algorithms are
able to scale to networks with hundreds of millions of vertices, while outperforming
existing algorithms in the accuracy of communities found and running time.

Identifying top-k structural hole spanners. Since structural hole spanners emerge in
complex networks as a result of the community structure, the second problem that we
study in this thesis is to identify the top-k structural hole spanners in a given network.
Existing works on structural hole spanners either rely on a given set of communities
in the network or fail at modelling the structural hole spanners accurately. Thus, we
propose an accurate model for the top-k structural hole spanners to spot structural
hole spanners without the knowledge of communities in a network. Structural hole
spanners usually sit on the shortest paths between vertices in different communities.
As a result, upon removal of a structural hole spanner, the lengths of shortest paths
between different vertices are expected to increase significantly. We therefore define

12 Introduction

the top-k structural hole spanners problem as identifying the top-k vertices such that
their removal can result in the maximum increase in the information centrality of a
network. We show that the problem of identifying top-k structural hole spanners is
NP-hard. We propose an efficient algorithm for this problem using the bounded infor-
mation centrality of vertices. Since articulation points are vertices that their removal
can make a network disconnected, are bridging points between communities, we pro-
pose a second algorithm based on articulation points which runs in almost linear time.
We validate the performance of the proposed algorithms in both real and synthetic
datasets and show that the proposed approaches outperform the existing ones.

Overlapping community detection. Upon studying the overlapping community de-
tection problem in complex networks, we realised that existing methods cause two
undesirable effects in overlapping community detection, i.e. the free rider effect and
the separation effect. The former causes communities to be merged with each other,
instead of having overlapping regions, while the latter causes overlapping regions
of two communities to be assigned to only one of the two communities. We explore
these two effects in overlapping community detection and propose a fitness metric
for the overlapping community detection problem based on the asymmetric triangle
cuts in a network, which minimises these two effects. We then propose a two-stage
algorithm for finding overlapping communities in large-scale networks. Finally, we
quantitatively analyse the performance of the proposed algorithm and show that our
proposed approach is capable of handling networks with hundreds of millions of ver-
tices and finding communities with an accuracy that is significantly higher than the
state-of-the-art algorithms.

Community search. Last but not least, we study the problem of community search
in complex networks, in which a set of query vertices is given and we are interested
in finding a community that consists of vertices that are mostly related to the queried
vertices. We show that when query vertices belong to different communities, the ex-
isting works on the community search problem have the following two limitations:
(1) they can find only one community for the query vertices, (2) they cause the free
rider effect. We first define the notion of propinquity between two vertices, which
shows how closely related two vertices are. We then formally define the community
search problem, using the notion of propinquity, where two query vertices belong to
the same community if the propinquity between them is larger than a given thresh-
old. We show that the existing works on community search are special cases of the
defined community search problem, by different means of propinquity. We propose
a novel propinquity measure, which leads to accurate guesses about whether two
query vertices belong to the same community. Since the shortest path between two
query vertices in the same community is unlikely to leave the community, we use the
top-k shortest paths between query vertices to expand their communities. Next, we
propose an efficient algorithm that is capable of finding more than one community
per search, by discovering the top-k shortest paths between query vertices. We finally
evaluate the performance of the proposed algorithm in real-world networks and show
its superior results in realistic settings.

§1.4 Outline of this thesis 13

1.4 Outline of this thesis

This thesis is organised as follows. In Chapter 2, we introduce the notations, based
on which this thesis is written. In Chapter 3, we provide a comprehensive literature
review of the problems studied in this thesis by outlining the strengths and weak-
nesses of the existing approaches. In Chapter 4, we study the problem of hierarchical
community detection in large-scale networks. In Chapter 5, we study the problem
of identifying the top-k structural hole spanners in large-scale networks and in Chap-
ter 6, we study the overlapping community detection problem. In Chapter 7, we study
the community search problem. We finally conclude the thesis in Chapter 8.

In each chapter, we start with an overview of the specific problem studied. We
then propose the models and the algorithms for solving the problems. We finish each
chapter by presenting our experimental results and a summary of the chapter.

14 Introduction

Chapter 2

Preliminaries

We model a network as an undirected graph G = (V, E), where V is a set of vertices,
and E is a set of edges representing relationships between vertices. Let n = |V| and
m = |E|. We denote by N(v) the set of neighbours of vertex v ∈ V, i.e. N(v) = {u :
u ∈ V, (u, v) ∈ E}, and deg(v) = |N(v)| the degree of vertex v in G. We denote by
∆(G) the largest degree of vertices in graph G. Given a subset of vertices V′ ⊆ V, the
induced subgraph of V′, denoted by G[V′], is a subgraph of G that its set of vertices is
V′ and there is an edge between two vertices in G[V′], if and only if there is an edge
between corresponding vertices in G. For the community search problem, a query Q is
given that consists of vertices, i.e. Q ⊆ V. Given a set of vertices Q, C = {V1, · · · , Vt}
is called a cover of Q if and only if Q ⊆ ⋃

Vi∈C Vi. A cover C is called minimum, if its
cardinality is smallest among all possible covers of Q.

Given two vertices u and v, a path P between them is said to be simple if it does
not contain a self-loop or a cycle. We assume that G is an unweighted graph, and each
edge has a weight of 1. The distance duv between two vertices u and v in G is the length
of the shortest path between them. We have dvv = 0 for any vertex v ∈ V. The inverse
closeness centrality of a vertex v in G is the average distance between vertex v and other
vertices [Beauchamp 1965], i.e.,

d(v) =
∑

u∈V
duv

n− 1
. (2.1)

The mean distance that is the average of the distances between all pairs of vertices in a
graph G is defined as follows.

d(G) =
∑

v∈V
d(v)

|V| =
∑

v∈V
∑

u∈V
duv

(n− 1)|V| =
∑

v∈V
∑

u∈V
duv

n(n− 1)
. (2.2)

Note that if G is disconnected, the distance between two vertices in different con-
nected components is defined by a sufficiently large value ζ to avoid the infinite dis-
tance. This value should be larger than the sum of lengths of all pairs of shortest
paths in any connected component of G, e.g., ζ = n3, as the upper bound on the sum
of lengths of all pairs of shortest paths in a n-vertex graph is no more thanζ/3 [Plesnı́k
1984].

15

16 Preliminaries

u v

v1 v2

v3 v4

v5

Figure 2.1: Top-3 shortest paths between two vertices u and v.

The sum of lengths of all pairs shortest paths in G is

D(G) = ∑
u∈V

∑
v∈V

duv = n(n− 1)d(G). (2.3)

The information centrality of G, denoted by D(G), is the inverse of mean distance be-
tween every pair of vertices u and v [Fortunato et al. 2004], i.e.,

D(G) =
n(n− 1)
∑

v∈V
∑

u∈V
duv

. (2.4)

The information centrality of a partition of vertices P is defined as the sum of
information centralities of all subgraphs induced by each subset of vertices in the
partition, i.e. D(P) = ∑S∈PD(S). We use Pst to refer to the set of all simple paths
between s and t. The k-th shortest path between s and t, denoted by P(k)

st , refers to
the k-th path in Pst, ordered by length of paths, where ties are broken arbitrarily. We
denote by d(k)st the length of the k-th shortest path between vertices s and t in G, i.e.
d(k)st = |P(k)

st |. It is noted that the top-k shortest paths between s and t in G can share
edges and vertices. Fig. 2.1 shows an example of the top-k shortest paths between
vertices in a network. The diameter of a network G is the greatest distance between a
pair of vertices in G. The diameter of a set of vertices V′ is defined as the diameter of
the induced subgraph G[V′].

Example 1. Fig. 2.1 shows top-3 shortest paths between two vertices u and v, including
P(1)

st = (u, v1, v2, v), P(2)
st = (u, v3, v4, v), and P(3)

uv = (u, v3, v4, v5, v) with lengths d(1)uv =

3, d(2)uv = 3, and d(3)uv = 4. Note that the first two shortest paths P(1)
uv and P(2)

uv have the same
length 3, while the third shortest path P(3)

uv has the length 4. The edges (u, v3) and (v4, v) in
P(3)

uv overlap with P(2)
uv , as well as vertices v3 and v4.

Two simple paths P1 and P2 between u and v are said to be edge-disjoint (resp.
vertex-disjoint) if they do not share any edges (resp. vertices), except u and v. The
number of edge-disjoint paths between two vertices u and v is the edge-connectivity
between them, denoted by λ(u, v). Two vertices u and v are said to be k-edge-connected
if λ(u, v) ≥ k. Note that two k-edge-connected vertices remain connected whenever
fewer than k edges are removed from G. The edge-connectivity λ(u, v) also repre-
sents the minimum edge-cut, which is the minimum number of edges whose removal
can disconnect two vertices u and v. Similarly, the vertex connectivity κ(u, v) in G be-
tween two vertices u and v is the number of vertex-disjoint paths between them, and
a subgraph is called k-vertex-connected if the minimum vertex-connectivity among its

17

Table 2.1: Summary of notations used in the thesis.

Notation Definition
G = (V, E) Network G with the set of vertices V and edges E

n Number of vertices in a network V
m Number of edges in a network E

N(v) Set of vertices adjacent to vertex v
deg(v) Degree of vertex v
∆(G) The largest degree of vertices in graph G
G[V′] Subgraph of G induced by a subset of vertices V′

Puv Set of simple paths between u and v
P(k)

uv The k-th shortest path between u and v
duv The length of the shortest path between u and v

d(v) The average distance between vertex v and other vertices
d(G) The average length of shortest path between vertices in G
D(G) The sum of length of shortest paths between vertices in G
D(G) The information centrality of G
λ(u, v) Edge-connectivity between u and v
κ(u, v) Vertex-connectivity between u and v

E(V′, V′′) Cut-set between subsets of vertices V′ and V′′

e(V′, V′′) Size of cut-set between subsets of vertices V′ and V′′

E(V′) Set of edges between vertices in V′

e(V′) Number of edges between vertices in V′

supG(e) Number of triangles formed by edge e in graph G
∆G(V′) Set of triangles formed by vertices in V′

∆G(V′, V′′) Set of triangles that have two vertices in V′ and one vertex in V′′

vol(V′) Sum of degrees of all vertices in V′

vertices is no smaller than k. A vertex is an articulation point of G if its removal will
disconnect the graph.

Let E(V′, V′′) be a cut-set between subsets V′ and V′′ of vertices, which is the set
of edges that have one vertex in V′ and the other vertex in V′′, and e(V′, V′′) the size
of such cut-set, i.e., e(V′, V′′) = |E(V′, V′′)|. Let e(V′) represent the number of edges
in the induced subgraph G[V′] = (V′, E[V′]) of a graph G by the vertices in V′. The
volume of a subset of vertices V′ ⊆ V is defined as vol(V′) = ∑v∈V′ |N(v)|. Denote
by ∆uvw the triangle that consists of vertices u, v and w, and denote by ∆G the set of
triangles in G. Given a subset V′ ⊆ V of vertices, ∆G(V′) represents the set of triangles
formed by the vertices in V′. The asymmetric triangle cut ∆G(V′, V′′) between two sets
of vertices V′ and V′′ is defined as the set of triangles with each having two vertices in
V′ and one vertex in V′′. Note that ∆G(V′, V′′) is not necessarily equal to ∆G(V′′, V′).

A p-clique Kp is a complete graph of p vertices. A triangle is a cycle of length three.
Table 2.1 summarises the definitions of all notations used in this thesis.

The key to identifying communities in a complex network is an accurate fitness
metric, which measures the quality of identified communities, in terms of the density

18 Preliminaries

of internal edges within a community and sparsity of edges leaving the community.
We here assume that all fitness metrics measure the strength of communities. Since
some fitness metrics (such as conductance) measure the weakness of a community (a
smaller fitness value is preferred), we here use the reciprocal value of these fitness
metrics to maximize the strength of communities. In the following, we summarise
some of the existing fitness metrics for community detection.

The vertices in a graph G = (V, E) can be allocated to different communities. Let
V = {V1, ..., Vq} be a collection of all communities in G, where Vi ⊆ V is a community,
∪q

i=1Vi = V, and Vi ∩ Vj may and may not be empty (i 6= j), 1 ≤ i, j ≤ q. The fitness
metric of a community Vi ∈ V , denoted by f (Vi), will determine the degree to which
vertices inside Vi are connected with each other, while separating from the vertices
in V \ Vi. The fitness metric of a collection of communities V thus is defined as a
summation over the fitness values of all communities in the collection, i.e., f (V) =

∑Vi∈V f (Vi). In the following we introduce several widely-adopted fitness metrics for
community detection [Fortunato 2010; Xie et al. 2013].

• Classic density δ(Vi) of a community Vi [Saha et al. 2010] is referred to as the
average degree of vertices within the community Vi, i.e., δ(Vi) = e(Vi)/|Vi|,
where e(Vi) is the number of edges in the subgraph induced by vertices in Vi.

• Relative density ρ(Vi) of a community Vi [Mihail et al. 2002] is referred to as the
ratio e(Vi) of the number of edges in community Vi to the number of edges that
have at least one vertex in Vi, i.e., ρ(Vi) = e(Vi)/(e(Vi) + e(Vi, V \Vi)).

• Subgraph modularity ψ(Vi) of a community C [Luo et al. 2008; Wu et al. 2015] is
referred to as the ratio of the number of edges in community C to the num-
ber of edges between vertices in Vi and the vertices in V \ Vi, i.e., ψ(Vi) =
e(Vi)/e(Vi, V \ Vi). Note that this subgraph modularity [Luo et al. 2008] is a
variant of the traditional modularity [Newman 2006].

• Local modularity µ(Vi) of a community Vi [Newman 2006] is the ratio of the num-
ber of edges in Vi between boundary vertices and other vertices in Vi to the
number of edges between boundary vertices in Vi and all other vertices in the
network, i.e., µ(Vi) = e(B(Vi), Vi)/(B(Vi), V), where B(Vi) is the boundary set
of vertices in Vi, which are adjacent to at least one vertex outside Vi.

• Conductance σ(Vi) of a community Vi [Kannan et al. 2004] is referred to as the
ratio of the size of the edge cut to the minimum of the number of edges that have
at least one endpoint in Vi and number of edges that have at least one endpoint
in V \ Vi, i.e., σ(Vi) = e(Vi, V \ Vi)/min{vol(Vi), vol(V \ Vi)}. Unlike other
fitness metrics, smaller values of conductance are preferred for a community.
Therefore, we consider the inverse of this value, and throughout this chapter we
refer to conductance as σ ′(Vi) = min{vol(Vi), vol(V \Vi)}/e(Vi, V \Vi).

Chapter 3

Literature Review

It has been shown that one of the key characteristics of complex networks is the com-
munity structure among vertices, by which vertices form modular groups, called com-
munities, where vertices within the same community are highly connected to each
other, while vertices in different community are rarely connected to each other. Due
to the importance of community structure, several problems arise in complex network
analysis related to the community structure. One of the problems is the community
detection problem, which deals with identifying communities of a given networks.
Since communities in a complex network can inherit hierarchical and overlapping
structures, community detection has been studied in a variety of forms, e.g. hierar-
chical community detection and overlapping community detection. Since community
structure in complex networks leads to the existence of structural hole spanners, an-
other problem that is related to community structure is the problem of identifying
structural hole spanners in a complex networks. Community search is yet another
problem that arise as a result of community structure in complex networks. While the
community detection problem is concerned with finding communities with respect
to the whole set of vertices in a complex network, the community search problem is
concerned with finding communities that are related to a given set of query vertices.
In the following, we provide a comprehensive literature review on hierarchical and
overlapping community detection, identifying structural hole spanners and commu-
nity search. We analyse the weaknesses and strengths of the existing works on these
problems.

3.1 Community detection

Community detection in complex networks has received an enormous amount of at-
tention in recent years [Fortunato 2010; Xie et al. 2013], which has led to a large
number of methods available for community detection. Each of these methods has
its own merits and demerits. Fortunato [Fortunato 2010] surveyed some of the pio-
neering works on community detection and related problems, including overlapping
community detection and hierarchical community detection. However, the prolifera-
tion of complex networks and the wide range of applications of community detection
have posed new challenges, such as scalability, which have lead to an ever increasing

19

20 Literature Review

growth of research on the community detection.
Among the plethora of works on community detection, the main focus has mostly

been on either the accuracy of communities, or the efficiency and scalability of the
community detection algorithms. Due to the massive growth of networks in size,
many of the existing approaches are not feasible in real-world networks, or they sac-
rifice the accuracy of the communities to obtain scalability. In this thesis, we study
the community detection problem with a special attention to the scalability of the pro-
posed algorithms. Although we care about the accuracy of the proposed models, we
also care about the efficiency of the proposed algorithms and feasibility of using the
proposed approaches in real-world networks.

There is a variety of problems rooted in community detection. For instance, it is
widely known that communities in complex networks exhibit a hierarchical structure.
Although a large number of attempts have been made to develop hierarchical commu-
nity detection algorithms, existing methods fail in scalability and efficiency. Another
inherent characteristic of communities is the weak connectivity between vertices in
different communities. As a result, structural hole spanners bridge different com-
munities. However, existing works on identifying structural hole spanners mainly
rely on a given community structure in networks. Structural hole spanners also lead
to overlapping regions between communities and poses the problem of overlapping
community detection. In this section, we review the existing works on three prob-
lems as follows: (1) hierarchical community detection, (2) identifying structural hole
spanners, and (3) overlapping community detection.

3.1.1 Hierarchical structural community detection

In recent years, considerable efforts have been taken in building efficient metrics and
models that can accurately capture the properties of communities in real complex
networks. In their comprehensive surveys, Xie et al. [Xie et al. 2013], Furtano [For-
tunato 2010] and Shaeffer [Schaeffer 2007], surveyed state-of-the-art algorithms for
community detection. Existing methods for detectiing the hierarchical structure of
communities can be divided into two categories: top-down approaches and bottom-up ap-
proaches [Schaeffer 2007]. While the top-down approaches start with a given graph and
partition the graph into successively denser communities, the bottom-up approaches
start with seeds, i.e. vertex seeds [Whang et al. 2013] or community seeds [Lanci-
chinetti et al. 2009], and expand those seeds gradually by merging them into each
other. In the following, we review some of the most influential works in each of these
categories.

Top-down approaches. Given an undirected graph G, top-down approaches start
with the whole network as a community and break the network into communities by
removing edges or vertices, until a certain condition is met. For example, Newman
et al. [Girvan and Newman 2002; Newman and Girvan 2003] suggested to use the
betweenness centrality score of edges as a criterion for removing edges and breaking
a graph into partitions. However, the time-complexity of calculating betweenness
centrality in a network is quite high Θ(nm), thus the overall time-complexity of this

§3.1 Community detection 21

approach is Θ(nm2), which is not practical in real networks. Similarly, Fortunato et
al. [Fortunato et al. 2004] exploited the information centrality of a network as a criteria
for deciding which edges to be removed at each iteration. Fortunato et al. [Fortunato
et al. 2004] suggested to iteratively remove the edges, whose removal will result in
the maximum decrease in the information centrality of a network. While the measure
used for the information centrality is inaccurate, the time-complexity of the proposed
algorithm is Θ(nm3), which is infeasible in networks that contain more than a few
thousands of vertices.

Another line of work in the top-down approaches used several density measures
as a criteria for deciding which edges to be removed in a network. For example, Co-
hen [Cohen 2008] suggested the notion of a k-truss, where every edge in a community
forms at least k triangles with other edges in the community, and suggested an algo-
rithm with the overall time complexity of O(nm3/2). However, several types of net-
works (such as product-buyer networks) do not have any triangles. In order to tackle
this problem, Zhou et al. [Zhou et al. 2012] suggested the notion of k-edge-connectivity
in a network, and defined a community as a subgraph, in which every pair of vertices
are k-edge-connected. While the k-edge-connectivity is general enough to be applica-
ble to several types of networks, the distance in a k-edge-connected community is not
bounded compared with the size of the detected community.

Bottom-up approaches. Unlike top-down approaches, bottom-up approaches start
with seeds and expand those seeds gradually, until a certain threshold is met. How-
ever, one challenge is to choose appropriate seeds for the community expansion phase.
For example, the clique expansion method [Lee et al. 2010] identifies distinct cliques
as initial seeds, and then expands the seeds greedily using a local fitness metric. In
clique percolations [Palla et al. 2005], a community is defined as the maximal union
of maximal cliques that can reach each other through a series of adjacent maximal
cliques. However, since some complex networks, such as collaboration networks, are
funamentally a union of cliques, this model may consider the whole network as a
single community. To tackle this issue, Shen et al. proposed an algorithm called EA-
GLE [Shen et al. 2009], which merges two communities with the maximum similarity
into one, where the similarity between two communities is proportional to the number
of edges between them. Du et al. proposed the algorithm COCD [Du et al. 2008], in
which seeds are a set of maximal cliques and two maximal cliques are merged if their
similarity is positive, where the similarity between two cliques is a proportional to
the number of edges between non-overlapping vertices of those cliques. Even though
cliques can guarantee a very strong connectivity among its members, it is consid-
ered as a very strict condition for real-world communities. Therefore, Lancichinetti
et al. proposed the algorithm LFM [Lancichinetti et al. 2009], where random seeds
are expanded until the value of a fitness function based on the number of edges in
the community is locally maximal. Similarly, Whang et al. [Whang et al. 2013] used a
personalized PageRank algorithm for finding cuts between communities, where a ran-
dom walk in a network can start from vertex seeds only. Whang et al. [Whang et al.
2013] suggested the use of vertices with maximum degree, and dominating sets and

22 Literature Review

random vertices as seeds for community expansion. Considering that networks con-
tain many vertices that act as hubs and connect several communities, using vertices
as seeds can affect the outcome of the algorithms. Therefore, finding an appropriate
seed in bottom-up approaches ends up in an judgement call that is difficult to make,
due to difference in topology of networks.

3.1.2 Identifying structural hole spanners

While real complex networks are increasing in size at an exponential rate, building
accurate models that truly reflect the properties of structural hole spanners is cru-
cial for identifying influential positions in a network. Nevertheless, researchers have
taken lots of efforts towards this aim [Ahuja 2000; Burt 2004; Burt 2007; Goyal and
Vega-Redondo 2007; Kleinberg et al. 2008; Tang et al. 2012; Tong et al. 2012].

The notion of structural hole spanners was first introduced by Burt [Burt 1992] to
find the key employees in organizations for integrating operations across functional
and business boundaries. This concept later was further refined in [Ahuja 2000; Burt
2004; Burt 2007]. A few studies have exploited the concept of structural holes in or-
der to design strategic games for network formation [Goyal and Vega-Redondo 2007;
Kleinberg et al. 2008]. Goyal et al. [Goyal and Vega-Redondo 2007] presented a net-
work formation model that a vertex u serves as an intermediary between many ver-
tices. However, this strategy leads to the star network and real networks do not follow
a star topology. In order to tackle this problem, Kleinberg et al. [Kleinberg et al. 2008]
designed a game by building a model of the payoffs that arise from filling structural
holes. This payoff is a decreasing function of the number of paths with length two
between each pair of neighbors to avoid the star topology. One of the limitations of
the model presented by Kleinberg et al. [Kleinberg et al. 2008] is that this model needs
careful tuning of parameters such as the link maintenance cost that cannot easily be
achieved in large-scale networks. Another line of research is to find structural hole
spanners in order to incorporate them in contagion. These works can be divided in
two categories as follows.

Structural-based Models. Goyal et al. [Goyal and Vega-Redondo 2007] formulated a
structural hole spanner as a vertex that resides on more shortest paths between differ-
ent pairs of vertices. Since counting the number of shortest paths in large networks is
time-consuming, Tang et al. [Tang et al. 2012] proposed to only count the number of
shortest paths with length two on which a vertex lies. In this model, any shortest path
of length greater than two will be ignored, thus the model suggests candidates that
are connected to smaller rather than larger, richer and more influential communities.
A fairly common case under this model is its failure of finding good quality structural
hole spanners when a vertex is densely connected to two communities. In order to ad-
dress this problem, Ugander et al. [Ugander et al. 2012] defined the structural diversity
of an individual as the number of connected components in its contact neighborhood,
which is a similar notion as structural hole spanners, and studied the role of struc-
tural diversity in contagion of information within real social networks. This work
was further complemented by Huang et al. [Huang et al. 2013], who studied the top-k

§3.1 Community detection 23

structural diversity search in large networks and developed scalable algorithms for
it. However, the contact neighbourhood subgraph may contain only a fraction of the
vertices that lie in each community, and due to the incomplete community structure,
these vertices can form multiple connected components. Similarly, Tong et al. [Tong
et al. 2012] defined the gateway-ness of a vertex v, proportional to the paths between
source vertices S and target vertices T, on which v lies. In addition, each path is given
a score, which is inversely proportional to its length.

Community-based Models. Lou et al. [Lou and Tang 2013] proposed the very first
model to find structural holes in a social network, assuming that communities in the
network are given. The objective in their model is to maximize a utility function that
measures the degree to which structural hole spanners span communities. One in-
stantiation of their utility function is to find a set of vertices whose removal leads to
the maximum decreases on the number of inter-community edges. One major concern
about this model is that communities usually are not known, thus the quality of the
solution relies on the quality of communities found.

3.1.3 Overlapping community detection

Xie et al. [Xie et al. 2013] surveyed state-of-the-art algorithms for overlapping commu-
nity detection and categorized the algorithms into five categories: link partitioning,
fuzzy community detection, agent-based algorithms, and local expansion as follows.

Given an undirected graph G = (V, E), link partitioning algorithms [Ahn et al.
2010] construct the line graph of G, and find vertex-disjoint communities in the line
graph that correspond to the overlapping communities in G. However, the line graph
of a graph is usually very large, for example, the line graph of a star graph is a clique,
link partitioning algorithms are not scalable for a reasonable size network in practice
due to the massive size of the line graph.

Fuzzy community detection algorithms employ a soft clustering technique for
identifying communities [Xie et al. 2013]. One representative example is algorithm
Bigclam [Yang and Leskovec 2013] which exploits a non-negative matrix factoriza-
tion framework for finding overlapping communities. Nepusz et al. [Nepusz et al.
2008] modeled the overlapping community detection problem as a nonlinear con-
strained optimization problem, and solved the problem using simulated annealing.
One noticeable drawback of such algorithms is the need to determine the number of
communities in a network [Eustace et al. 2015].

In agent-based methods, each vertex is considered as an agent that transmits mes-
sages to other vertices and/or receives messages and joins communities. For instance,
Xie et al. proposed algorithm SLPA, in which each vertex can be a listener or a speaker.
It spreads vertex labels across the network based on pairwise interaction rules and
the probability of observing a vertex label in another vertex’s memory determines the
community membership. Coscia et al. [Coscia et al. 2012] proposed another agent-
based method algorithm called Demon, which extracts the ego network of each vertex
and applies a label propagation algorithm on this structure, ignoring the presence of
the ego itself, then each vertex acquires a label that appears most frequently among

24 Literature Review

its neighbors to extract the communities [Coscia et al. 2012]. However, agent-based
algorithms are very time consuming in real-world networks. Beside the running time,
if a vertex v belongs to two communities, it is more likely to be assigned to the com-
munity which is more densely connected to v, as the labels of that community appear
in most of v’s friends.

Local expansion methods are based on growing a community using a community
fitness metric that measures the quality of the community. Whang et al. [Whang et al.
2013] used a personalized PageRank algorithm for finding cuts between communities,
where a random walk in a network can start from seeds only. Since the vertices close
by a seed are more likely to be visited, thereby receive higher ranks and join the same
communities. Among the methods, Algorithm LFM [Lancichinetti et al. 2009] chooses
random seeds and then expands the seeds until the value of fitness function based on
the number of edges in the community is locally maximal. While the fitness metric
used in the local expansion methods can capture the community density, it suffers
from free rider [Wu et al. 2015] or separation effects.

The clique expansion method [Lee et al. 2010] identifies distinct cliques as initial
seeds, and then expands the seeds greedily using a local fitness metric. In clique
percolations [Palla et al. 2005], a community is defined as the maximal union of max-
imal cliques that can reach each other through a series of adjacent maximal cliques.
However, some social networks, i.e., collaboration networks, are essentially a union of
cliques can be considered as a single community. To tackle this issue, algorithm EA-
GLE [Shen et al. 2009] it is proposed to merge two communities with the maximum
similarity into one, where the similarity between two communities is proportional to
the number of edges between them. In algorithm COCD [Du et al. 2008], seeds are
a set of maximal cliques and two maximal cliques are merged if their similarity is
positive, where the similarity between two cliques is a proportional to the number of
edges between non-overlapping vertices of those cliques. Even though cliques can
guarantee a very strong connectivity among its members, it is considered as a very
strict condition for real-world communities.

3.2 Community search

Community detection in real-world complex networks has been the focus of many
scholars in computer science [Fortunato 2010; Xie et al. 2013] and several algorithms
have been developed for identifying communities from complex networks that are
surveyed in [Fortunato 2010; Xie et al. 2013]. Studies in this area have mainly con-
sidered the problem of identifying all non-overlapping communities [Fortunato 2010]
and overlapping communities [Xie et al. 2013] from complex networks. However, in
real-life applications, we are usually interested in identifying communities around a
given set of vertices of a networks Q ⊆ V, called query vertices. To this end, the com-
munity search problem has been defined [Cui et al. 2014] and several algorithms for
solving this problem have been proposed [Barbieri et al. 2015; Cui et al. 2014; Huang
et al. 2014; Huang et al. 2015; Wu et al. 2015]. In this section, we review these state-of-

§3.2 Community search 25

the-art techniques for identifying communities of a given set of query vertices.
Several papers have considered the problem of local community detection [Chen

et al. 2009; Gleich and Seshadhri 2012; Yang et al. 2014], where the objective is to
identify a set of communities that exist in the neighbourhood of the query Q. Such
techniques fail to detect communities that span beyond the borders of neighbourhood
induced subgraph, since the search space of such methods is limited to the neighbour-
hood of the query vertices.

Cui et al. [Cui et al. 2014] introduced two definitions for single vertex community
search problem: Community Search with Maximality constraint (CSM) and Commu-
nity Search with Threshold constraint (CST). In CSM, the objective is to find a con-
nected subgraph that contains a given query vertex q and has the largest minimum
degree, while in CST, the objective is to find a connected subgraph that contains the
query vertex and its minimum degree is no less than a given threshold. In both CSM
and CST, the input query is restricted to only one vertex, which is not a practical con-
dition for many real-world applications. Barbieri et al. [Barbieri et al. 2015] proposed
an extended model of CSM, which is capable of handling queries with more than one
vertex, based on minimum degree. However, there is a drawback in employing min-
imum degree for measuring density of communities, since minimum degree fails to
guarantee a strong edge-connectivity among vertices in the same community. In [Wu
et al. 2015], Wu et al. studied the free rider effect in community detection as the prob-
lem of communities being merged during the process of community detection, due
to use of inappropriate fitness metrics. In order to tackle the free rider effect, Wu et
al. [Wu et al. 2015] proposed a weighting scheme for vertices based on the random
walk model and associated a penalty for co-membership in communities, which is
relative to the distance between vertices. In order to tackle both free rider effect and
edge-connectivity problems, Huang et al. [Huang et al. 2015] proposed an algorithm
that avoids the free rider effect by minimizing the diameter of a community and gu-
rarantees a strong edge-connectivity by the notion of k-truss. In the method proposed
by Huang et al. [Huang et al. 2015], the number of triangles formed by each edge is
considered as a measure of density for communities. Shan et al. [Shan et al. 2015b]
defined the community search problem as finding all subgraphs G′ with respect to
three parameters k, α and γ, such that G′ is a γ-quasi-k-clique, and every edge in G′

forms α − 2 triangles with other vertices in G′. However, it is noted that such tech-
niques are not able to find communities in networks that do not have any triangles,
such as bipartite networks. Another issue with the studies mentioned above is that
they are restricted to find only one single community associated with each set of query
vertices, which is not a realistic assumption in real situations.

Another way to detect communities is to assign a weight wi j to each pair of vertices
(i, j) that represents how closely connected i and j are in the network [Girvan and
Newman 2002], and then use these weights wi j to determine if two vertices i and j are
in the same community [Girvan and Newman 2002]. One possible definition of the
weight is the number of edge-disjoint paths between vertices [Zhou et al. 2012]. It is
known that the number of edge-disjoint paths between two vertices i and j in a graph
is equal to the minimum number of edges that must be removed from the graph to

26 Literature Review

disconnect i and j from one another (calculated by max-flow algorithms) [Zhou et al.
2012]. However, there is no bound on the length of edge-disjoint paths in this method.
Thus, very long paths can be counted, while vertices on those paths are not relevant
to the endpoints. Another possible way to define weights between vertices is to count
the total number of paths that run between two vertices [Katz 1953] (all paths, not just
those that are vertex- or edge-disjoint). However, because the length of paths between
any two vertices can be very large, one typically weights paths of length ` by a factor
α` (0 < α < 1), so that long paths contribute exponentially less weight than those that
are short.

wi j =
∞
∑
`=1
α`[A`]i j (3.1)

For the sum to converge, we must choose α smaller than the reciprocal of the largest
eigenvalue of the adjacency matrix A [Katz 1953]. Although this definition of the
weights gives reasonable results for community structure in some cases, they fail to
be effective in many real-world networks. The reason is that non-simple paths are
taken into account, which means that in the presence of a loop, there will be an infinite
number of paths between a pair of vertices. Moreover, the scaling factor reduces ex-
ponentially, which makes it hard to distinguish between paths that are actually short
(for example, difference of factors for paths of length 1 and 3 is very significant).

Chapter 4

Cohesive Hierarchies of
Communities in Complex Networks

4.1 Overview

In this chapter, we study the problem of hierarchical community detection based on
the notion of cohesiveness among communities in a hierarchy, which dictates commu-
nities at lower levels of a cohesive hierarchy are more densely connected with each
other. We define the notion of cohesive hierarchy that is a rooted tree of communi-
ties, where communities at the k-th level of the hierarchy are connected to each other
through weak cuts with no more than k edges. For example in Fig. 4.1, communities
at the second level (V1, V2 and V3 ∪ ...∪V6) are connected to each other by two edges,
and communities at the third level (V3 and V4 ∪V5 ∪V6) are connected to each other
by 3 edges. As we move towards the leaves of this hierarchy, the connectivity becomes
stronger and communities become more densely connected.

We propose an efficient, yet scalable cut-based algorithm for detecting a cohesive
hierarchy in a complex network. However, finding cuts in a network with hundreds of
millions of edges is a painstaking task. Particularly at high levels of a hierarchy, when
a network has not been broken into smaller subgraphs, finding cuts in the network
is a challenge. Based upon this observation, we optimize the minimum cut detec-
tion [Stoer and Wagner 1994] algorithm by sparsifying the network in early iterations.
Specifically, when finding communities at the k-th level of a cohesive hierarchy, we
remove unnecessary edges that are not part of any edge-cut with size k. Therefore,
when detecting communities at top levels of the hierarchy, the number of edges is sig-
nificantly reduced, i.e. at most min{m, (k + 1)(n− 1)} at level k, where n and m are
the numbers of edges and vertices, respectively.

One of the key ingredients of the proposed cohesive hierarchical community struc-
ture is the information centrality of communities, which is increased from communi-
ties at one level to communities at a lower level of the hierarchy. However, the in-
formation centrality can be calculated in time O(nm) using an exhaustive brute-force
approach, which is unrealistic for the scale of real-world networks such as Facebook
and LiveJournal. Moreover, the effective diameter in real-world networks is usually
small, as they exhibit a small-world characteristic. Therefore, we propose a random-

27

28 Cohesive Hierarchies of Communities in Complex Networks

In
fo

rm
a
ti
o
n
 C

e
n
tr

a
lit

y

V1

V2

V3

V4

V5

V6

2

4

6

8

Level of the hierarchical tree
1 2 3 4V1

V2

V3

V4

V5

V6

V4

V5

V6

V3

V2

V1

Figure 4.1: A hierarchical structure of communities in Amazon, where from the root
to its leaves connections within communities become denser and the values of their
information centrality increase.

ized approximation algorithm for calculating the information centrality with an error
bound that is no larger than a fractionε of the network diameter, with high probability
(at least 1− 1

n).
The contributions of this chapter are as follows,

• The problem of cohesive hierarchical community detection is formalized, where
the granularity of a community is measured using information centrality, and
the NP-hardness of this problem is proved.

• An efficient algorithm for the hierarchical community detection problem is de-
veloped and the scalability of this algorithm is enhanced by incorporating a fast
sparsification for efficiently finding less granular levels of a hierarchy.

• A randomized approximation algorithm is proposed for calculating the infor-
mation centrality of a network with a guaranteed approximation ratio.

• The effectiveness and efficiency of the proposed algorithms are evaluated by
quantitatively analysing their performance using five large real-world datasets.

The rest of this chapter is organized as follows. Section 4.2 introduces the problem
definition. Section 4.3 presents two novel algorithms for the hierarchical community
detection problem and Section 4.4 presents an approximation algorithm for informa-
tion centrality. Section 4.5 discusses the experimental results, which compare the per-
formance of our proposed algorithms against the benchmark algorithms. Section 4.6
summarises the chapter.

4.2 Problem definition

Traditionally, communities are perceived as subsets of vertices of a graph G among
which the number of edges (density of connections) is large [Fortunato 2010]. Follow-

§4.2 Problem definition 29

ing this perception, it is possible to find hierarchical communities by recursively in-
creasing the density threshold, and consequently finding denser communities. In this
chapter, we take the relationships among communities into account for finding hierar-
chical communities of a network, while previous studies only focused on the relation-
ships among vertices. Specifically, we here represent the hierarchy of communities
as a rooted tree of subsets of vertices in G. Given two partitions P = {V1, · · · , V|P|}
and P′ = {V′1, · · · , V′|P′|} of V , we say that P has a higher hierarchical order than P′,
denoted by P � P′, if for every set V′i ∈ P′ there is a superset Vj ∈ P that includes
V′i , i.e. V′i ⊂ Vj. However, density of connections among communities is not uniform
across different levels of a cohesive hierarchy. In fact, density of connections among
communities becomes larger at lower levels of a cohesive hierarchy. Therefore, we say
that P has a higher hierarchical order at degree k compared to P′, denoted by P �k P′, if
for every set V′i ∈ P′ there is a set Vj ∈ P such that V′i ⊂ Vj and for every set V′j ∈ P′,
E[V′i , V′j] ≤ k. A sequence of partitions of V, e.g. P = 〈P1, · · · , P|P|〉 is said to be a hier-
archy, if Pi−1 � Pi (1 < i ≤ |P|). We refer to P ′ = 〈P′1, · · · , P′|P ′|〉 as a cohesive hierarchy
if P′i−1 �i P′i (1 < i ≤ |P ′|). We note that every cohesive hierarchy is a hierarchy, but a
hierarchy is not necessarily cohesive. Given a hierarchy P , we refer to P|P| the lowest
level of hierarchy and we refer to P1 as the root of the hierarchy. For every partition
Pi ∈ P , we say that Pj ∈ P is at a lower level if j > i.

Example 2. Let us revisit the network illustrated in Fig. 4.1. Assume that V is the set of
vertices of the network and Vi is the set of vertices in a subgraph Gi (1 ≤ i ≤ 6). We show
that P = 〈P1, P2, P3, P4〉 is a cohesive hierarchy, where P1 = {V}, P2 = {V1, V2, V3 ∪V4 ∪
V5 ∪ V6}, P3 = {V1, V2, V3, V4 ∪ V5 ∪ V6}, and P4 = {V1, V2, V3, V4, V5, V6}. It can be
seen that P1 �2 P2, since vertices in V1, V2 and V3 ∪ V4 ∪ V5 ∪ V6 are connected to each
other by at most 2 edges. Furthermore, P2 �3 P3, since V3 is connected to V4 ∪ V5 ∪ V6

by at most 3 edges. Similarly, P3 �4 P4, as V4, V5 and V6 are connected to their siblings
by at most 4 edges, which means that P4 = {V1, V2, V3, V4, V5, V6}. As a result, P =

〈P1, P2, P3, P4〉 is a cohesive hierarchy. It is also noted that a cohesive hierarchy such as P
results in a decomposition tree that is illustrated in Fig. 4.2, where siblings at level k of the
decomposition tree are connected to each other by at most k edges.

V
V1 V2 V3∪V4∪V5∪V6
V1 V2 V4∪V5∪V6V3
V1 V2 V3 V4 V5 V6

P1

P2

P3

P4

Figure 4.2: The cohesive hierarchy of the network illustrated in Fig. 4.1.

Since information centrality has been widely adopted to capture the closeness of
vertices in a network [Fortunato et al. 2004; Rezvani et al. 2015], we formally define

30 Cohesive Hierarchies of Communities in Complex Networks

the problem of hierarchical community detection, based on information centrality.

Definition 1 (HCDP). Given a network G, the hierarchical community detection problem is
to find a cohesive hierarchy P of maximal communities, where the sum of information central-
ities of the subgraphs induced by all partitions in P is maximized, i.e.

maximize ∑
Pi∈P

∑
V′∈Pi\Pi−1

D
(
G[V′]

)
. (4.1)

The flat community detection is a special case of this hierarchical community de-
tection problem, when |P| = 1. In the following, we show that the hierarchical com-
munity detection problem is NP-hard by a reduction from the Maximum Clique prob-
lem [Bron and Kerbosch 1973] to its special case, i.e. the flat community detection
problem. We first define the decision version of the flat community detection prob-
lem.

Definition 2 (CDP DECISION). Given a network G = (V, E), a rational numberε > 0 and
a positive integer k, the community detection decision problem is to determine whether there
is a subset V′ ⊂ V of vertices with size k, whose information centrality is no less than ε, i.e.
D (G[V′]) ≥ ε.

The following lemma shows that the CDP DECISION problem is NP-hard, using a
reduction from the MaximumClique problem.

Lemma 1. CDP DECISION problem is NP-Complete.

Proof. We first show that CDP DECISION is in NP. Given a certificate of CDP DECI-
SION, which consists of a network G, and a set of vertices V′ ⊆ V with |V′| = k,
we can use all-pairs shortest paths algorithm [Cormen et al. 2001] to determine if
D(G[V′]) ≥ ε, in polynomial time. Thus, CDP DECISION is in NP.

We now show that CDP DECISION is NP-hard by a reduction from the Maximum-
Clique problem. Note that a subset of vertices V′ form a clique in G, if and only if
the information centrality of the induced subgraph G[V′] is 1, i.e. D(G[V′]) = 1.
Therefore, it is implied that the MaximumClique problem is a special case of CDP
DECISION, where ε = 1. Thus, given a network G and a positive integer k, one can
decide the existence of a clique of the given size k by solving the CDP DECISION.

4.3 Cohesive hierarchical community detection

In this section, we propose two efficient, yet scalable algorithms for the cohesive hier-
archical community detection problem: (i) CHD is a basic cut-based algorithm which
iteratively partitions the network into densely connected communities, and (ii) FACH
is an optimized cut-based algorithm that relies on a sparsification technique to find
sparse communities at high levels of a hierarchy.

§4.3 Cohesive hierarchical community detection 31

4.3.1 The basic algorithm (CHD)

The CHD algorithm proceeds iteratively to identify a cohesive hierarchy P from a
given network G. In each iteration, it finds one level of the hierarchy by creating a
partition of each subset of vertices at its parent level. In iteration k, the algorithm
finds a partition Pk by decomposing subsets of vertices in Pk−1 into several subsets,
where k is 1 initially, and incremented in each iteration.

Let P be a detected cohesive hierarchy of communities in network G, which is
initialized by ∅ and let Pk be the k-th level of hierarchy P . We assume that P0 consists
of all vertices as a community. Let k be the size of cuts detected by CHD in iteration k,
which is initialized to 1 in the first iteration. In iteration k of the algorithm, for every
set of vertices V′ in Pk−1, which is currently a leaf in P , an induced subgraph G′ =
G[V′] is constructed. Then a multi-cut of size no larger than k is detected in G′ using
the following procedure, called MAS-Decompose, and the result of removing this cut
from G′ is stored in another subgraph G′′. The procedure MAS-Decompose [Chang
et al. 2013] decomposes the subgraph G′ into several connected components in G′′,
such that each connected component in G′′ is connected to other vertices by at most
k edges. The CHD algorithm then calculates the information centrality of G′ and G′′,
and if the information centrality of G′′ is no less than that of the initial subgraph G′, it
adds vertices in connected components of G′′ to the k-th level of the hierarchy, i.e. Pk.
Otherwise, the initial set of vertices V′ is added to Pk. The CHD algorithm increments
k and constructs levels of the hierarchy, until for all V′ ∈ Pk−1, the algorithm cannot
find a multi-cut of size k in G′ that can increase the information centrality of G′′. The
detailed description of steps is given by Algorithm 1.

We now show the time complexity of Algorithm 1 as follows.

Theorem 1. Given a network G = (V, E), the algorithm CHD delivers a feasible solution
for the hierarchical community detection problem in time O(n2m + n3 log(n)).

Proof. The CHD algorithm proceeds iteratively. Within each iteration, for every sub-
graph G[V′] (V′ ∈ Pk−1), a MAS-Decompose is applied in time O(nm + n2 log(n)),
and the calculation of information centrality takes O(nm) time.

Therefore, the time complexity of MAS-Decompose is dominant at each iteration
of the CHD algorithm. It is also noted that the hierarchy P has at most n leaves,
as the number of subgraphs is no larger than the number of vertices in the network
(due to the Pigeon-hole principle). Therefore, MAS-Decompose is called at most n
times in each iteration of the CHD algorithm. However, in each iteration of the CHD
algorithm, MAS-Decompose is run on partitions of the actual graph. Let n′ and m′

be the number of vertices and edges in the induced subgraph by each leaf V′, i.e.
G[V′], respectively. It is then implied that ∑V′∈Pk−1

n′m′ ≤ nm as ∑V′∈Pk−1
n′ ≤ n and

∑V′∈Pk−1
m′ ≤ m. This means that the overall time complexity of each iteration is no

larger than O(nm + n2 log(n)). Since the edge-connectivity of a network is at most
n− 1, the time complexity of the CHD algorithm is O(n2m + n3 log(n)).

32 Cohesive Hierarchies of Communities in Complex Networks

Algorithm 1 CHD(G)

Input: G = (V, E)
Output: A cohesive hierarchy P

1: /* Initialize the cohesive hierarchy */
2: P ← ∅;
3: k← 0;
4: /* Pk is the value of k-th level of the hierarchy */
5: Pk ← {V};
6: Pk−1 ← ∅;
7: while (D(Pk)−D(Pk−1) > 0) do
8: k← k + 1;
9: Pk ← ∅;

10: for each V′ ∈ Pk−1 do
11: G′ ← G[V′];
12: /* Let G′′ be a graph created by removing the edges

in the multi-cut of size k found by running MAS on G′ */
13: G′′ ← MAS-Decompose(G′, k);
14: CC← the set of connected components of G′′;
15: if D(G′) ≤ ∑U∈CCD(G[U]) then
16: Add connected components of G′′ to Pk;
17: else
18: Pk ← Pk ∪ {V′};
19: P ← {Pk};

return P ;

§4.3 Cohesive hierarchical community detection 33

4.3.2 The FACH algorithm

We here propose an algorithm, called FACH, that can reduce the number of edges
from m in iteration k to min{m, (k + 1)(n− 1)}.

In the following, we describe the construction of a sparse network Gi = (V, Ei)
(1 ≤ i ≤ m) from G = (V, E) which is noticeably smaller than G, while it can be used
to find minimum cuts of G.

Lemma 2. [Nagamochi and Ibaraki 1992] Given a network G = (V, E) and an integer k >
0, let F1 = (V, E1) be a spanning forest in G and Fi = (V, Ei) be a spanning forest in
G \ E1 ∪ E2 · · · Ei−1 (1 < i ≤ k − 1). For any two vertices s ∈ V and t ∈ V, if they are
k-edge-connected in G, then they must be k-edge-connected in Gk = F1 ∪ · · · ∪ Fk.

Lemma 2 states that in the second iteration, where k = 2, we can find a cut with
size k in a network with at most 3(n − 1) edges, instead of the entire network with
m edges. Similarly, in iteration k of the algorithm, a cut of size k can be found in a
network with min((k + 1)(n− 1), m) edges.

Motivated by Lemma 2, we propose the FACH algorithm that runs significantly
faster than the CHD algorithm by starting from a sparse network and gradually in-
creasing the network size as a factor of k. Specifically, in iteration k of this algo-
rithm, the MAS-Decompose is run on a subgraph of the initial network with at most
min{(k + 1)(n− 1), m} edges. In other words, the network size in the first iteration
is no larger than 2(n− 1). In the second iteration, the network size is no larger than
3(n− 1) and in iteration k, the network size is no larger than (k + 1)(n− 1). Let Gk
be the network in iteration k, on which the MAS-Decompose is run. The FACH algo-
rithm starts with G0 = MSF(G), where MSF(G) is the minimum spanning forest of
the network G. The algorithm then constructs Gk by adding the minimum spanning
forest of the residual network G \ Gk−1 to Gk−1.

Let P be a cohesive hierarchy, which is initially empty. The algorithm iteratively
increments the value of k and finds Pk, the partition representing the k-th level of the
cohesive hierarchy P , until the information centrality of Pk cannot be increased. Let
P0 = {V}. In iteration k, the FACH algorithm finds a minimum spanning forest Fk and
form G \Gk−1, where Gk−1 is the union of spanning forests found in iterations 1 to k−
1. For each community V′ ∈ Pk−1, the FACH algorithm creates an induced subgraph
Gk[V′] and finds a multi-cut in it using the MAS-Decompose procedure. If the removal
of the multi-cut can increase the information centrality, the FACH algorithm applies
the cut; otherwise, it proceeds to the next community in Pk−1. The detailed steps of
the FACH algorithm is given in Algorithm 2.
Example 3. Fig. 4.3 illustrates a running example of the FACH algorithm, in which a net-
work is sparsified in early iterations for finding cohesive communities. In Fig. 4.3b, it can be
seen that in the first iteration (k = 1), the edge-cuts are found in a network that has only
81 = 43 + 38 edges, which is sparser than the original network that has 124 edges. The
number of edges is increased to 105 = 77 + 28 and 113 = 102 + 11 in the second and third
iterations, respectively.

We now provide the time complexity of the FACH algorithm.

34 Cohesive Hierarchies of Communities in Complex Networks

Algorithm 2 FACH(G)

Input: G = (V, E)
Output: A cohesive hierarchy P

1: /* Initialize the cohesive hierarchy */
2: P ← ∅;
3: k← 0;
4: /* Find a Minimum Spanning Forest of G */
5: Gk ← MSF(G);
6: /* Let Pk be the k-th level of the hierarchy */
7: Pk ← {V};
8: Pk−1 ← ∅;
9: while (D(Pk)−D(Pk−1) > 0) do

10: k← k + 1;
11: /* Find a Minimum Spanning Forest Fk of G \ Gk−1 */
12: Fk ← MSF(G \ Gk−1);
13: Gk ← Fk ∪ Gk−1;
14: Pk ← ∅;
15: for each V′ ∈ Pk−1 do
16: G′ ← Gk[V′];
17: G′′ ← MAS-Decompose(G′, k);
18: CC← the set of connected components of G′′;
19: if D(G′) ≤ ∑U∈CCD(G[U]) then
20: Add connected components of G′′ to Pk;
21: else
22: Pk ← Pk ∪ {V′};
23: P ← {Pk};

return P ;

§4.4 Approximating information centrality 35

(a) k = 0 (b) k = 1

V1

V2V2

V1

(c) k = 2

V1

V2

V3V3

V2

V1

(d) k = 3

V1

V2

V3

V4

V5

V6

V4

V5

V6

V3

V2

V1

(e) k = 4

Figure 4.3: A running example of the FACH algorithm which illustrates the sparsifi-
cation technique.

Theorem 2. Given a network G = (V, E), there is an algorithm for the hierarchical commu-
nity detection problem, i.e. the FACH algorithm, which delivers a feasible solution in time
O(nm).

Proof. The FACH algorithm consists of several iterations, where in iteration k, the
union of spanning forests for levels 1 to k − 1 (i.e. Gi), is constructed and for every
induced subgraph Gi[V′] (V′ ∈ Pk−1), a MAS-Decompose is applied, and the value of
the information centrality is calculated in O(nm) time.

The time complexity of the MAS-Decompose is O(nm+ n2) and the time complex-
ity of information centrality estimation is O(nm). Since the network is connected and
thus m ≥ n− 1, the time complexity of the FACH algorithm is O(nm).

4.4 Approximating information centrality

To efficiently detect a cohesive hierarchy of communities in a complex network, one
challenge is to calculate the value of information centrality. One straightforward way
to calculate the information centrality is to discover all-pairs shortest paths, which is
very time-consuming or even infeasible for real-world networks. Thus, we devise a
simple, yet scalable algorithm for approximating the information centrality in poly-
logarithmic time.

We here build on the results obtained by Eppstein et al. [Eppstein and Wang 2001]
and devise a randomized algorithm, Algorithm 3, which finds the information central-
ity of a network using a small number of randomly selected vertices from the network.
The algorithm first selects a set S (|S| = s) of vertices from V, uniformly at random.
It then runs the single-source shortest path algorithm (BFS), starting from each ran-

36 Cohesive Hierarchies of Communities in Complex Networks

domly selected vertex in S. Finally, it estimates the value of information centrality of
the network using the following equation,

D̂(G) =
s · (n− 1)
∑

u∈S
∑

v∈V
dG

uv
. (4.2)

Algorithm 3 describes an overview of the approximation algorithm for informa-
tion centrality in a given network.

Algorithm 3 Estimated information centrality

Input: G = (V, E), s
Output: D̂(G)

1: Let S be a set of s vertices selected uniformly at random;
2: for each vertex u ∈ S do
3: Calculate shortest paths dG

uv from u to all v ∈ V;
4: for each vertex v ∈ V do
5: Ĉ(v)← ∑u∈S dG

uv;
6: D̂(G)← s · (n− 1)/∑v∈V Ĉ(v);

return D̂(G);

4.4.1 Theoretical analysis

We now analyse the approximation algorithm for information centrality. We first re-
view the Hoeffding lemma [Hoeffding 1963] as follows.

Lemma 3 (Hoeffding [Hoeffding 1963]). If x1, x2, · · · , xn are independent variables, such
that variable xi (1 ≤ i ≤ n) is bounded by ai and bi, and µ = E[∑ xi/n] is the expected mean,
then for ξ > 0,

Pr
{∣∣∣∣∑n

i=1 xi

n
−µ

∣∣∣∣ ≥ ξ} ≤ 2e−2n2ξ2/∑
n
i=1 (bi−ai)

2
. (4.3)

Due to the small-world characteristic of complex networks [Watts and Strogatz
1998], the diameter in such networks is usually small. Therefore, we show that the
error bound of Algorithm 3 for approximating the information centrality of networks
is no larger than ε∆ with a high probability, where ∆ is the diameter of network and
ε is a given approximation ratio.

Theorem 3. Given a network G = (V, E), and a set S of randomly selected vertices with size
Θ(log(n)/ε2), Algorithm 3 approximates the reciprocal of information centrality such that
|1/D̂(G)− 1/D(G)| ≤ ε∆, with a high probability of at least 1− 1/n.

Proof. Recall that Algorithm 3 chooses s = |S| random samples from vertices and the
approximated value of information centrality is

D̂(G) =
s · (n− 1)
∑

u∈S
∑

v∈V
dG

uv
=

s · n · (n− 1)
n · ∑

u∈S
∑

v∈V
dG

uv
. (4.4)

§4.5 Experimental results 37

It is noted that the expected reciprocal of estimation, i.e. 1/D̂(G), is the reciprocal
of actual information centrality, i.e. 1/D(G). Thus, in Hoeffding lemma, considering

xi =
n ∑v∈V dG

iv
n(n−1) , we can safely assume that µ = 1/D(G), ai = 0 and bi = n∆/(n− 1).

Therefore, the probability that the difference between the reciprocal estimated infor-
mation centrality 1/D̂(G) and the actual reciprocal information centrality 1/D(G) be-
ing more than ξ is

Pr
{∣∣∣∣ 1
D̂(G)

− 1
D(G)

∣∣∣∣ ≥ ξ} ≤ 2e−2s2ξ2/s(n∆
n−1)

2
.

Considering the error being a small fraction of the diameter of G, i.e. ξ = ε∆ � ∆,
and using s = log n

ε2 random samples, it can be seen that the probability of error is
bounded above by 1/n. Therefore, the approximation error of Algorithm 3 is smaller
than ε∆ with a high probability of at least (n− 1)/n.

The following theorem shows that the time complexity of the FACH algorithm
with the proposed randomized approximation algorithm can be reduced to O(n2).

Theorem 4. Given a network G = (V, E), where m = cn with constant c, the FACH algo-
rithm delivers a feasible solution for the hierarchical community detection problem (HCDP),
in time O(n2).

Proof. The FACH algorithm proceeds iteratively, where in iteration k, the union of
spanning forests for levels 1 to k − 1, i.e. Gi, is constructed and for every induced
subgraph Gi[V′] (V′ ∈ Pk−1), a MAS-Decompose is applied, and the value of the in-
formation centrality is calculated, using Algorithm 3.

As mentioned above, the time complexity of the MAS-Decompose is O(nm + n2)
and the time complexity of information centrality estimation is O(m log n + n log2 n).
It can be seen that MAS-Decompose dominates the time-complexities of each iteration
of the FACH algorithm. In iteration k, the network size is k(n− 1). Since the number
of edges in real-world complex networks is usually a constant factor of the number of
vertices, i.e. m = cn, for a constant c, the hierarchies P will have at most a constant
number k ≤ c of levels. Therefore, the overall time complexity of the FACH algorithm
is O(n2).

4.5 Experimental results

In this section, we discuss the performance of the proposed algorithms, i.e. CHD and
FACH, on several real datasets by comparing against several state-of-the-art algo-
rithms. We first describe the experimental settings and then evaluate the performance
of the proposed algorithms in detecting the hierarchical structure of communities. We
finally investigate the performance of the CHD and FACH algorithms in finding dif-
ferent levels of a hierarchy.

38 Cohesive Hierarchies of Communities in Complex Networks

Table 4.1: Real datasets with their characteristics.

Dataset # vertices # edges # communities Diameter
Facebook 4,039 88,234 308 8
Amazon 334,863 925,872 14,529 44
DBLP 317,080 1,049,866 7,556 21
LiveJournal 3,997,962 34,681,189 12,115 17
Orkut 3,072,441 117,185,083 9,120 9

4.5.1 Experimental settings

We introduce the benchmark algorithms, datasets and measures that were adopted
for evaluating the proposed algorithms.

Benchmark algorithms. We compare the performance of the proposed algorithms,
i.e. CHD and FACH (both of them using the randomized algorithm for approximat-
ing the information centralities of communities), with the following state-of-the-art
algorithms for hierarchical community detection: LinkCluster [Ahn et al. 2010],
CNM [Clauset et al. 2004], InfoMap [Rosvall and Bergstrom 2011], and OSLOM [Lanci-
chinetti et al. 2011].

Datasets. We used five real datasets that are publicly available1, and have been widely
used in the literature [Xie et al. 2013]: (1) Facebook is a subgraph of the social network
facebook, where communities are groups of members identified by surveyed users, (2)
Amazon is a network in which vertices are products and there is an edge between two
vertices i and j if product i is frequently co-purchased with product j. Products in each
category are considered as ground-truth communities, (3) DBLP is a collaboration
network of researchers, where communities are defined as journals and conferences,
(4) LiveJournal is a friendship network of users in the LiveJournal website. Users can
create groups, and these groups are considered as the ground-truth communities. (5)
Orkut is the friendship network of Orkut members. Communities in this network are
groups created by users, where users can join each group.

Evaluation measures. Measuring the quality of detected communities is challenging,
as different metrics lead to different interpretations of communities. We employ F-
measure that is widely-adopted in the literature [Gopalan and Blei 2013; Whang et al.
2013; Xie et al. 2013; Yang and Leskovec 2013; Zhao et al. 2005] for quantifying the
accuracy of detected communities. Let C∗ be the set of ground-truth communities and
let C be a detected community. The F-measure of C compared to C∗ ∈ C∗ is defined
as follows,

Fk(C) = max
C∗∈C∗

{
(k + 1) · p(C, C∗) · r(C, C∗)

k · p(C, C∗) + r(C, C∗)

}
, (4.5)

where k is the level in the hierarchy, and p(C, C∗) = |C ∩ C∗|/|C| and r(C, C∗) =

1http://snap.stanford.edu/data/index.html

§4.5 Experimental results 39

F1-measure F2-measure
0

20

40

P
er
ce
n
t
(%

)

(a) Facebook

F1-measure F2-measure
0

20

40

60

80

P
er
ce
n
t
(%

)

(b) Amazon

F1-measure F2-measure
0

10

20

30

P
er
ce
n
t
(%

)

(c) DBLP

F1-measure F2-measure
0

10

20

30

P
er
ce
n
t
(%

)

(d) LiveJournal

F1-measure F2-measure
0

20

40

P
er
ce
n
t
(%

)

CHD FACH

LinkCluster CNM

InfoMap OSLOM

(e) Orkut

Figure 4.4: F1 and F2-measures of the hierarchical community detection algorithms.

|C ∩ C∗|/|C∗| are the precision and recall, respectively. To calculate the accuracy of a
flat community detection algorithm, one may calculate the average of F1-measure and
F2-measure for all detected communities [Gopalan and Blei 2013; Whang et al. 2013;
Xie et al. 2013; Yang and Leskovec 2013; Zhao et al. 2005]. However, the situation is
different for hierarchical community detection algorithms, as communities detected
at each level of a hierarchy can have different characteristics and be interpreted dif-
ferently. One general rule in hierarchical community detection is that communities at
the lower levels are smaller, more connected and more cohesive than the ones at the
higher levels. Therefore, we suggest a weighting method in calculating the F-measure
of communities at different levels of a hierarchy, which provides us with the ability
to put more weight on communities at lower levels. Specifically, we incorporate a
weight αi, called the weight of level i, into F-measure of communities at level i of a
hierarchy. Given a detected hierarchy P = {P1, · · · , P|P|}, we define the F-measure of
P as follows,

Fk(P) = ∑
1≤i≤|P|

1
|P| ∑

C∈Pi

αi
Fk(C)
|Pi|

, (4.6)

whereαi =
i

∑1≤ j≤|P| j
.

Notice that the term αi is used to emphasize on the accuracy of communities at
the lower levels of the hierarchy. Although there are an infinite number of ways to
define the weights αi, we use a simple intuitive definition that makes both empirical
and analytical sense.

All our experiments were run on a desktop computer with an Intel(R) Core(TM)
i7-3770 CPU (3.40GHz) and 32GB of RAM.

4.5.2 Accuracy and efficiency

We study the accuracy and efficiency of our proposed algorithms CHD and FACH in hi-
erarchical community detection by calculating the F-measures of communities found
in each network and comparing them against the benchmark algorithms.

Fig. 4.4 shows the accuracy of different hierarchical community detection algo-
rithms in terms of F1-measure and F2-measure. It can be seen in Fig. 4.4a that al-
gorithms CHD and FACH outperform the benchmark algorithms by nearly 1% in F1-
measure for dataset Facebook. Fig. 4.4a also shows that algorithm CHD outperforms

40 Cohesive Hierarchies of Communities in Complex Networks

Facebook Amazon DBLP LiveJournal Orkut

101

103

105

R
u
n
n
in
g
ti
m
e
(S
ec
o
n
d
s)

CHD FACH LinkCluster
CNM InfoMap OSLOM

Figure 4.5: Running times of hierarchical community detection algorithms, where bars
with parallel lines indicate that the corresponding algorithm did not terminate in 150
hours.

all other algorithms by at least 5% in F2-measure using dataset Facebook. In Fig. 4.4b,
it can be seen that the F1 measures of algorithms CHD and FACH are at least 10% higher
than the other algorithms in the benchmark using dataset Amazon. Similarly, F2-
measures for both CHD and FACH in this dataset are at least 5% higher than all other
algorithms for dataset Amazon. Fig 4.4c plots the results for dataset DBLP, where
it can be observed that both F1-measure and F2-measure of algorithm CHD is at least
20% higher than all other benchmark algorithms. However, the accuracy of algorithm
FACH is slightly less than that of algorithm CHD for dataset DBLP. Fig. 4.4d presents
the results for dataset LiveJournal and Fig. 4.4e presents the results for dataset Orkut,
where due to the large size of the datasets only algorithms CHD and FACH terminated.
It is noted that we waited for 150 hours for all algorithms to terminate, but only CHD
and FACH found the results. Yet, the accuracy of the results is reasonable (above 20%
for both datasets LiveJournal and Orkut). It is noted in Fig. 4.4 that the performance
of algorithm CHD is better than that of algorithm FACH in datasets LiveJournal and
Orkut. The reason is that algorithm CHD spends more time in finding edge-cuts in the
networks.

Fig. 4.5 depicts the running times of different hierarchical community detection
algorithms. Although dataset Facebook is small, Fig. 4.5 shows that the running time
of algorithms CHD and FACH is only a fraction of all other benchmark algorithms. In
Fig. 4.5, for dataset Amazon, the running time of algorithm CHD is at most 1/50 of
that of all benchmark algorithms, and the running time of algorithm FACH is only
80% of the running time of algorithm CHD. Similarly, for dataset DBLP, the running
time of algorithm CHD is at most 1/75 of the running time of benchmark algorithms,
and the running time of algorithm FACH is only 60% of the running time of algorithm
CHD. However, for datasets LiveJournal and Orkut, only algorithms CHD and �FACH
terminated within 150 hours, and their running time was less than 30 minutes for
such a large datasets. Fig. 4.5 illustrates that the running time of algorithm FACH is
less than that of algorithm CHD, because of the sparsification technique. However, for
dataset Orkut, both algorithms CHD and FACH have similar running times, because
these algorithms discovers more levels of the hierarchy.

§4.5 Experimental results 41

4.5.3 Hierarchies: level by level

Fig. 4.6 illustrates the values of F1-measure, F2-measure, information centrality and
running times for the communities at each level of hierarchies detected by algorithms
CHD and FACH. Fig. 4.6a shows that for dataset facebook, the value of F1-measure in-
creases as we move towards the lower levels of a hierarchy using algorithms CHD and
FACH, with minor fluctuations. However, it can be seen in Fig. 4.6f that the value of
F2-measure has a sudden drop at level 5 of the hierarchy, which indicates that the
communities beyond level 5 of the hierarchy are too fine. In Fig. 4.6b, the values of
F1-measure of communities detected by algorithm CHD for dataset Amazon are in-
creasing, as we move towards lower levels of hierarchy of communities. While there
are some fluctuations in F1-measure for dataset Amazon, the values are stable at the
last two levels of hierarchy, i.e. levels 5 and 6. It is noted that the number of levels
of the hierarchy for dataset Amazon is 6. Similarly, Fig. 4.6c shows that for dataset
DBLP, the values of F1-measure and F2-measure have an increasing trend as we move
towards the bottom of a hierarchy.

Fig. 4.6k-4.6o present the values of information centrality for communities at dif-
ferent levels of a hierarchy. Fig. 4.6k shows that for dataset facebook, the value of
information centrality by algorithm CHD has a sudden increase and it stabilizes after
that. However, in the same figure, the value of information centrality has a slower
increase using algorithm FACH. It is noted in Fig. 7.7a that as the algorithm iterates, it
finds more levels of the hierarchy and increases the values of the information central-
ity of communities, for dataset Amazon. Similarly for dataset DBLP, Fig. 7.7b shows
that the information centrality of the detected communities is strictly increasing. In
Fig. 7.7d, for dataset LiveJournal, the value of information centrality is increasing, as
we move downwards in the hierarchy.

Fig. 4.6p-4.6t plot the amounts of time that algorithms CHD and FACH need for de-
tecting each level of a hierarchy in different datasets. Fig. 4.6p shows that the running
time of algorithm CHD is mainly dominated by its early iterations, where k is small.
However, the running time of the algorithm FACH is almost stable with minor fluctu-
ations across different levels of the hierarchy, which is due to the fast sparsification in
algorithm FACH. It can be seen in Fig. 4.6q that for dataset Amazon, the running time
of algorithm CHD drops significantly, as the algorithm moves to lower levels of the
hierarchy. The reason behind is that algorithm CHD breaks the network into smaller
and smaller subgraphs at each level and therefore, the time spent for detecting lower
levels of a hierarchy is much less than that of the higher one. Fig. 4.6r shows the
running times of algorithm CHD for different levels of the hierarchy in dataset DBLP,
from which it can be seen that the running time significantly drops. Similarly, Fig. 4.6s
shows that for dataset LiveJournal, the running time drops, as we move downwards
the hierarchy of communities. However algorithm FACH spends significantly less
amount of time in both early and late iterations, resulting in a faster outcome. In
Fig. 4.6t, while the running time of algorithm CHD is dominated by its early iterations,
algorithm FACH performs very fast in those early iterations. The conclusion from
Fig. 4.6p-4.6t is that algorithm CHD is promising in hierarchical community detection,

42 Cohesive Hierarchies of Communities in Complex Networks

0 5 10 15 20

20

30

40

Level of the hierarchical tree

F
1
-m

ea
su
re

(%
)

CHD
FACH

(a) Facebook

1 2 3 4 5 6

20

40

60

80

Level of the hierarchical tree
F
1
-m

ea
su
re

(%
)

CHD
FACH

(b) Amazon

0 5 10 15 20 25 30 35

10

20

30

Level of the hierarchical tree

F
1
-m

ea
su
re

(%
)

CHD
FACH

(c) DBLP

0 20 40 60 80 100 120 140 160

0

10

20

30

Level of the hierarchical tree

F
1
-m

ea
su
re

(%
)

CHD
FACH

(d) LiveJournal

0 2 4 6 8 10 12 14 16

0

10

20

30

40

Level of the hierarchical tree

F
1
-m

ea
su
re

(%
)

CHD
FACH

(e) Orkut

0 5 10 15 20

30

40

50

Level of the hierarchical tree

F
2
-m

ea
su
re

(%
)

CHD
FACH

(f) Facebook

1 2 3 4 5 6

20

40

60

80

Level of the hierarchical tree

F
2
-m

ea
su
re

(%
)

CHD
FACH

(g) Amazon

0 5 10 15 20 25 30 35

10

15

20

25

30

35

Level of the hierarchical tree
F
2
-m

ea
su
re

(%
)

CHD
FACH

(h) DBLP

0 20 40 60 80 100 120 140 160

0

10

20

30

Level of the hierarchical tree

F
2
-m

ea
su
re

(%
)

CHD
FACH

(i) LiveJournal

0 2 4 6 8 10 12 14 16

0

10

20

30

40

50

Level of the hierarchical tree

F
2
-m

ea
su
re

(%
)

CHD
FACH

(j) Orkut

0 5 10 15 20

0

10

20

30

40

Level of the hierarchical tree

In
fo
rm

at
io
n
C
en
tr
al
it
y

CHD
FACH

(k) Facebook

1 2 3 4 5 6

2,000

4,000

6,000

8,000

Level of the hierarchical tree

In
fo
rm

at
io
n
C
en
tr
al
it
y

CHD
FACH

(l) Amazon

0 10 20 30 40

2,000

4,000

6,000

8,000

Level of the hierarchical tree

In
fo
rm

at
io
n
C
en
tr
al
it
y

CHD
FACH

(m) DBLP

0 20 40 60 80 100 120 140 160

0

2E+3

4E+3

6E+3

8E+3

1E+4

Level of the hierarchical tree
In
fo
rm

at
io
n
C
en
tr
al
it
y

CHD
FACH

(n) LiveJournal

0 2 4 6 8 10 12 14 16

0

500

1,000

1,500

2,000

Level of the hierarchical tree

In
fo
rm

at
io
n
C
en
tr
al
it
y

CHD
FACH

(o) Orkut

0 5 10 15 20
0

.01

.02

.03

.04

Level of the hierarchical tree

R
u
n
n
in
g
T
im

e
(s
ec
) CHD

FACH

(p) Facebook

1 2 3 4 5 6

0

1

2

3

Level of the hierarchical tree

R
u
n
n
in
g
T
im

e
(s
ec
) CHD

FACH

(q) Amazon

0 5 10 15 20 25 30 35

0

1

2

3

Level of the hierarchical tree

R
u
n
n
in
g
T
im

e
(s
ec
) CHD

FACH

(r) DBLP

0 20 40 60 80 100 120 140 160

0

50

100

Level of the hierarchical tree

R
u
n
n
in
g
T
im

e
(s
ec
) CHD

FACH

(s) LiveJournal

0 2 4 6 8 10 12 14 16

100

200

300

400

500

Level of the hierarchical tree

R
u
n
n
in
g
T
im

e
(s
ec
) CHD

FACH

(t) Orkut

Figure 4.6: Running times for each level of hierarchies detected by algorithms CHD
and FACH

but algorithm FACH is much more efficient, particularly in early iterations.

4.6 Summary

We studied the hierarchical community detection problem in this chapter. We for-
mally defined the problem of hierarchical community detection, as finding a rooted
tree of communities where each community is a subset of its parent in the tree, and
the information centrality of communities is no less than that of their parent in the
hierarchical tree. We showed that the problem of finding hierarchical communities is
NP-hard and devised an efficient and scalable heuristic algorithms for this problem.
We further incorporated a fast sparsification method to reduce the network size for
finding global cuts. We also proposed a fast randomized algorithm to estimate the
value of information centrality in large-scale networks. We finally validate the effec-
tiveness of our proposed algorithms using extensive experiments over five large-scale
real-world datasets.

Chapter 5

Structural Holes Spanners in
Complex Networks

5.1 Overview

One of the implications of structural hole spanners is that they bridge different com-
munities and the shortest paths between those communities go through them. There-
fore, their removal will increase the lengths of shortest paths between vertices of the
network. For example, vertex v1 in Fig. 5.1 plays a key role in the shortest paths be-
tween the vertices in different communities and its removal can significantly change
the length between the other vertices, while the impact of the removal of other vertices
on shortest paths is not as significant as vertex v1. In this chapter, we propose a model
based on the distance between all pairs of vertices of a network [Beauchamp 1965]
for modelling structural hole spanners. We consider the structural hole spanners as
a set of vertices whose removal will result in the maximum increase on the distances
between the resulting network, and we term the top-k structural holes problem as the
problem of finding a set of k vertices whose removal will maximize the increase on
the distances in the resulting graph. The significant difference between our work and
the state-of-the-art is that our model relies on only the network topological structure,
while most existing works that assume that either all communities are given or rely
on community detection algorithms.

v1

v2

Figure 5.1: Illustration of structural hole spanners; each closed area represents a com-
munity, and vertices v1, v2 represent structural hole spanners that span multiple com-
munities.

43

44 Structural Holes Spanners in Complex Networks

The main contributions of this chapter are as follows. We study the top-k struc-
tural hole spanner problem in a large-scale complex network. We first formulate the
problem as an optimization problem and show its NP-hardness. We then devise two
efficient, yet scalable algorithms, by exploring the bounded inverse of closeness cen-
trality of vertices and articulation points, as well as the small-world phenomenon in
complex networks. We finally evaluate the performance of the proposed algorithms
by extensive experiments on real and synthetic datasets. Experimental results show
that the proposed model can capture the structural spanners with high confidence
and the structural hole spanners delivered by the proposed algorithms can connect
more and larger communities in comparison with that by existing methods in real
datasets. Moreover, using a synthetic datasets that contains structural hole spanners,
we show that the proposed algorithms can accurately find the structural hole spanners
and the precision of the solution is better than that of other methods. Furthermore,
the proposed algorithms outperform the comparison heuristics by several orders of
magnitude in terms of accuracy and running time. We also evaluate the impact of
parameters on the proposed algorithms and demonstrate the role of small-world phe-
nomenon in the performance of bounded inverse closeness centrality.

The rest of this chapter is organized as follows. Section 5.2 formally defines the
problem of identifying top-k structural hole spanners. Section 5.3 shows the NP-
hardness of the problem. Section 5.4 proposes algorithms for solving the problem.
Section 5.5 evaluates the performance of the proposed algorithms, using real and syn-
thetic datasets. Section 5.6 summarises the chapter.

5.2 Problem definition

Since structural hole spanners are fundamental in many applications, building a model
that can accurately capture the structural properties of structural hole spanners is cru-
cial. We here propose a model to identify the top-k structural hole spanners of a com-
plex network.

Given a network G = (V, E) and a positive integer k, the top-k structural hole span-
ner problem in G is to find a subset of vertices VS (VS ⊂ V) with |VS| = k, such that the
removal of the vertices in VS from G will result in the maximum increase on the sum
of the distances between all pairs of vertices in the induced subgraph G \VS, i.e., the
problem objective is to

max
VS⊂V, |VS|=k

{D(G \VS)− D(G)}, (5.1)

which is equivalent to

max
VS⊂V, |VS|=k

{D(G \VS)}. (5.2)

Communities in a network are defined as the groups of vertices with dense connec-
tions internally and sparser connections externally [Girvan and Newman 2002]. Since

§5.3 NP-hardness 45

network communities are dense and vertices inside communities are well-connected,
the distance between vertices within each community is small and the removal of
community members does not change the distance between the other members of
the community considerably. In contrast, structural hole spanners bridge different
communities, thus their removal can increase the distance between vertices in those
communities [Burt 1992]. The removal of top-k structural hole spanners in a network
will result in the maximum number of communities disconnected in comparison with
other k-vertex removals, thereby significantly increasing the sum of distances between
all pairs of vertices in the network. Fig. 5.1 illustrates the impact of the removal of
structural hole spanners on the distances between vertices. Specifically, the proposed
model and the problem definition based on the model capture three important char-
acteristics of structural hole spanners.

1. Inter-community connections: Given a vertex u that bridges multiple commu-
nities and another vertex v that has direct edge to vertices only in its community,
vertex u is considered by the model to be a better structural hole spanner than
vertex v, since the connections among vertices within the communities to which
vertex v belongs are strong, and the absence of v only slightly increases the dis-
tance among other vertices in the network. In contrast, vertex u connects vertices
from different communities, thus the absence of u can dramatically increase the
distances between other vertices.

2. Connections to important communities: Given a vertex u that bridges large
communities and a vertex v that bridges small communities, vertex u is consid-
ered to be a better structural hole spanner than vertex v, since the removal of u
will disconnect more vertices in the network.

3. Connections to many communities: Given a vertex u that bridges many com-
munities and a vertex v that bridges only a few, vertex u is considered to be a
better structural hole spanner, since the removal of u can increase the distance
between more communities (even if they are smaller).

Note that the proposed model relies only on the network structure and does not
need to identify communities, thus it describes the properties of structural hole span-
ners in a unified way that is applicable to many real complex networks.

5.3 NP-hardness

In this section we show that the top-k structural hole spanner problem is NP-hard by
a reduction from an NP-hard problem - the Most Vital Node Problem (MVNP) [Bar-Noy
et al. 1998], which is defined as follows.

Given an undirected network G = (V ∪ {s, t}, E), a pair of nodes s and t, and a
positive integer k, assume that there is no edge between vertices s and t and the vertex
connectivity κG(s, t) between vertices s and t is no less than k + 1, the problem is to
find a subset VS of V with |VS| = k such that the length of the shortest path between s

46 Structural Holes Spanners in Complex Networks

and t in subgraph G[(V \VS) ∪ {s, t}] of G is maximized. The rest is to show that the
problem is NP-hard by a reduction from the MVNP by the following theorem.

Theorem 5. The top-k structural hole spanner problem in G is NP-hard.

Proof. Given an instance of the MVNP in an undirected graph G = (V ∪ {s, t}, E)
with n = |V ∪ {s, t}|, a pair of vertices s and t in G, and a positive integer k, an
instance of the top-k structural hole spanner problem in another undirected graph
G′ = (V ∪ S ∪ T, E′) can be constructed as follows. Let l = 4n6. Sets of vertices S and
T are obtained by duplicating vertices s and t with l copies, i.e., S = {s1, s2, . . . , sl} and
T = {t1, t2, . . . , tl}. For any two different vertices u, v ∈ V, an edge (u, v) is added to
E′ if an edge (u, v) ∈ E. For each vertex v ∈ V, l edges (v, s1), (v, s2), . . . , and (v, sl)
(or (v, t1), (v, t2), . . . , and (v, tl)) are added to E′ if edge (v, s) (or (v, t)) is contained
in E. The construction of G′ is illustrated in Fig. 5.2. Clearly, it can be verified that
κG′(si, t j) = κG(s, t) for any vertex si ∈ S and any vertex t j ∈ T and dG′

uv = dG
uv for

every pair of vertices u and v.

s t

(a) G

s2 t2

s1

sl

t1

tl

...

...

(b) G′

Figure 5.2: G′ is constructed from G by replicating vertices s and t and their incident
edges l times.

The MVNP in G = (V ∪ {s, t}, E) can be reduced to the structural hole spanner
problem in G′ as follows. We first show that an optimal solution to the problem in G′

does not contain any vertex si or ti, thus it is a feasible solution for the MVNP. We then
prove that the optimal solution to the structural hole spanner problem is indeed the
optimal solution to the MVNP.

Assume VS ⊂ V ∪ S∪ T is an optimal solution to the top-k structural hole spanner
problem in G′, i.e., D(G′ \ VS) = maxV′S⊂V∪S∪T,|V′S|=k{D(G′ \ V′S)}. We claim that VS
is an optimal solution to the MVNP in G. Following Lemma 11 in Appendix, VS does
not contain any vertices in S or T, therefore, VS is a feasible solution to the MVNP. We
now show that VS is indeed the optimal solution to the MVNP in G too. To this end,
let

x =
D(G′ \VS)− 4l(nV − k)− 4l(l − 1)− (nV − k)(nV − k− 1)

2l2 , (5.3)

where nV = |V| = n − 2. In the following we show that (i) dG\VS
st = bxc, and

(ii) bxc = maxV′S⊂V,|V′S|=k{d
G\V′S
st } = dG\VS

st . Then, set VS is an optimal solution to the
MVNP in G.

§5.3 NP-hardness 47

We start by showing Case (i): dG\VS
st = bxc. We can see that dG\VS

st = dG′\VS
sit j

for

any pair of vertices si ∈ S and t j ∈ T. To this end, we show that dG′\VS
sit j

≤ bxc and

dG′\VS
sit j

≥ bxc. Following Lemma 12 in Appendix, D(G′ \ VS) ≥ 4l(nV − k) + 4l(l −
1) + (nV − k)(nV − k− 1) + 2l2dG′\VS

sit j
. Thus, dG′\VS

sit j
≤ x. Since the value of dG′\VS

sit j
is

a positive integer, dG′\VS
sit j

≤ bxc. Now, we show that dG′\VS
sit j

≥ bxc by contradiction.

Assume that dG′\VS
sit j

< bxc, then dG′\VS
sit j

≤ bxc − 1, following Lemma 12, we have

D(G′ \VS) ≤ 4l(nV − k)ζ + 4l(l − 1) + (nV − k)(nV − k− 1)ζ + 2l2dG′\VS
s jt j

,

since we assumed dG′\VS
sit j

≤ bxc − 1,

D(G′ \VS) ≤ 4l(nV − k)ζ + 4l(l − 1) + (nV − k)(nV − k− 1)ζ + 2l2(bxc − 1)

≤ 4l(nV − k)ζ + 4l(l − 1) + (nV − k)(nV − k− 1)ζ + 2l2(x− 1)

then, we simply substitute x by its value from Eq. (5.3),

D(G′ \VS) ≤ 4l(nV − k)ζ + 4l(l − 1) + (nV − k)(nV − k− 1)ζ − 2l2 +

D(G′ \VS)− 4l(nV − k)− 4l(l − 1)− (nV − k)(nV − k− 1)

< D(G′ \VS) + 4l(nV − k)ζ + (nV − k)(nV − k− 1)ζ − 2l2

since nV − k− 1 < nV − k < n and ζ = n3, therefore,

D(G′ \VS) < D(G′ \VS) + 4ln4 + n5 − 2l2

as l = 4n6,

D(G′ \VS) < D(G′ \VS) + 16n10 + n5 − 32n12

< D(G′ \VS), (5.4)

where inequality (5.4) is a contradiction. Therefore, dG′\VS
s jt j

≥ bxc. In conclusion, we

have dG′\VS
s jt j

= bxc.

We then show Case (ii) bxc = maxV′S⊂V,|V′S|=k{d
G\V′S
st } = dG\VS

st . Denote by V∗S the

optimal solution to the MVNP in G, i.e., dG\V∗S
st = maxV′S⊂V,|V′S|=k{d

G\V′S
st }. We can see

that dG\VS
st = dG′\VS

sit j
and dG\V∗S

st = dG′\V∗S
sit j

, for any pair of vertices si ∈ S and t j ∈ T.

Assume that dG′\V∗S
sit j

> dG′\VS
sit j

, then dG′\V∗S
sit j

≥ dG′\VS
sit j

+ 1 = bxc + 1 > x. Following

48 Structural Holes Spanners in Complex Networks

Lemma 12, we have

D(G′ \V∗S) ≥ 4l(nV − k) + 4l(l − 1) + (nV − k)(nV − k− 1) + 2l2dG′\V∗S
s jt j

> 4l(nV − k) + 4l(l − 1) + (nV − k)(nV − k− 1) + 2l2 · x
= D(G′ \VS), (5.5)

i.e., D(G′ \V∗S) > D(G′ \VS), which contradicts the assumption that VS is an optimal
solution.

In conclusion, VS is an optimal solution to the MVNP in G too. The top-k structural
hole spanners problem is NP-hard.

5.4 Algorithms for top-k structural hole spanner problem

In this section, we devise efficient algorithms for the top-k structural hole spanner
problem. We first consider a greedy approach for the problem and improve its effi-
ciency by exploring the bounded inverse closeness centrality using the small-world
property of complex networks. Specifically, we start with a basic algorithm, using the
inverse closeness centrality of vertices. We then develop a faster algorithm, by explor-
ing the bounded inverse closeness centrality of vertices. We finally propose a fast, yet
scalable algorithm by jointly considering both articulation points and the bounded
inverse closeness centrality of vertices.

5.4.1 The basic algorithm

A structural hole spanner in a complex network usually spans multiple communities,
thus the sum of distances between the spanner and the other vertices should not be
larger than the sum of distances between an ordinary vertex and the other vertices in
the network. The mean distance of the network after the removal of a vertex v ∈ V
thus is

d(G \ {v}) =
n(n− 1)d(G)− 2 ∑u∈V dG

uv
(n− 1)(n− 2)

+
∑u,w∈V (dG\{v}

uw − dG
uw)

(n− 1)(n− 2)
, (5.6)

where the value of n(n− 1)d(G) is the same for every vertex in G. If we only consider
the first term in Eq. (5.6) as the dominant term, it can be implied that the shorter the
distance between v and others, the more likely vertex v is to maximize the distances
between vertices in the graph. We will use the inverse closeness centrality of ver-
tices as an approximate measurement to find the top-k structural hole spanners in G.
Specifically, the algorithm proceeds iteratively. The set of hole spanners VS is empty
initially, within each iteration, a new hole spanner v ∈ V \ VS is found and added to
VS, if its inverse closeness centrality d(v) is the smallest among the vertices in V \VS.
This procedure continues until the number of vertices in VS becomes k. The detailed
algorithm is described as follows.

§5.4 Algorithms for top-k structural hole spanner problem 49

We refer to algorithm 4 based on the Inverse Closeness Centrality of vertices as
algorithm ICC for short. The dominant running time of algorithm 4 is to find a single
source shortest path tree for each source vertex v ∈ V, which takes O(m + n) time,
using the BFS traversal on G. algorithm 4 thus takes O(nm + n log k) = O(mn) time,
where the log k is the time of each priority operation in priority queue Q. Despite algo-
rithm 4 is efficient, its time complexity is still quite high for a large-scale network that
contains millions or billion of vertices. A challenging question then is whether this
time complexity can be further significantly improved, e.g. a linear-time complexity,
while the solution quality is not inversely compromised. In the following we answer
this question affirmatively by devising two efficient algorithms for the problem.

5.4.2 Algorithm based on the bounded inverse closeness centrality

Most real-world complex networks follow two important facts: one is the sparsity.
The number of neighbors of each vertex in a network is constant, which does not
proportionally grow with the network size [Barabási and Albert 1999]; another fol-
lows the small world law. That is, the expected distance between any pair of vertices
is a small constant, not proportional to the network size [Kleinberg 2000; Watts and
Strogatz 1998]. Thus, instead of finding the single source shortest path tree for each
vertex that includes all vertices in G, it suffices to find a partial shortest path tree for the
vertex that reaches up to a given level of neighbors, where the neighbors of a vertex
is its level-1 neighbors, the neighbors of its neighbors is its level-2 neighbors, and so
on. We term the partial shortest path tree spanning up to level-l neighbors of v as
the l-bounded shortest tree Tl(v), and the l-bounded inverse closeness centrality of v thus is
defined as

dl(v) = ∑
u∈Tl(v)

dG
uv/(n− 1). (5.7)

We here adopt the similar metric as in algorithm 4, the only difference between
them is to choose K vertices with top-K largest l-bounded inverse closeness centrality,
rather than k vertices with top-k smallest inverse closeness centralities in algorithm 4,
assuming that K ≥ k. The rationale behind is that if a vertex (as a source) can reach
a larger portion of vertices in a network within a small distance l, then its average
distance to other vertices is shorter. To explore the diversity among vertices and to
mitigate two neighbors chosen as the top-k structural hole spanners at the same time,
the number of candidates K for the top-k hole spanners can be larger than k, e.g.,
K = ck (c ≥ 1). We then calculate the inverse closeness centralities of these K vertices
in G, and choose the top-k smallest ones as the top-k structural hole spanners of the
network. The proposed algorithm proceeds as follows.

It first identifies K vertices with top-K largest l-bounded inverse closeness central-
ities, starting at each vertex v ∈ V, using the BFS traversal on G. Assume that dl(v) is
the sum of the lengths of shortest paths from each vertex within the l-neighborhood of
vertex v. Let H be the set of top-K vertices with top-K largest bounded inverse close-
ness centralities. It then calculates the inverse closeness centrality d(v) of v, for each

50 Structural Holes Spanners in Complex Networks

Algorithm 4 ICC

Input: G = (V, E), k
Output: The set VS of top-k structural hole spanners

1: VS ← ∅;
2: Let Q be a priority queue of top k hole spanners where the key of each element

is its inverse closeness centrality;
3: for each vertex v ∈ V do
4: calculate the inverse closeness centrality d(v) of v;
5: if |Q| < k then
6: add v to Q and the key of v is d(v);
7: else if d(v) is less than the largest key in Q then
8: remove the element with the largest key from Q;
9: add v to Q and the key of v is d(v);

10: VS ← Q.

Algorithm 5 BICC

Input: G = (V, E), k, K, l
Output: The set of top-k structural hope spanners VS

1: Build a priority queue H with the bounded inverse closeness as the key of
each element in H;

2: Build a priority queue VS with the inverse closeness as the key of each element in VS;
3: for each vertex v ∈ V do
4: calculate the bounded inverse closeness centrality dl(v) of v, using BFS search;
5: if |H| < K then
6: add v to H;
7: else if dl(v) is larger than the smallest key in H then
8: remove the smallest key element from H;
9: add v to H;

10: for each vertex v ∈ H do
11: calculate the inverse closeness centrality d(v) of v;
12: if |VS| < k then
13: add v to VS;
14: else if d(v) is less than the largest key in VS then
15: remove the largest key element from VS;
16: add v to VS;

return VS.

§5.4 Algorithms for top-k structural hole spanner problem 51

vertex v ∈ H, using the BFS technique on G. It finally identifies the k vertices from
the K chosen vertices with top-k smallest inverse closeness centralities of the vertices.
We refer to algorithm 5 based the Bounded Inverse Closeness Centrality of vertices as
algorithm BICC for short. The rest is to analyze its time complexity by the following
theorem.

Theorem 6. Given an undirected connected graph G = (V, E) with constant maximum
degree and positive integers k and l, there is an algorithm, Algorithm 5, for the top-k structural
hole spanners in G, which takes O(m + n) time, where n = |V| and m = |E|.

Proof. Assume that G is represented by adjacency lists. Following algorithm 5, it first
constructs a partial shortest path tree Tl(v) rooted at v for each vertex v ∈ V using the
BFS technique, which takes O(∑l

i=1 di
max) = O(dl+1

max) time, where dmax is the maximum
degree of vertices in G. It then identifies the top-K vertices with the largest bounded
inverse closeness centrality, which takes O(log K) time for each vertex insertion into
the priority queue H. Therefore, it takes O(ndl+1

max) = O(m + n) time for finding the
set H as both dmax and l are small constants, in comparison with the network size n.
Identifying set VS takes O(K(n + m) + K log k) time, due to the BFS search in G for
each candidate vertex in H, and the addition of the candidate vertex to set VS, where
VS is maintained as a priority queue. Therefore, the time complexity of algorithm 5 is
O(K(n + m) + K log K) = O(m + n) as K = ck usually is constant.

5.4.3 A fast and scalable algorithm

So far, we have provided an algorithm based on the inverse closeness centrality and
devised an efficient algorithm by approximating the inverse closeness centrality of
each vertex, using the l-bounded inverse closeness centrality concept. We now take
the second term of Eq. (5.6) into account and devise another efficient algorithm which
further speeds up the running time in practice, by exploring articulation points of G.

One of the properties of structural hole spanners in most complex networks is their
tendency to connect multiple isolated communities. Such hole spanners are referred
to articulation points in graph theory. Thus, a top-k structural hole spanner usually is an
articulation point too. However, the number of articulation points in real-world com-
plex networks is quite large, e.g., the number of articulation points in each network
of Table 5.1 is at least 10% of the number of vertices in the network. How to identify
top-k structural hole spanners from all articulation points in a large-scale network is
a challenging issue. In the following, we shall devise a fast yet scalable algorithm for
the top-k structural hole spanner problem, by exploring articulation points and using
the bounded inverse closeness centrality of vertices.

Lemma 4. [Plesnı́k 1984] Let G be an unweighted connected graph G = (V, E) with n = |V|
vertices, then the sum of lengths of all pairs shortest paths in G is no more than n3/3.

Given two vertices u and v that are not in the same connected component of G,
we assume that there is a virtual edge in G between them with weight larger than the
sum of lengths of all pairs shortest paths in G, and we assign this virtual edge with

52 Structural Holes Spanners in Complex Networks

a weight w(u, v) = cn3 with c ≥ 1/3. For the sake of convenience, we set c = 1 in
the rest of discussion. Assume that v is an articulation point in G, we distinguish two
cases as follows.

• Case one: if the removal of v results in two connected components CC1 and
CC2. Let CCi contain ni vertices with i = 1, 2. The weighted sum of all virtual
edges resulting from the removal of v is n1 × (n− n1)cn3 + n2 × (n− n2)cn3 =
cn3(nn1 + nn2 − n2

1 − n2
2). Clearly, when n1 ≈ n2, the weighted sum is maxi-

mized. This implies that an articulation point is likely to be a top-k hole spanner
if its removal results in two large connected components.

• Case two: if the removal of v results in l connected components CC1, CC2, . . . , CCl
with l > 2. Let CCi contain ni vertices (1 ≤ i ≤ l). Let n = ∑

l
i=1 ni. Then, the

weighted sum of virtual edges between vertices in CCi and CC j is ∑
l
i=1 ∑

l
j=1 nin jcn3 =

cn3
∑

l
i=1 ni(n − ni), which is maximized when all components have roughly

equal sizes.

Following the analysis of these two cases, it can be seen that an articulation point
in G is likely to be one of the top-k structural hole spanner if its inverse closeness cen-
trality is maximized, which approximately equals the weighted sum of virtual edges
resulting from its removal, since the sum of all pairs shortest paths in each connected
component is much less than the weight of each virtual edge. We now propose a
fast, scalable algorithm by exploring the inverse closeness centralities of articulation
points. Specifically, the algorithm consists of two stages. Let A be the set of articu-
lation points in G. If |A| < k, the algorithm will proceed to the second stage after
the first stage. Within the first stage, there are a number of iterations. An articulation
point within each iteration will be chosen as a top-k hole spanner. In the second stage,
algorithm 5 will be invoked to find the rest of top-k structural hole spanners. The
detailed algorithm is described in algorithm 6.

We refer to algorithm 6 based on Articulation Points and Bounded Inverse Closeness
Centrality of vertices as algorithm AP BICC for short. We now show that articulation
points and the approximate inverse closeness centrality of all articulation points can
be done efficiently, using an extension of the Depth-First Search (DFS) traversal on
G [Hopcroft and Tarjan 1973].

Let v be an articulation point of G, in the DFS tree construction starting from a
vertex v, assume that u1, u2, . . . , up are the children of vertex v in the DFS tree. Let Vi
be the set of vertices in the subtree Ti rooted at ui and CCi the connected component of
G induced by the vertices in Vi with 1 ≤ i ≤ p. Let CC0 be the connected component
containing the ancestors of v in the DFS tree. Following the DFS search property,
all edges in G can be partitioned into two types of edges: “tree edges” and “non-
tree edges”, respectively. All non-tree edges are “back edges”, which means that one
endpoint of the edge is a descendant while another endpoint of the edge is a proper
ancestor of v in the DFS tree. Clearly, there is no edges between any two connected
components CCi and CC j with i 6= j and 1 ≤ i, j ≤ p, by the DFS traversal property as
shown by Fig. 5.3. If there is a back edge between a vertex in Vi and a vertex in CC0,

§5.4 Algorithms for top-k structural hole spanner problem 53

Algorithm 6 AP BICC

Input: G = (V, E), k, K, l
Output: The set of top-k structural hole spanners VS

1: build a priority queue VS of top-K approximate inverse closeness candidates with
the key of each element in VS;

2: let A be the set of articulation points in G, obtained by invoking Procedure 1;
3: for each vertex v ∈ A do
4: find the approximate inverse closeness centrality d′(v);
5: if |VS| < k then
6: add v to VS;
7: else if d′(v) is larger than the smallest key in VS then
8: remove the smallest key element from VS;
9: add v to VS;

10: if |VS| < k then /* the number of articulation points is less than k */
11: U ← V \ A;
12: k′ ← k− |VS|;
13: V′S ← ∅;
14: build a priority queue Q of K elements with the key of each

element in U being its l-bounded inverse closeness centrality;
15: for each vertex v ∈ Q do
16: calculate the inverse closeness centrality d(v) of v;
17: if |V′S|+ |VS| < k then
18: add v to V′S;
19: else if d(v) is less than the largest key in V′S then
20: remove the largest key element from V′S;
21: add v to VS;
22: VS ← VS ∪V′S; return VS.

Procedure 1 Articulation points and their approximate inverse closeness centrality
calculation

1: for each vertex u ∈ V do
2: /* the number of children of u */
3: u.child← 0;
4: /* each vertex has 3 colors white/grey/black */
5: u.color← white;
6: d′(u)← 0;
7: time← 0;
8: for each vertex u ∈ V do
9: if u.color == white then

10: call Modified-DFS(G,u) /* Procedure 2 */;

54 Structural Holes Spanners in Complex Networks

Procedure 2 Modified-DFS(G, u)
1: u.color← black;
2: time← time + 1;
3: /* the discovered time of vertex u */
4: u.discovered← time;
5: /* the smallest discovered time among neighbors of u’s

descendants (through a back-edge) */
6: u.lowest← time;
7: /* the number of vertices in CC0 after removing u */
8: cc0 ← n;
9: /* the number of descendants of u in DFS tree */

10: u.descendant← 0;
11: for all (u, v) ∈ E do
12: if u.color == white then
13: u.color← grey;
14: v.π ← u /* u is the parent of v */;
15: u.child← u.child + 1;
16: call Modified-DFS(G,v);
17: u.descendant← u.descendant + v.descendant;
18: u.lowest← min (u.lowest, v.lowest);
19: if (v.lowest ≥ u.discovered) OR (u is root AND u.child > 1) then
20: /* v will be disconnected without u */
21: d′(u)← d′(u) + (v.descendant× (n− v.descendant− 1));
22: cc0 ← cc0 − v.descendant /* subtree of v is not part of CC0 */;
23: else if v 6= u.π then
24: u.lowest← min (u.lowest, v.discovered);
25: d′(u)← d′(u) + (cc0 × (n− cc0 − 1)).

§5.4 Algorithms for top-k structural hole spanner problem 55

then both CCi and CC0 are still the same connected component even if v is removed
from G, 1 ≤ i ≤ p. An illustration of this case is shown in Fig 5.3.

...

CC0

CC1 CC2
CCp

T1 T2
Tp

ba
ck

 e
d

ge back edge
v

u1 u2
up

Figure 5.3: An illustration of exploring an articulation point v and its p children
u1, u2, . . . , up during a DFS traversal on G.

Assume that there are p′ CCs containing back edges among the p CCs derived
from the p children of v. Then, the removal of v will result in p− p′ CCs. For the sake
of convenience, we assume that these p− p′ CCs are CC′1, CC′2, . . . , CC′p−p′ with each
having n′i vertices. The approximate inverse closeness centrality of v then is

d′(v) ≈
p−p′

∑
i=1
|CC′i | · (n− |CC′i | − 1) · n3. (5.8)

The linear-time procedure for detecting each articulation point and the calculation
of its approximate inverse closeness centrality is then detailed as follows.

A vertex v is identified as an articulation point of G if a subtree rooted at one of its
children does not contain any back edges to CC0. The induced subgraph by the set of
vertices in this subtree is a connected component after the removal of vertex v from G.
The number of vertices contained in each such connected component is the number of
descendants of that child in the DFS tree. To keep track of the number of descendants
of each vertex when performing the DFS traversal on G and to identify those children
of the vertex without any back edges, the approximate inverse closeness centrality of
v (as an articulation point) can be easily calculated. The detailed implementation of
this is given in Procedure 1 and Procedure 2, respectively.

Theorem 7. Given a graph G(V, E) with constant maximum degree and an integer k > 0,
there is an efficient algorithm for the top-k structural hole spanners problem, algorithm 6,
which takes time O(n log k + m) = O(m + n) as k is a constant.

Proof. Following algorithm 6, the detection of all articulation points and the calcula-
tion of their approximate inverse closeness centralities takes O(n + m) time by Proce-
dure 1. For each vertex u, its adjacency list is traversed exactly once and the number
of descendants and children are calculated in the post-traversal in DFS. The mainte-
nance of the priority queue Q takes O(|A| log k) = O(n log k) time, where A is the

56 Structural Holes Spanners in Complex Networks

Table 5.1: Six different real datasets.

Dataset |V| |E| Articulation Points (%) ∆(G) Diameter
GR-QC 5,242 28,980 15% 81 17
Epinions 75,879 508,837 14% 1,551 14
Twitter 92,180 188,971 14% 233 26
Email-euAll 265,214 420,045 2% 7,636 14
DBLP-2011 986,324 6,707,236 9% 979 12
LiveJournal 5,363,260 79,023,142 16% 2,469 14

set of all articulation points in G. The total amount of time for calculating the number
of descendants of each vertex in the DFS tree is O(n). Thus, the time complexity of
algorithm 6 is O(n + m).

5.5 Performance evaluation

In this section we evaluate the performance of the proposed algorithms for solving
the structural hole spanner problem. We start with presenting the experimental en-
vironment settings, we then investigate the effectiveness of the proposed algorithm
of structural hole spanners, compared with other existing algorithms, using both real
and synthetic datasets. We finally study the performance of the proposed algorithms
and the impacts of parameters on the performance, using the datasets in Table 5.1 and
in the end, we discuss the results.

5.5.1 Experimental environment setting

To evaluate the performance of the proposed algorithms, we adopt the real-world
datasets, which are listed in Table 5.1, where GR-QC is the collaboration network from
arXiv1, covering collaborations between authors of chapters submitted to General Rel-
ativity and Quantum Cosmology category. Epinions is an online social network
of a general consumer review site Epinions2. The Twitter dataset was obtained
from [Lou and Tang 2013]. Email-EuAll is the anonymous email network of a large
European research institution for an 18-month period [Leskovec and Krevl 2014]. The
DBLP-2011 dataset is the collaboration network obtained from the DBLP web site3,
and the LiveJournal dataset describes the social network of free on-line blogging
community4.

Recall that algorithms 4, 5, and 6 are denoted by ICC, BICC and AP BICC, re-
spectively. To evaluate their performance we will use the following state-of-the-art
algorithms for benchmark purposes.

1http://arxiv.org/
2http://epinions.com/
3http://www.informatik.uni-trier.de/∼ley/db/
4http://livejournal.com/

§5.5 Performance evaluation 57

• Algorithm PathCount [Goyal and Vega-Redondo 2007] is similar to the be-
tweenness centrality and assigns each vertex a score that is the average number
of shortest paths (between all pairs of vertices) on which the vertex lies, then
selects the top-k vertices with the highest scores.

• Algorithm 2-Step [Tang et al. 2012] assigns each vertex a score that is the num-
ber of pairs of its neighbors without edges between them, then selects the top-k
highest scores.

• Algorithm PageRank [Page et al. 1999] assigns each vertex v a PageRank score
r(v) that is the visiting probability of v by a random surfer, r(v) = 1/n ini-
tially. The algorithm then updates r(v) with a new value r(v) = (1 −α)/n +
α ∑(u,v)∈E r(u)/deg(u), whereα = 0.85 is the random jump parameter. It finally
chooses the top-k vertices with the highest PageRank scores.

• Algorithm MaxD [Lou and Tang 2013] is to find a set of k vertices such that the
minimum cut of communities will be reduced significantly, after removing these
vertices, assuming that l communities are given. For any pair of communities,
the algorithm selects d2k/(l(l− 1))e vertices as structural hole spanners using a
greedy strategy. In each round, it chooses the vertex whose removal will result
in a maximum decrease of the minimum cut.

• Algorithm HIS [Lou and Tang 2013] assigns each vertex v a score that simu-
lates the likelihood of v as a structural hole spanner across the given subset of
communities, assuming that l communities are given.

Notice that all our experiments were conducted based on a Linux desktop with
GenuineIntel Core i7-3370 (3.40GHz) CPU and 8GB main memory.

5.5.2 Effectiveness of the proposed model

We first evaluate the effectiveness of the proposed model using the definition pro-
posed by Burt [Burt 1992] such as: (1) the size of communities that each vertex spans,
(2) the number of communities and (3) the number of neighbours of that vertices.
Burt [Burt 1992] suggested that a good structural hole spanner is connected to many
communities, but to be influential and efficient, the ratio of the number of its commu-
nities to the number of its neighbors should be large. This definition simply implies
a metric for evaluating structural hole spanners in a setting where the communities
in a network are given in advance. Given a graph G = (V, E), suppose S is the set of
structural hole spanners found by an algorithm, then, the quality of the solution S is

ρ(S) = ∑v∈S (# of communities that v is connected to)/deg(v)
|S| . (5.9)

We evaluate the performance of different algorithms using this metric in order to
find out the degree to which our model maps the real structural hole spanners. We
use the DBLP dataset which has been used for the same purpose in [Lou and Tang

58 Structural Holes Spanners in Complex Networks

5 15 25 35 45

k

0

0.4

0.8

ρ
(S
)

ICC
BICC
2-Step

PathCount
PageRank
HIS

MaxD
AP_BICC

(a) Community membership

5 15 25 35 45

k

1200

1600

A
v
er

ag
e

co
m

m
u
n
it

y
 s

iz
e

ICC
BICC
2-Step

PathCount
PageRank
HIS

MaxD
AP_BICC

(b) Average community size

Figure 5.4: Effectiveness of different algorithms on dataset DBLP using various quality
metrics.

2013]. The communities in this network are publication venues, e.g, journal or con-
ference; authors who published in certain journals or conferences form a community.
We evaluate our algorithms against MaxD and HIS proposed by Lou et al. [Lou and
Tang 2013].

Fig. 5.4 shows the performance of different algorithms, using the DBLP dataset.
Fig. 5.4b illustrates that algorithm AP BICC outperforms the other algorithms in the
benchmark at least 50%, using the metric in Eq. (5.9). In other words, in the solution of
algorithm AP BICC the ratio of the number of communities to which vertices are con-
nected to the number of their neighbours is more than 50% higher than that of other
methods. This means that the structural hole spanners found by algorithm AP BICC
are efficiently connected to different communities and through a reasonable number
of contacts. Similarly, it can be observed in Fig. 5.4a that algorithm AP BICC signif-
icantly outperforms all the other algorithms in terms of the average community size
by varying k. Fig. 5.4b verifies our claim in Section 5.2 that our model can identify the
vertices connecting with larger communities. In a nutshell, algorithm AP BICC can
guarantee that the found structural hole spanners are connected to larger communi-
ties in this dataset, while the other algorithms find structural hole spanners that are
in fewer communities, compared to the number of their adjacent vertices. It is worth
to mention that the running time of algorithm AP BICC is just a matter of millisec-
onds for dataset DBLP, while both algorithm MaxD and algorithm HIS take from a
few seconds to a few minutes, which is several orders of magnitude of the proposed
algorithms in running time.

5.5.3 Performance on synthetic datasets

We then evaluate the quality of structural hole spanners found by different algo-
rithms, using a synthetic dataset with known structural hole spanners. We generate
a random graph of 211 vertices, using the SSCA method5, which generates cliques
of random size, where the average size of cliques in this graph is 27, and randomly
places inter-clique edges. We then place a ground-truth structural hole spanner si for
every clique i. For every edge (u, v), such that u is in clique i and v is in clique j, we

5http://www.cse.psu.edu/∼madduri/software/GTgraph/

§5.5 Performance evaluation 59

5 15 25 35 45
k

0

20

40

60

80

100

P
re

ci
si

o
n

 I
m

p
ro

v
em

en
t

(%
)

ICC
2-Step
PathCount

PageRank
HIS
MaxD

(a) Precision improvement

5 15 25 35 45
k

1

10

100

1000

R
u

n
n

in
g

 t
im

e
sp

ee
d

 u
p

 r
at

io

ICC
2-Step
PathCount
PageRank
HIS
MaxD

(b) Speed up ratio

Figure 5.5: Running time and precision improvement by algorithm AP BICC using
synthetic dataset.

5 15 25 35 45
k

0

1e+17

2e+17

3e+17

4e+17

5e+17

6e+17

C
(G

\S
)-
C
(G

)

ICC
BICC
2-Step
PathCount
PageRank
AP_BICC

(a) GR-QC

5 15 25 35 45
k

0

1e+23

2e+23

3e+23

C
(G

\S
)-
C
(G

)

ICC
BICC
2-Step
PathCount
PageRank
AP_BICC

(b) Epinions

5 15 25 35 45
k

0

2e+22

4e+22

6e+22

8e+22

1e+23

1.2e+23

C
(G

\S
)-
C
(G

)

ICC
BICC
2-Step
PathCount
PageRank
AP_BICC

(c) Twitter

5 15 25 35 45
k

0

2e+26

4e+26

6e+26

8e+26

C
(G

\S
)-
C
(G

)

ICC
BICC
2-Step
PathCount
PageRank
AP_BICC

(d) Email-EuAll

5 15 25 35 45
k

0

1e+27

2e+27

3e+27

C
(G

\S
)-
C
(G

)

ICC
BICC
2-Step
PathCount
PageRank
AP_BICC

(e) DBLP-2011

5 15 25 35 45
k

0

1e+31

2e+31
C
(G

\S
)-
C
(G

)

ICC
BICC
2-Step
PageRank
AP_BICC

(f) LiveJournal
Figure 5.6: Performance of various algorithms, using various datasets.

replace it with two edges (u, si) and (si, v) in the graph (alternatively, since the graph
is undirected, we place two other edges (s j, u) and (v, s j) in the network). We evaluate
the structural hole spanners found by each method and calculate the precision based
on the number of structural hole spanners that were found accurately.

Fig. 5.5 shows the performance improvement made by algorithm AP BICC in em-
pirical result, and demonstrates that the accuracy of the solution delivered by algo-
rithm AP BICC is at least 20% better off, compared with the others for k > 5. The rea-
son behind is that algorithm AP BICC finds more meaningful structural hole spanners
that play a significant roles in the connectivity of communities (cliques) and vertices
in the network.

5.5.4 Performance on real datasets

We also evaluate the performance of the mentioned algorithms ICC, BICC, and AP BICC,
and the structure-based benchmark algorithms PathCount, PageRank, and 2-Step
against various real datasets listed in Table 5.1. In this experiment, we avoid compar-

60 Structural Holes Spanners in Complex Networks

5 15 25 35 45
k

1

10

100

R
u
u
n
in

g
 T

im
e

(m
s)

ICC BICC 2-Step

PathCount PageRank AP_BICC

(a) GR-QC

5 15 25 35 45
k

100

1000

10000

1e+05

R
u
n
n
in

g
 T

im
e

(m
s)

ICC BICC 2-Step

PathCount PageRank AP_BICC

(b) Epinions

5 15 25 35 45
k

100

1000

10000

1e+05

R
u
n
n
in

g
 T

im
e

(m
s)

ICC BICC 2-Step

PathCount PageRank AP_BICC

(c) Twitter

5 15 25 35 45
k

100

1000

10000

1e+05

1e+06

R
u
n
n
in

g
 T

im
e

(m
s)

ICC BICC 2-Step

PathCount PageRank AP_BICC

(d) Email-EuAll

5 15 25 35 45
k

1000

10000

1e+05

1e+06

1e+07

1e+08

R
u
n
n
in

g
 T

im
e

(m
s)

ICC BICC 2-Step

PathCount PageRank AP_BICC

(e) DBLP-2011

5 15 25 35 45
k

10000

1e+05

1e+06

1e+07

1e+08

1e+09

R
u
n
n
in

g
 T

im
e

(m
s)

BICC 2-Step

PageRank AP_BICC

ICC

(f) LiveJournal

Figure 5.7: Running times of various algorithms, using various datasets.

ing community-based algorithms such as MaxD and HIS, since using different com-
munity detection algorithms can lead to different results and thus, can be unfair.

Fig. 5.6 and Fig. 5.7 show the performance of different algorithms in terms of the
optimization objective in Eq. (5.1), i.e., D(G \ S)−D(G) and the running time. Specif-
ically, it can be seen from Fig. 5.6a that algorithm AP BICC significantly outperforms
all the other algorithms by at least 100% for dataset GR-QC, while its running time
is only 6% of the lowest one among the three benchmark algorithms as shown in
Fig. 5.7a. It can be observed from Fig. 5.6e to Fig. 5.6f that algorithm AP BICC has the
similar performance and running time for other datasets. That is, it outperforms all
the other algorithms at least 50% while its running time is only around 7% and 65%
of the fastest benchmark algorithm for datasets DBLP-2011 and LiveJournal, re-
spectively. Fig. 5.6b and Fig. 5.6d further demonstrate that it is superior in comparison
with benchmark algorithms such as PageRank and PathCount on both performance
and running time for datasets Epinions and Email-EuAll when k is small, (e.g.
k < 20). With the increase of k, the performance gap between algorithm AP BICC and
the other algorithms increases, too. Furthermore, it can also be seen from Fig. 5.7b
and Fig. 5.7d that the running time of algorithm AP BICC is less than 7% of the fastest
benchmark algorithm PageRank and only 0.01% of the running times of algorithms
ICC and PathCount for dataset DBLP-2011 as shown in Fig. 5.7e. However, it is
interestingly noticed from Fig. 5.6f that algorithm AP BICC significantly outperforms
all other algorithms for dataset LiveJournal while its running time is less than 10%
of algorithm PageRank. More interestingly, Fig. 5.7f depicts that the running time of
algorithm BICC is no more than 0.1% of algorithm ICC. It can be seen from Fig. 5.6
that that algorithm AP BICC significantly outperforms algorithm BICC, which means
that incorporating articulation points and the bounded inverse closeness centrality is

§5.5 Performance evaluation 61

5 15 25 35 45
k

0

2e+16

4e+16

6e+16

8e+16

1e+17

1.2e+17

C
(G

\S
)-
C
(G

)

l=2
l=4
l=6
l=8
l=10

(a) GR-QC

5 15 25 35 45
k

0

2e+22

4e+22

6e+22

8e+22

C
(G

\S
)-
C
(G

)

l=2
l=4
l=6
l=8
l=10

(b) Epinions

5 15 25 35 45
k

0

2e+21

4e+21

6e+21

8e+21

C
(G

\S
)-
C
(G

)

l=2
l=4
l=6
l=8
l=10

(c) Twitter

5 15 25 35 45
k

0

5e+25

1e+26

1.5e+26

2e+26

C
(G

\S
)-
C
(G

)

l=2
l=4
l=6
l=8
l=10

(d) Email-EuAll

5 15 25 35 45
k

0

2e+26

4e+26

6e+26

8e+26

1e+27

1.2e+27

C
(G

\S
)-
C
(G

)

l=2
l=4
l=6
l=8
l=10

(e) DBLP-2011

5 15 25 35 45
k

0

2e+29

4e+29

6e+29

8e+29

1e+30

1.2e+30

C
(G

\S
)-
C
(G

)

l=2
l=4
l=6
l=8
l=10

(f) LiveJournal

Figure 5.8: Impact of parameter l on performance of algorithm BICC.

5 15 25 35 45
k

1

100

10000

R
u
n
n
in

g
 T

im
e

(m
s)

l=2
l=4
l=6
l=8
l=10

(a) GR-QC

5 15 25 35 45
k

1

100

10000

1e+06

R
u
n
n
in

g
 T

im
e

(m
s)

l=2
l=4
l=6
l=8
l=10

(b) Epinions

5 15 25 35 45
k

1

100

10000

1e+06

1e+08

R
u
n
n
in

g
 T

im
e

(m
s)

l=2
l=4
l=6
l=8
l=10

(c) Twitter

5 15 25 35 45
k

1

100

10000

1e+06

1e+08

R
u
n
n
in

g
 T

im
e

(m
s)

l=2
l=4
l=6
l=8
l=10

(d) Email-EuAll

5 15 25 35 45
k

100

10000

1e+06

1e+08

1e+10

1e+12

R
u
n
n
in

g
 T

im
e

(m
s)

l=2
l=4
l=6
l=8
l=10

(e) DBLP-2011

5 15 25 35 45
k

100

10000

1e+06

1e+08

1e+10

1e+12

1e+14

1e+16

R
u
n
n
in

g
 T

im
e

(m
s)

l=2
l=4
l=6
l=8
l=10

(f) LiveJournal

Figure 5.9: Impact of parameter l on running time of algorithm BICC.

considerably effective. Furthermore, since the number of articulation points in real
datasets is considerably larger than the desired value of k, algorithm AP BICC never
reaches the second phase, making it to run significantly faster than all other methods.

5.5.5 Impact of parameters on the performance

We finally evaluate the impact of parameters on the performance of the proposed algo-
rithms AP BICC and BICC. As the number of articulation points in each real dataset is
far larger than k (please refer to Table 5.1 for the number of articulation points in each
dataset), the second stage of algorithm AP BICC, on the bounded inverse closeness
centrality of vertices will not be invoked. Therefore, we only investigate the impact of
parameters l and K on the performance of algorithm BICC.

Fig. 5.8 and Fig. 5.9 plot the performance curves of algorithm BICC by varying

62 Structural Holes Spanners in Complex Networks

the value of l, based on the datasets described in Table 5.1. Fig.5.8a shows that for
dataset GR-QC, when l is small (2 ≤ l ≤ 4), the performance of algorithm BICC
is at least 30% higher than that of larger values of l. It can be seen from Fig. 5.8b
that when parameter l is large, algorithm BICC performs less than 20% of the case
where l is small (l = 2) using dataset Epinions. Fig. 5.8c illustrates that for dataset
Twitter, the performance of small values of parameter l is almost identical, while
the performance drops when the value of parameter l is increased (l > 6). Fig. 5.8f
implies that when l is small with 2 ≤ l ≤ 6, algorithm BICC has the best performance
for dataset LiveJournal. It also exhibits similar behaviours for dataset DBLP-2011
as shown in Fig. 5.8e. However, its performance degrades chromatically when l = 6,
i.e., its performance decreases by at least 80% compared with its performance when
l = 2. This implies that its performance dramatically drops with the growth of l.
The reason behind is that algorithm BICC always chooses the top-K vertices with the
largest l-bounded inverse closeness dl(v). By continuously increasing the value of
l, the value of dl(v) will be closer to the value of its inverse closeness centrality d(v).
Since the top-K vertices with the “largest” l-bounded inverse closeness centrality (that
is indeed almost the same as inverse closeness centrality for large l) will be chosen, the
algorithm performance drops. Fig. 5.8 suggests that the value of l in practice should
be small, otherwise the quality of the solution is not promising, this further verifies the
small-world phenomenon that causes l-bounded closeness centrality to be very close
to inverse closeness centrality, and the largest distance in the network is expected to
be a constant.

Fig. 5.9 plots the running times of algorithm BICC by varying parameter l. It can
be seen from Fig. 5.9a that for dataset GR=QC, the running time of algorithm BICC
grows very fast by increasing the value of l. Specifically, when l is small (l = 2), the
performance of the algorithm is less than 50% of the case where l is large (l = 10).
Fig. 5.9b shows the running time of the algorithm using dataset Epinions, where
it can be seen that the performance drops considerably when l is large. However, it
is noticed from Fig. 5.9b that when l is large (8 ≤ l ≤ 10), the running time of the
algorithm is identical. The reason behind such performance is that the diameter of
dataset Epinions is very small and the algorithm traverses almost every vertex in
the graph until level 8 of the shortest path tree. Fig. 5.9f shows the running time of the
algorithm for dataset LiveJournal, from which it can be seen that it takes more time
on finding a solution with the growth of l. Specifically, its running time when l = 2 is
a tiny fraction of its running time when l = 10 (0.001%). Fig. 5.9e further shows that
it has the similar behaviours for dataset DBLP-2011.

We now study the impact of parameter K on the performance of algorithm BICC.
Fig. 5.10a shows that for dataset GR-QC, the performance of the algorithm increases
with the increase of K. It is noticed that only for some values of k (30 ≤ k ≤ 45), the
performance with K = 2k is promising. The reason behind this observation is that by
increasing K, more vertices will be examined by the algorithm and the performance
will be improved. Fig. 5.10b shows that performance of algorithm BICC for dataset
Epinions is 5% improved by increasing K, for large values of k. From Fig. 5.10d
and Fig. 5.10e, it can be seen that the performance of algorithm BICC for datasets

§5.5 Performance evaluation 63

5 15 25 35 45
k

0

2e+16

4e+16

6e+16

8e+16

1e+17

1.2e+17

C
(G

\S
)-
C
(G

)

K=2k
K=4k
K=6k
K=8k
K=10k

(a) GR-QC

5 15 25 35 45
k

0

2e+22

4e+22

6e+22

8e+22

1e+23

C
(G

\S
)-
C
(G

)

K=2k
K=4k
K=6k
K=8k
K=10k

(b) Epinions

5 15 25 35 45
k

0

2e+21

4e+21

6e+21

8e+21

C
(G

\S
)-
C
(G

)

K=2k
K=4k
K=6k
K=8k
K=10k

(c) Twitter

5 15 25 35 45
k

0

5e+25

1e+26

1.5e+26

C
(G

\S
)-
C
(G

)

K=2k
K=4k
K=6k
K=8k
K=10k

(d) Email-EuAll

5 15 25 35 45
k

0

2e+26

4e+26

6e+26

8e+26

1e+27

1.2e+27

C
(G

\S
)-
C
(G

)

K=2k
K=4k
K=6k
K=8k
K=10k

(e) DBLP-2011

5 15 25 35 45
k

0

2e+29

4e+29

6e+29

C
(G

\S
)-
C
(G

)

K=2k
K=4k
K=6k
K=8k
K=10k

(f) LiveJournal

Figure 5.10: Impact of parameter K on performance of algorithm BICC.

5 15 25 35 45
k

1

100

R
u
n
n
in

g
 T

im
e

(m
s)

K=2k
K=4k
K=6k
K=8k
K=10k

(a) GR-QC

5 15 25 35 45
k

1

100

R
u
n
n
in

g
 T

im
e

(m
s)

K=2k
K=4k
K=6k
K=8k
K=10k

(b) Epinions

5 15 25 35 45
k

1

100

10000

R
u
n
n
in

g
 T

im
e

(m
s)

K=2k
K=4k
K=6k
K=8k
K=10k

(c) Twitter

5 15 25 35 45
k

100

10000

R
u
n
n
in

g
 T

im
e

(m
s)

K=2k
K=4k
K=6k
K=8k
K=10k

(d) Email-EuAll

5 15 25 35 45
k

100

10000

1e+06

R
u
n
n
in

g
 T

im
e

(m
s)

K=2k
K=4k
K=6k
K=8k
K=10k

(e) DBLP-2011

5 15 25 35 45
k

100

10000

1e+06

R
u
n
n
in

g
 T

im
e

(m
s)

K=2k
K=4k
K=6k
K=8k
K=10k

(f) LiveJournal

Figure 5.11: Impact of parameter K on running time of algorithm BICC.

Email-EuAll and DBLP-2011 is stable, with the increase of K. The rationale be-
hind is that most real complex networks follow the small-world law that vertices can
reach each other with a few number of hops, thus the l-bounded inverse closeness
centrality of vertices can approximately represent the degree to which a vertex is con-
nected to other vertices. Fig. 5.10f demonstrates that algorithm BICC leads to a better
performance for dataset LiveJournal with the growth of K.

Fig. 5.11 plots the running time curves of algorithm BICC, using different values
of K for different datasets. Fig. 5.11a shows that by increasing K, the running time
of algorithm BICC increases by at least 10% for dataset GR-QC. Fig. 5.11b illustrates
that for dataset Epinions, the running time of the algorithm increases by at least 5%
when parameter K is increased. Similarly, from Fig. 5.11c it can be seen that the run-
ning time of algorithm BICC increases by at least 5%. Fig. 5.11f shows the running

64 Structural Holes Spanners in Complex Networks

time for dataset LiveJournal, from which it can be seen that the running time of
algorithm BICC linearly increases, with the growth of K. The reason is that by in-
creasing the value of K, algorithm BICC will examine more candidate vertices that
takes linear amount of time. From Fig. 5.11, it can be interestingly noticed that when
the size of dataset is larger, the increase in the running time that is caused by increase
in parameter K is less significant, which shows that the running time increases linearly
for a larger parameter K.

5.5.6 Discussion of experimental results

We now turn to discussing of the experimental results. Fig. 5.6 demonstrates that
in co-authorship datasets GR-QC and DBLP-2011, the performance gain of algorithm
AP BICC over algorithm PageRank is significant. The reason is that algorithm AP BICC
finds vertices who bridge different communities, while algorithm PageRank detects
vertices with high reputation. In other words, within co-authorship networks, opin-
ion leaders have a high reputation as they collaborate with many people in their own
community; however, the structural hole spanners connect different communities and
their absence is more tangible. Similarly, in dataset LiveJournal, bloggers produce
contents within their specific category of interest and gain high reputation. The blog-
gers who are active in multiple categories, however, have a wider perspective, more
sources of information and hold more significant positions.

Moreover, Fig. 5.6 plots that the performance of algorithm AP BICC is similar to
PageRank for dataset Email-EuAll. Email-EuAll is the email network of an or-
ganization in which high level managers gain a high reputation. The high level man-
agers communicate with the operation managers in each separate division and act
as the only communication link between each separate division. Thus, they are also
structural hole spanners. A similar explanation can be applied to dataset Twitter,
where people who have higher reputation are directly followed by a larger portion of
users and their content is forwarded by their followers.

5.6 Summary

We studied the top-k structural hole spanner problem in a large-scale complex net-
work. We first proposed a novel model to measure the quality of structural hole span-
ners. We then formulated a novel top-k structural hole spanner problem and showed
its NP-hardness. After that, we devised two fast yet scalable linear-time algorithms
for the problem by exploring the bounded inverse closeness centrality of vertices and
articulation points in a network. We finally validated the effectiveness of the proposed
model and evaluated the performance of the proposed algorithms through extensive
experiments on real and synthetic datasets. Experimental results demonstrated that
the proposed model can capture the characteristics of structural hole spanners accu-
rately, and the proposed algorithms are promising.

Chapter 6

Overlapping Community Structure
in Complex Networks

6.1 Overview

Existing fitness metrics for overlapping community detection cause two issues in find-
ing communities. One issue with existing fitness metrics, e.g. conductance and local
modularity, is the separation effect that the overlapping region is assigned to only one
of the two communities. Fig. 6.1 shows that the conductance value of community
V2 − V1 is larger than that of community V2. Thus, vertices in the overlapping re-
gion will be assigned to community V1 only, as this will result in a larger conductance
value. In fact, the vertices in the overlapping region should be assigned to both V1

and V2.
Another issue is the presence of the free rider effect [Wu et al. 2015]. Bandyopadhyay

et al. [Bandyopadhyay et al. 2015] proposed an algorithm FOCS that expands neigh-
borhoods of vertices, using the subgraph modularity fitness metric. Wu et al. [Wu et al.
2015] however showed that the modularity metric and other existing metrics suffer
from free rider effect [Wu et al. 2015] or resolution limit [Fortunato and Barthelemy 2007]
on found communities, where a community that is always merged with its densest
neighboring community will result in a better community in terms of the adopted fit-
ness metric. Fig. 6.1 illustrates that the values of classic density, relative density and
subgraph modularity of community V1 ∪ V2 are larger than those of community V2,
which means that these fitness metrics can cause free rider effect. We later show that
fitness metrics relying on only the internal density usually result in free riders, while
fitness metrics relying on only the external sparsity usually cause separation effects.

Despite the importance of both free rider and separation effects on overlapping
communities, they have not thoroughly been studied yet. The traditional free rider
effect [Wu et al. 2015] for non-overlapping communities states that the fitness met-
ric value of the resulting community by merging two communities is better than that
of either of the communities. This definition, however, may not apply to overlap-
ping communities, due to the fact that the overlapping region of the two communities
should belong to both of them. Furthermore, although triangle-based approaches en-
tail a strong cohesion among vertices in communities [Cohen 2008; Sariyuce et al.

65

66 Overlapping Community Structure in Complex Networks

V1

V2

V3 V4

Fitness metrics f (V1) f (V2) f (V1 ∪V2) f (V1 −V2) f (V1 −V2) Detected communities Remarks

Classic density (CD) 4.38 2.44 3.6 2.28 4.09 V1 , V1 ∪V2 Free rider effect

Relative density (RD) 0.85 0.47 0.84 0.48 0.73 V1 , V1 ∪V2 Free rider effect

Subgraph modularity (SM) 5.7 0.91 5.26 0.94 2.81 V1 , V1 ∪V2 Free rider effect

Local modularity (LM) 0.73 0.61 0.41 0.57 0.81 V2 , V1 −V2 Separation effect

Conductance (CN) 0.85 0.47 0.26 0.94 0.73 V2 , V2 −V1 Separation effect

Figure 6.1: A small network and different fitness values for its communities. While
communities V1 and V2 share two vertices, fitness metrics CD, RD and SM obtain
larger fitness values for communities V1, V1 ∪V2 (free rider effect), and fitness metrics
LM and CN obtain larger values for V2, V1 − V2 and V1, V2 − V1, respectively (sepa-
ration effect).

2015; Wang et al. 2010; Zhang and Parthasarathy 2012], the aforementioned fitness
metrics measure the quality of communities based on the most obvious structure in
networks - the edges, while ignoring more inherent structures within networks such
as triangles. Benson et al. [Benson et al. 2016] and Tsourakakis et al. [Tsourakakis et al.
2016] recently extended the conductance metric by introducing motif concepts, and
made use of a given motif as the building block to identify communities, where the
number of motif instances in a subgraph is the density of the subgraph, and the num-
ber of instances that are partially included in the subgraph is its external sparsity.
Particularly, these studies show the effectiveness of triangle motifs in the structure
of communities. However, the mentioned conductance metric relies heavily on the
external sparsity of communities. Under this metric, the overlapping region of two
communities is always assigned to the one with more edge connections.

In this chapter, we will study the free rider effect on overlapping communities,
which has not been studied previously [Fortunato and Barthelemy 2007; Huang et al.
2015; Wu et al. 2015]. We will also study the separation effect on overlapping commu-
nities. To the best of our knowledge, this is the first overlapping community detection
work that considers the quality of overlapping communities, while minimizing both
free rider and separation effects on overlapping communities. The main contributions
of this chapter are as follows.

• We first introduce a new definition of internal density and external sparsity of
communities based on ‘asymmetric triangle cuts’, and propose a new fitness
metric for overlapping community detection that mitigates both free rider and
separation effects on communities.

§6.2 Problem definition 67

• We then formulate a novel overlapping detection problem based on the pro-
posed fitness metric and show its NP-hardness. We devise an efficient yet scal-
able algorithm for the problem.

• We finally conduct experiments to evaluate the performance of the proposed
algorithm using real-world datasets. Experimental results demonstrate that the
proposed algorithm outperforms existing methods, in comparison with the ground-
truth communities.

The rest of this chapter is organized as follows. We first propose a new fitness met-
ric for overlapping communities, and define the overlapping community detection
problem in Section 6.2. We then show the NP-hardness of the defined problem and
devise an algorithm and analyze the time complexity of the algorithm for the problem
in Section 6.3 and Section 6.4, respectively. We also evaluate the performance of the
proposed algorithm in Section 7.4. We finally summarise the chapter in Section 6.6.

6.2 Problem definition

In this section, we introduce fitness metrics of overlapping communities. We then
define the problem of overlapping community detection precisely.

6.2.1 Overlapping community fitness metrics

The aforementioned community fitness metrics are appropriate for non-overlapping
community detection. However, they may fail to detect overlapping communities as
they may cause free rider effect [Wu et al. 2015] and separation effect on the found com-
munities. In other words, these metrics dismiss the overlapping region between two
communities by either assigning it to only one of them (separation effect) or merg-
ing them into a single community (free rider effect). For example, if we adopt the
conductance metric in the social network in Fig. 6.1, it can only detect community
V2 − (V1 ∩V2) but exclude V1 ∩V2 that is densely connected to V2. This implies that
the fitness valueσ ′(V1)+σ

′(V2− (V1 ∩V2)) is no less than that ofσ ′(V1)+σ
′(V2), us-

ing the conductance metric. This will result in the separation effect. In the following,
we define free rider and separation effects on overlapping communities formally.

Definition 3 (Separation Effect). Given a social network G = (V, E) and a fitness metric
f (·), the separation effect happens when for any two communities V1 and V2,

f (V1) + f (V2) < max{ f (V1) + f (V2 −V1 ∩V2), f (V2) + f (V1 −V1 ∩V2)}. (6.1)

It is noticed that community fitness metrics that rely on the number of edges be-
tween communities tend to assign the overlapping region of two communities to only
one of them, i.e., to the one with more edges connected. Examples of such fitness met-
rics include conductance and local modularity metrics in Fig. 6.1. On the other hand,
the primary cause of free rider effects of existing fitness metrics is that the quality of

68 Overlapping Community Structure in Complex Networks

a community is measured in terms of the density of its edges, which can be averaged
when merging two communities. That is why after merging community V2 with the
denser community V1 in Fig. 6.1, the fitness value of community V1 ∪ V2 becomes
larger than that of community V2. However, we observe that the fitness value of the
merged community V1 ∪V2 is not necessarily greater than that of the dense commu-
nity V1 since they are weakly connected to each other except their overlapping region.
We use this intuition to extend the free rider effect on overlapping communities as
follows.

Definition 4 (Free Rider Effect). Given a social network G = (V, E) and a fitness metric
f (·), the free rider effect happens when there are two communities V1 and V2,

f (V1) ≥ f (V1 ∪V2) ∧ f (V2) < f (V1 ∪V2). (6.2)

This definition of the free rider effect implies that if a community V2 is merged
with V1, they will form a new community V1 ∪ V2 with a larger fitness value. How-
ever, if the fitness value of the resulting community is larger than only one of them,
the free rider will happen. Otherwise, the merge will become valid, and such a merge
will not incur the free rider effect. Fig. 6.1 illustrates that fitness metrics such as clas-
sic density and relative density can identify community V1 successfully, but they fail
to identify community V2. They identify community V1 ∪ V2, instead of V2, which
means that they cause free rider effect.

6.2.2 A new fitness metric based on triangle cuts for overlapping commu-
nity detection

We here propose a new fitness metric for overlapping community detection that can
minimize the free rider and separation effects on overlapping communities.

Recent studies [Cohen 2008; Huang et al. 2014; Huang et al. 2015] have shown that
triangles can guarantee a strong cohesion among vertices in a community, by which
the vertices in the same community are close to each other (the diameter of a subgraph
induced by a community is small [Huang et al. 2015]), and the connectivity among the
vertices in the community is robust (vertices in a community exhibit a strong edge-
connectivity [Cohen 2008; Huang et al. 2015]). Therefore, a good community fitness
metric should favour a large number of triangles within a community. Inversely, the
connectivity between communities is not a preferred property, since a large number
of edges between two communities may not represent strong connections of vertices
between the two communities. We thus make use of the number of triangles, instead
of the number of edges, between different communities as a proper fitness metric to
measure the connectivity among the communities.

Let V = {V1, ..., Vq} be the collection of overlapping communities in G(V, E). The
overlapping triangle connectivity of a community Vi ∈ V (1 ≤ i ≤ q) is the degree to
which the vertices in Vi are connected with each other and sparsely connected to the
rest of vertices in G. Thus, all triangles in G can be categorized into two types: com-
munity triangles and cut triangles, where a community triangle is a triangle that has all

§6.2 Problem definition 69

its three vertices in the community, while a cut triangle is a triangle that at least one of
its three vertices does not lie in the same community as the other two vertices. Since
the number of community triangles indicates the strength of cohesion among the ver-
tices in a community, the number of community triangles will be put in the numerator
while the number of asymmetric cut triangles will be put in the denominator of the
fitness metric. To balance the overlapping region between communities and avoid the
free rider effect, the overlapping size of a community with other communities will be
put in the denominator of the fitness metric. Finally, the number of vertices contained
in a community will be put in the denominator of the fitness metric to avoid over-
sized communities and balance the fitness values of communities. We thus define the
overlapping triangle connectivity τ(Vi), as the ratio of the number of community tri-
angles in Vi to the sum of the number of cut triangles, the number of vertices in Vi,
and the size of overlapping region with the other communities, i.e.,

τ(Vi) = (6.3)
|∆G(Vi)|

|{∆uvw : u, v ∈ Vi, w 6∈ Vi & 6 ∃Vj∈Vu, v, w ∈ Vj}|+ ∑Vj∈V |Vi ∩Vj|+ |Vi|
.

Notice that the number of vertices is applied in the denominator of the fitness met-
ric in Eq.(6.3) to normalize the value and the ratio of the number of triangles to the
number of vertices. Without the term of the number of vertices in the denominator,
a larger community would have a larger fitness value. It can be seen from Fig. 6.1
that the merge of two communities V1 and V2 does not increase the fitness value of
the resulting community (since the number of vertices increases and the number of
triangles per vertex does not increase), using the proposed overlapping triangle con-
nectivity fitness metric τ(·). Fig. 6.1 also shows that the fitness value of the result-
ing community does not necessarily increase by merging a community V2 to another
denser community V1. Thus, the fitness metric τ(·) does not result in free rider effect
on overlapping communities in this example.

A fitness metric f (·) is said to be monotonically increasing if for any two subsets
V1 ⊆ V and V2 ⊆ V \ V1, f (V1 ∪V2) ≥ f (V1) always holds. Similarly, f (·) is said to
be monotonically decreasing if f (V1 ∪V2) ≤ f (V1). A fitness function is non-monotonic if
it neither monotonically increases nor monotonically decreases. Monotonicity of a fit-
ness metric f (·) has several implications such as the occurrence of free rider effect [Wu
et al. 2015] and the existence of an approximation algorithm for community detection
under the fitness metric using hill climbing algorithms [Nemhauser et al. 1978]. In the
following we show the defined fitness metric τ(·) is non-monotonic.

Lemma 5. The defined fitness metric function τ(·) is a non-monotonic function.

Proof. We show the non-monotonicity of function τ(·), by proving that for a given
community Vj ∈ V , there exist vertices v, u /∈ Vj such that τ(Vj) ≥ τ(Vj ∪ {v}) while
τ(Vj) ≤ τ({Vj ∪ {u}}) as follows.

Let Vj be a community that consists of a clique Kn−1 (n > 4). We first show that
there is a vertex v ∈ V \Vj such that τ(Vj) ≥ τ(Vj ∪ {v}). The fitness value of clique

70 Overlapping Community Structure in Complex Networks

Kn−1 is τ(Kn−1) = (n−1)(n−2)(n−3)
6(n−1) . Assume that v is connected to some vertices in

Vj but does not form any triangles with the vertices. Now, if vertex v is added to
Vj, the fitness value of the resulting community Vj ∪ {v} will be τ(Kn−1 ∪ {v}) =
(n−1)(n−2)(n−3)

6(n−1+1) . Clearly, τ(Kn−1) > τ(Kn−1 ∪ {v}), or, τ(Vj) > τ(Vj ∪ {v}).
We then prove that there is another vertex u ∈ V \ Vj such that τ(Vj) ≤ τ(Vj ∪

{u}). Let u be a vertex in clique Kn−1. Removing u and its incident edges from Kn−1

leaves us with a clique Kn−2 with the fitness value τ(Kn−2) = (n−2)(n−3)(n−4)
6(n−2) . Now,

if u is added to Vj, then τ(Kn−2 ∪ {u}) = (n−1)(n−2)(n−3)
6(n−2+1) . Since n > 4, τ(Kn−2) <

τ(Kn−2 ∪ {u}). Thus, the fitness value increases.

Lemma 5 implies that devising an efficient algorithm for overlapping community
detection in G with an objective to maximize τ(V) (= ∑Vj∈V τ(Vj)) is extremely dif-
ficult, due to the non-monotonicity of function τ(·). Instead, we will develop an effi-
cient heuristic algorithm for the overlapping community detection problem.

6.2.3 Problem formulation

Given a network G = (V, E) and the overlapping triangle connectivity fitness metric
τ(·), the overlapping community detection problem in G is to find a collection of maximal
overlapping communities V = {V1, ..., Vq} such that for every community Vi ∈ V , the
value of the overlapping triangle connectivity fitness metric τ(Vi) is maximal, where
Vi is a community (⊆ V), ∪q

i=1Vi = V, Vi ∩Vj (i 6= j) may or may not be empty with
1 ≤ i, j ≤ q, and q is the number of communities of G.

6.3 NP-hardness

We show that the overlapping community detection problem is NP-hard, by a reduc-
tion from the relative density community detection problem [Šı́ma and Schaeffer 2006]
that has been shown to be NP-hard. Since the non-overlapping community detec-
tion problem is a special case of the overlapping community detection problem, the
NP-hardness of the non-overlapping community detection problem implies the NP-
hardness of the overlapping community detection problem.

Let us formally define the decision versions of the relative density and non-overlapping
community detection problems as follows.

Definition 5. Given a graph G = (V, E) and a positive rational number ρ with 0 < ρ ≤ 1,
the decision version of the Relative Density Community Detection (RDCD) problem is to
determine whether there is a subset of vertices V ′ ⊂ V such that e(V′)/(e(V′) + e(V′, V \
V′)) ≥ ρ.

Definition 6. Given a graph G = (V, E) and a positive rational number ε > 0, the decision
version of the Non-overlapping Triangle Community Detection (NTCD) problem is to deter-
mine whether there is a subset of vertices V′ ⊂ V such that |∆G(V′)|/(|V′|+ |∆G(V′, V \
V′)|) ≥ ε.

§6.3 NP-hardness 71

Definition 7. Given a graph G = (V, E) and a positive rational number ε′ > 0, the decision
version of the Simplified Non-overlapping Triangle Community Detection (SNTCD) problem
is to determine whether there is a subset of vertices V′ ⊂ V such that |∆G(V′)|/|∆G(V′, V \
V′)| ≥ ε′.

Note that the SNTCD problem is similar to the NTCD problem, in a sense that only
|V′| is omitted from the denominator of the fitness metric, which makes the SNTCD
problem easier than the NTCD problem. The following lemma states that the NTCD
problem can be reduced to SNTCD problem in polynomial time.

Lemma 6. The NTCD problem can be reduced to SNTCD problem in polynomial time.

Proof. One can transform a polynomial time solution to the decision version of SNTCD
into a polynomial time solution for the optimization version of SNTCD by binary
search on the bound ε, and determine the set V′ of vertices in the optimal solution in
polynomial time. The algorithm for finding the set V′ is as follows.

The algorithm proceeds iteratively. Within each iteration, it removes an edge e ∈ E
from G and checks if there is a subset of vertices C ⊂ V in the resulting graph such
that |∆G(V′)|/(|V′|+ |∆G(V′, V \V′)|) ≥ ε+ 1/n2. Having removed edge e from G, if
there is still a subset of vertices V′ ⊂ V such that |∆G(V′)|/(|V′|+ |∆G(V′, V \V′)|) ≥
ε + 1/n2 in the resulting graph, then e is a cut edge (one of its endpoints is in V′);
otherwise, e is a community edge (both of its endpoints are in V′). If there is no
subset V′ such that |∆G(V′)|/(|V′|+ |∆G(V′, V \V′)|) ≥ ε+ 1/n2, but there is a subset
V′ such that |∆G(V′)|/(|V′| + |∆G(V′, V \ V′)|) ≥ ε, then e is neither a community
edge nor a cut edge, it should be removed from G. This procedure continues until all
edges in G are examined. Therefore, given a polynomial time algorithm for the NTCD
problem, the SNTCD problem can also be solved in polynomial time. That is, given
an instance of the SNTCD problem and ε′ = p/q, the NTCD problem can be solved,
using different values of ` with 1 ≤ ` ≤ n, i.e., |∆G(V′)|/(|V′|+ |∆G(V′, V \ V′)| =
p/(`+ q), then determine the set V′ and check if |V′| = `.

The following theorem shows that the SNTCD problem is NP-complete by a re-
duction from the RDCD problem.

Theorem 8. The simplified non-overlapping triangle community detection problem (SNTCD)
is NP-complete.

Proof. We first show that SNTCD belongs to NP. Given a graph G = (V, E), a positive
rational number ε′ and a certificate C ⊂ V, we can count the number of triangles
within C, i.e. |∆G(C)|, and the ones that have two vertices in C, i.e. |∆G(C, V \ C)|.
We then check if |∆G(C)|/|∆G(C, V \ C)| ≥ ε′. Thus, SNTCD is in NP.

We then show that SNTCD is NP-hard, using a polynomial time reduction from
the RDCD problem. Given an instance of the RDCD problem: a graph G = (V, E) and
a positive rational number ε′ ≤ 1, we construct an instance of the SNTCD problem
containing a graph G′ = (V′, E′) and a positive rational number ρ = 4ε′/(1−ε′) in
polynomial time that determines the RDCD problem in polynomial time.

72 Overlapping Community Structure in Complex Networks

v�
v� v�v�

v� v�

(a) G

v'
v' v'v'

v' v'

v

v''
v'' v''v''

v'' v''

v v v v v v

1

3

5

2 4

6

6

3

1

2

5

4

v�v� v�v� v�v� v�v� v�v� v�v� v�v�

(b) G′

Figure 6.2: G′ is constructed from G in polynomial time. For every vertex vi ∈ V, there
are two vertices v′i, v′′i in V′ and for every edge (vi, v j) ∈ E, there is one vertex vvi ,v j

in V′. Every vertex vvi ,v j ∈ V′ is connected to 4 vertices v′i , v′′i , v′j, v′′j , and every v′i is
connected to v′′i .

Given a graph G = (V, E) and ε′ > 0, we construct a graph G′ = (V′, E′), where
the set V′ of vertices contains 2n + m vertices that consist of two vertices v′ and v′′

for every vertex v ∈ V, and a vertex vvi ,v j for every edge (vi, v j) ∈ E (note that the
graph is undirected, therefore (vi, v j) and (v j, vi) refer to the same edge and we make
no distinction between them). The set of edges E′ contains n + 6m edges that consist
of an edge (v′, v′′) for every vertex v ∈ V, and six edges (v′i , v′′j), (v

′′
i , v′j), (v

′
i , vvi ,v j),

(v′′i , vvi ,v j), (v
′
j, vvi ,v j) and (v′′j , vvi ,v j) for every edge (vi, v j) ∈ E. From the construction

of graph G′, it is implied that for every edge (vi, v j) ∈ E, there is exactly four triangles
in G′ (∆(v′i ,v

′′
j ,vvi ,v j)

, ∆(v′′i ,v′j ,vvi ,v j)
, ∆(v′i ,v

′′
i ,vvi ,v j)

, and ∆(v′j ,v
′′
j ,vvi ,v j)

). Furthermore, the number

of triangles in G′ is exactly 4m. Fig. 6.2 illustrates an example of a reduction from
graph G to graph G′.

Given a graph G = (V, E) and ε′ > 0, there is a subset C ⊂ V of vertices such that
e(C)/(c(C) + e(C, V \ C)) ≥ ε′, if and only if, in graph G′ = (V′, E′) (constructed as
described), there is a subset C′ ⊂ V′ of vertices such that |∆G′(C′)|/|∆G′(C′, V′ \C′)| ≥
4ε′/(1−ε′). Assume that in graph G = (V, E), there exists a subsets of vertices C such
that e(C)/(c(C)+ e(C, V \C)) ≥ ε′. Consider a subset of vertices C′ ⊂ V′ that consists
of 2|C| + e(C) vertices, including vertices v′, v′′ for each vertex v ∈ C, and vvi ,v j for
every edge (vi, v j) ∈ E(C). It can be seen that |∆G′(C′)| = 4e(C), we thus have
|∆G′(C′)|/|∆G′(C′, V \ C′)| = 4e(C)/|∆G′(C′, V′ \ C′)|.

Moreover, for every edge (vi, v j) ∈ E(C, V \C), there is only one triangle ∆(v′i ,v
′′
i ,vvi ,v j)

with two endpoints in C′, we have

|∆G′(C′)|/|∆G′(C′, V \ C′)|
= 4(e(C)/e(C, V \ C))

= 1/(e(C, V \ C)/e(C) + e(C)/e(C)− 1)

§6.4 Algorithm 73

Since we assumed that e(C)/(e(C) + e(C, V \ C)) ≥ ε′,

|∆G′(C′)|/|∆G′(C′, V \ C′)| ≥ 4/(1/ε′ − 1) = ρ.

Now, assume that in G′ there is a subset C′ ⊂ V′ such that |∆G′(C′)|/|∆G′(C′, V \
C′)| ≥ 4ε′/(1 − ε′), we show that there is a subset C ⊂ V such that e(C)/(e(C) +
e(C, V \ C)) ≥ ε′. First, it is noted that if a vertex v′ is in C′, then its copy v′′ is also in
C′. For every triangle formed by v′ and vertices within C′, there is at least one triangle
formed by vertices in C′ and v′′. Therefore, if v′′ is excluded from C′, the number of
cut triangles will be larger than the number of triangles formed by vertex v′ and as a
result, removing vertex v′′ from C′ will decrease the fitness value of C′. Therefore, if
v′ is in C′, then v′′ is also in C′. Using a similar reasoning, it is also implied that if vvi ,v j

is in C′, then vertices v′i , v′′i , v′j, and v′′j lie in C′.
We finally show that if there is a subset C′ ⊂ V′ such that |∆G′(C′)|/|∆G′(C′, V′ \

C′)| ≥ 4ε′/(1−ε′), then there is a subset C ⊂ V of vertices such that e(C)/(e(C) +
e(C, V \ C)) ≥ ε′. For every vertex vvi ,v j ∈ C′, add both vertices vi and v j to C. As
a result, the number of edges in E(C) is |∆G′(C′)|/4, and the number of cut edges is
equal to the number of cut triangles in C′. Therefore,

e(C)/(e(C) + e(C, V \ C))

= 4|∆G′(C′)|/(4|∆G′(C′)|+ |∆G′(C′, V′ \ C′)|)
= (1 + |∆G′(C′, V′ \ C′)|/4|∆G′(C′)|)−1,

since |∆G′(C′)|/|∆G′(C′, V′ \ C′)| ≥ 4ε′/(1−ε′),

e(C)/(e(C) + e(C, V \ C)) ≥ (1 + (1−ε′)/ε′)−1 ≥ ε′.

Hence, the RDCD problem can be reduced to the SNTCD problem in polynomial
time. As the RDCD problem is NP-complete, the SNTCD problem is NP-complete,
too.

6.4 Algorithm

In this section, we first propose an efficient yet scalable algorithm for the overlapping
community detection problem, which will deliver a feasible solution. We then show
the properties of the overlapping communities delivered by the proposed algorithm
and analyze the time complexity of the proposed algorithm.

6.4.1 Algorithm description

To identify high-quality overlapping communities in G, the algorithm consists of two
stages. It detects non-overlapping core communities, using the proposed community
fitness metric τ(·). Notice that the core communities are exclusive to each other, they
are the bases to form overlapping communities. It then expands the core communities

74 Overlapping Community Structure in Complex Networks

to form overlapping communities.
In the core community detection, the vertices in G(V, E) is partitioned into core

communities so that each core community is a densely connected subgraph, using the
fitness metric τ(·). It is noticed that these core communities are exclusive to each other.
Let V be the set of core communities whose construction proceeds iteratively. Initially,
there is only one single community including all the vertices in G, i.e., V = {V}.
Within iteration k (k ≥ 1), some of the edges in G will be removed if the support of an
edge is no more than k. The edge removal will increase the value of the fitness metric
of the resulting connected components. Specifically, for each community Vi ∈ V in
iteration k, let Φi

k be the edges in the induced subgraph G[Vi] with support no greater
than k, the set Φi

k will be examined to check if its removal can increase the value of the
fitness metric of the resulting communities. If yes, the edges in Φi

k are removed from
G and community Vi is replaced by the number of connected components derived
from it. Notice that the support of each remaining edge in the resulting graph will be
updated accordingly if the edges in Φi

k are removed from G. The value of k is then
incremented by one after each iteration. This procedure continues until the support
of each edge in the resulting graph is no less than k.

Having found all core communities of G, the core community expansion then
follows, by adding vertices from other communities to each core community greed-
ily. Specifically, given the set of core communities V = {V1, · · · , Vq}, let τ(Vi) be
the overlapping triangle connectivity fitness value of community Vi for all i with
1 ≤ i ≤ q. The core community expansion finds a collection V of overlapping com-
munities, which are local maxima communities according to the fitness metric τ(·).
The core community expansion of each community Vi ∈ V proceeds iteratively, by
adding a neighbor v 6∈ Vi of a vertex in Vi such that the value of τ(Vi ∪ {v}) is the
maximum one among all the other neighbors. This iteration is repeated until no such
a neighbor can be added to the expanded Vi. The detailed procedure for this is as
follows. Let NVi be the set of neighbors of community Vi that their additions to Vi can
increase the fitness value of community Vi. The algorithm finds such a vertex v ∈ NC
that its addition to C increases the fitness value of Vi ∪ {v}more than the other vertex
v′ ∈ NVi \ {v} in NVi , and v is added to community Vi. Note that only a vertex v is
added to community Vi each time and the set NVi of neighbors then will be updated
accordingly. This iterative procedure is repeated for every community Vi ∈ V until
there is not any neighbor in NVi that can increase the fitness value of Vi.

It must be mentioned that although the first stage of the proposed algorithm ex-
hibits some similarities with traditional k-truss detection algorithm [Cohen 2008], they
are essentially different. Specifically, the k-truss detection algorithm repeatedly re-
moves edges with support no larger than k for a given k, while the proposed algo-
rithm here starts with k = 1 and increments k in each iteration until the sum of the
fitness values of all detected communities cannot be further increased. In contrast,
traditional k-truss algorithms repeatedly remove edges with support no larger than k,
regardless of the sum of the fitness values of the resulting communities [Cohen 2008].

The detailed algorithm for the overlapping community detection problem is given
in Algorithm 7.

§6.4 Algorithm 75

Algorithm 7 Overlapping Community Detection(G)

Input: G = (V, E)
Output: Overlapping communities V of G

1: /* V is the collection of detected communities */
2: V ← {V};
3: k← 0;
4: /* Find core communities */
5: Calculate the support of each edge in E, using triangle counting algorithm in [Lat-

apy 2008];
6: while ∃e ∈ E with supG(e) ≥ k do
7: for each community Vi ∈ V do
8: Φi

k ← {e | edge e ∈ G[Vi] with supG(e) ≤ k};
9: V ′ ← {Vi

′ | Vi
′ is a connected component in G[Vi] \Φi

k};
10: if τ(Vi) ≤ τ(V ′) then
11: Remove the edges in Φi

k from network G;
12: Replace Vi in V with communities in V ′;
13: /* Increment the value of k by 1 */
14: k← k + 1;
15: /* Expand core communities in V to form overlapping communities */
16: for each core Vi ∈ V do
17: NVi ← Neighbors of Vi, whose addition

does not decrease the fitness value of Vi;
18: while NVi 6= ∅ do
19: v← argmaxu∈NVi

{τ(Vi ∪ {u})};
20: NVi ← NVi \ {v} /* remove vertex v from NVi */;
21: Vi ← Vi ∪ {v} /* add vertex v to C */;
22: for each neighbor u of vertex v do
23: if τ(Vi ∪ {u}) ≥ τ(Vi) then
24: Add the neighbor u to NVi ;

return V ;

76 Overlapping Community Structure in Complex Networks

(a) Core Detection k = 1 (b) Core Detection k = 2 (c) Core Detection k = 3

A B

(d) Core Expansion (B

A B

(e) Core Expansion (B)

A B

(f) Core Expansion (A)

A B

(g) Core Expansion (A)

A B

(h) Core Expansion (A)

Figure 6.3: A running example of the proposed algorithm. In the core detection
phase, the network is partitioned into core communities and these communities are
expanded in the core expansion phase, where the overlapping between communities
is detected.

6.4.2 An example of the algorithm execution

We use an example to illustrate the execution of the proposed algorithm, Algorithm 7.
Fig. 6.3 shows the execution results of Algorithm 7 on an input social network at
different stages.

Fig. 6.3a-Fig. 6.3c illustrate the results of core community detections in stage one,
where the edges with low support (red dashed edges) in Fig. 6.3a and Fig. 6.3b are re-
moved until no edge is left, while Fig. 6.3d-Fig. 6.3h show the results of core commu-
nity expansion in stage two, where community B in Fig. 6.3d is expanded by adding
one extra neighbor (the green vertex) into it, the rest of neighbors of the community
will not be added, since they would not increase the fitness value of the expanded
community. Similarly, in Fig. 6.3f-6.3h community A is expanded by adding more
green neighbors, since adding them to the community will increase its fitness value.

It can be seen in Fig. 6.3a that all edges with support no larger than k = 1 are
removed, as their removal results in the increase in the fitness value of the result-
ing communities. Similarly, in Fig. 6.3b, when k = 2, those edges with support no
larger than two are removed. However, Fig. 6.3c shows that the removal of the edges
with support no larger than k = 3 does not increase the fitness value of communi-
ties, therefore, these edges will not be removed in this iteration. It is also noticed that
core communities obtained in the first stage are not k-trusses for k = 3. This demon-
strates the difference between traditional k-truss detection algorithms [Cohen 2008]
and this algorithm for core community detections. Fig. 6.3d-6.3h depict the expansion

§6.4 Algorithm 77

of communities. Fig. 6.3d-Fig. 6.3e illustrate that addition of one vertex to community
B increases the fitness value of B. Similarly, Fig. 6.3f-6.3h show that addition of two
vertices to community A increases the fitness value of A.

6.4.3 Algorithm analysis

The rest is to show the properties of overlapping communities delivered by Algo-
rithm 7 and analyze the time complexity of the proposed algorithm as follows.

We first prove that the overlapping communities delivered by Algorithm 7 do not
have the separation effect if certain conditions are met.

Lemma 7. Given a social network G = (V, E) and two core communities V1 ⊆ V and
V2 ⊆ V obtained in the first stage of Algorithm 7, if there is a set of vertices V′2 ⊆ V2 in which
every vertex forms at least two triangles with the vertices in V1, V ′2 will be assigned to both
V1 and V2 in the overlapping communities found after the second stage of Algorithm 7.

Proof. Consider two core communities V1 and V2 of G. Let V′2 be a subset of V2 in
which each vertex v ∈ V′2 forms at least one triangle with two vertices in V1, as illus-
trated by Fig. 6.4. The vertices in V′2 then will be assigned to V1 by the fitness metric

t
t'

V1 V2

..
...
.

V'2

Figure 6.4: Given two communities V1 and V2, a subset V′2 ⊂ V2 forms many triangles
with the vertices in V1.

τ(·), i.e., τ(V1 ∪ V′2) ≥ T(V1), where V′2 is a subset of community V2 such that each
vertex in V′2 forms at least two triangles with the vertices in V1.

Let t be the number of triangles formed by the vertices in V′2 and the vertices in
V1, and let t′ be the number of triangles formed by the vertices in V1 and the vertices
in V \V1. We show that the vertices in V′2 will be assigned to V1 in the second stage of
the algorithm by contradiction. Assume that vertices in V′2 will not be assigned to V1,
i.e., τ(V1 ∪V′2) < τ(V1), then,

τ(V1 ∪V′2) < τ(V1)⇒
|∆G(V1 ∪V′2)|

|V1 ∪V′2|+ |V′2|+ t′
<
|∆G(V1)|
|V1|+ t + t′

. (6.4)

Since every vertex in V′2 forms at least one triangle with the vertices in V1, we have
t ≥ 2|V′2|,

|∆G(V1 ∪V′2)|
|V1 ∪V′2|+ |V′2|+ t′

<
|∆G(V1)|

|V1|+ 2|V′2|+ t′
. (6.5)

Since two communities V1 and V2 are vertex-disjoint communities, we have

V1 ∩V′2 = ∅ ⇒ |V1 ∪V′2| = |V1|+ |V′2|.

78 Overlapping Community Structure in Complex Networks

Thus,

|∆G(V1 ∪V′2)|
|V1|+ 2|V′2|+ t′

<
|∆G(V1)|

|V1|+ 2|V′2|+ t′

⇒ |∆G(V1 ∪V′2)| < |∆G(V1)|. (6.6)

Inequality (6.6) does not hold, otherwise this leads to a contradiction that |∆G(V1 ∪
V′2)| ≥ |∆G(V1)| + t. Therefore, vertices in V′2 will be assigned to V1 in the second
stage of Algorithm7, since τ(V1 ∪V′2) ≥ τ(V1).

We then show that the community fitness metric τ(·) avoids free rider effect if a
certain condition is met by the following lemma.

Lemma 8. Given a social network G = (V, E) and two core communities V1 ⊆ V and
V2 ⊆ V found in the end of the first stage of Algorithm 7, if there is a set of vertices V′2 ⊆ V2

in which every vertex forms at least one triangle with the vertices in V1, community V1 and
V2 will not be merged in the second stage of Algorithm 7 unless τ(V1) ≤ τ(V1 ∪ V2) and
τ(V2) ≤ τ(V1 ∪V2).

Proof. We show that the community fitness metric τ(·) avoids free rider effect if a
certain condition is met by contradiction. Considering the proof for Lemma 7, we
need to show that τ(V′2) ≤ T(V1 ∪V′2) to avoid the free rider effect on the overlapping
communities found in the second stage of Algorithm 7. Without loss of generality, we
assume that ∆G(V1)/|V1| > ∆G(V′2)/|V′2)|. Assume that τ(V′2) > T(V1 ∪V′2),

τ(V1 ∪V′2) < τ(V′2)⇒
|∆G(V1 ∪V′2)|
|V1|+ |V′2|+ t′

<
|∆G(V′2)|
|V′2|+ t′ + t′′

where t′′ is the number of triangles that have two vertices in V′2 and one vertex outside
V′2,

|∆G(V1)|+ |∆G(V′2)|+ t
|V1|+ |V′2|+ t′

<
|∆G(V′2)|
|V′2|+ t′ + t′′

(|∆G(V1)|+ |∆G(V′2)|+ t)(|V′2|+ t′ + t′′) <

(|∆G(V′2)|)(|V1|+ |V′2|+ t′)

Since t′′ > t,

(|∆G(V1)|+ t)(|V′2|+ t′ + t′′) + ∆G(V′2)t
′′ <

(|∆G(V′2)|)|V1|,
(|∆G(V1)|+ t)(|V′2|+ t′ + t′′) < (|∆G(V′2)|)(|V1| − t′′),

|∆G(V1)|+ t
|V1| − t′′

<
|∆G(V′2)|
|V′2|+ t′ + t′′

,

which is a contradiction to the initial hypothesis that ∆G(V1)/|V1| > ∆G(V′2)/|V′2)|.
The lemma thus holds.

§6.5 Experimental results 79

The following theorem studies the time complexity of the algorithm.

Theorem 9. Given a social network G = (V, E), Algorithm 7 for the overlapping community
detection problem will deliver a feasible solution in time O(|V| · |E|), if the support of each
edge is constant.

Proof. Following Algorithm 7, the core community detection in G starts with calculat-
ing the support of each edge of G in time O(|E|3/2), using the algorithm in [Latapy
2008], and it proceeds iteratively. Within each iteration, the set Φk =

⋃
Vi∈V Φ

Vi
k of

edges with support no larger than k is found, using the values calculated at its step 4. It
then calculates the fitness scores of the resulting connected components in G[Vi] \ΦVi

k
in linear time. Each iteration of the while-loop of Algorithm 7 takes O(|E|) time. Since
the maximum support among edges in a real social network usually is constant, the
number of iterations k is constant. The time spent on core community detection by
Algorithm 7 is O(|E|3/2).

In the core community expansion stage of Algorithm 7, each vertex v is added into
set Vi at most once. Initially, neighbors of community Vi are added to set NVi , then a
vertex u ∈ NVi with maximum τ(Vi ∪ {u}) is added to Vi. When a vertex v is added
to NC, the value of τ(NVi ∪ {v}) is calculated, by finding the number of triangles
formed by every edge in E[Vi] connected to v in O(|E[Vi]|) time, assuming that a heap
data structure is adopted for keeping track of vertices in NVi . Then, the insertion and
extraction of vertices in NVi (represented by the heap data structure) takes O(|V| ·
log |V|) time. Thus, overlapping community identification derived from the found
core communities takes O(q · |E|) time if there are q core communities. While q ≤ |V|,
the time complexity of Algorithm 7 thus is O(|E|3/2 + q · |E|) = O(|E|3/2 + |V| · |E|) =
O(|V| · |E|).

It must be mentioned that the analytical time complexity of Algorithm 7 is very
conservative. Its actual running time on real social networks is much faster, which is
almost linear to the problem size |V|+ E|, due to the sparsity of social networks. This
can be witnessed from later empirical evaluation results (see Fig. 6.6).

6.5 Experimental results

In this section, we evaluate the performance of the proposed algorithm against several
benchmark algorithms using several real-world datasets. We also study separation
and free rider effect on the overlapping communities delivered by different algorithms
under different fitness metrics including the one proposed in this paper.

6.5.1 Experimental environment settings

We start with the experimental environment settings and descriptions of different data
sets, evaluation metrics, and benchmark algorithms.
Benchmark algorithms. To evaluate the performance of the proposed algorithm, Al-
gorithm 7, denoted by CoreExp, for the overlapping community detection problem,
the following state-of-the-arts will be adopted for the benchmark purpose.

80 Overlapping Community Structure in Complex Networks

• FOCS [Bandyopadhyay et al. 2015] – A local expansion algorithm, which finds
communities starting from neighborhoods of vertices. This algorithm expands
the initial communities by adding vertices using the local modularity fitness
metric.

• Demon [Coscia et al. 2012] – An agent-based algorithm, in which, every vertex
v receives a label l, where l is the label appeared in majority of neighbors of v.
The labels are propagated iteratively until every vertex has the label of most of
its neighbors. Finally, communities that have more than a certain overlap are
merged.

• Bigclam [Yang and Leskovec 2013] – A matrix factorization-based algorithm,
which assigns each vertex-community a value that represents the membership
in the community. It then models the probability of an edge as a function of the
shared community affiliations and identifies network communities by fitting the
model to the given network, and estimating the latent factors.

• SeedExp [Whang et al. 2013] – A local expansion algorithm, which consists of
four phases: filtering, seeding, seed expansions, and propagations. The filter-
ing phase removes weakly connected subgraphs. The seeding phase finds seed
vertices, which are expanded in the seed expansion phase. The propagation
attaches the weak components to communities.

• Bayes [Gopalan and Blei 2013] – A Bayesian model-based algorithm, which
posits a probabilistic model of networks where each vertex can belong to many
communities. It finds the conditional distribution of the hidden communities
given the observed network. It then approximates the conditional distribution
with various methods in combination with stochastic optimization by iteratively
subsampling the network and estimation of the hidden communities.

Real datasets. We make use of seven real datasets, which have been widely adopted
in literature [Xie et al. 2013] and are publicly available1. Specifically, dataset Amazon
is based on the Amazon products, where there is an edge between products i and
j if product i is frequently co-purchased with product j, and each product category
provided by Amazon is a ground-truth community. Dataset DBLP is a collaboration
network, where ground-truth communities are defined as publication venues, e.g.,
journals or conferences. Dataset Orkut is the friendship network of Orkut members,
in which communities are the groups that users create and other users join in. Dataset
LiveJournal is the friendship network of users in LiveJournal blogging web site.
Users can define groups and join multiple groups. These groups are considered as
the ground-truth communities. Dataset Facebook consists of ego networks of Face-
book users, which has been collected from survey participants. The groups provided
by users are the ground-truth communities. Dataset Twitter consists of ‘lists’ from
Twitter. The social communities are the ground-truth communities in Twitter. Dataset

1http://snap.stanford.edu/data/index.html

§6.5 Experimental results 81

Table 6.1: Details of real datasets, where C∗ represents the set of ground-truth com-
munities and supmax is the largest support of edges.

Dataset |V| |E| |C∗| supmax

Facebook 4,039 88,234 193 293
Twitter 81,306 2,420,766 4,065 9,016
Google Plus 107,614 30,494,866 468 11,488
Amazon 334,863 925,872 253,345 161
DBLP 317,080 1,049,866 13,477 213
Orkut 3,072,441 117,185,083 15,301,901 9,145
LiveJournal 3,997,962 34,681,189 658,401 1,393

Google Plus is a social network in Google+. The groups that are defined by users
represent ground-truth communities. Notice that each of the datasets Facebook,
Twitter and Google Plus in fact is a combined network consisting of ego net-
works from SNAP. Table 7.1 details the mentioned datasets in our experiments.
Evaluation measures. quantitatively measuring the quality of detected overlapping
communities in a social network is challenging, as different measures lead to differ-
ent quality of overlapping communities. We here employ two widely-adopted mea-
sures [Gleich and Seshadhri 2012; Gopalan and Blei 2013; Whang et al. 2013; Xie et al.
2013; Yang and Leskovec 2013] for analyzing the accuracy of the detected communi-
ties by different algorithms, i.e., F1 and F2-measures [Xie et al. 2013].

Let C∗ be the set of ground-truth communities and C the detected communities by
any mentioned algorithm. The F-measure is based on the precision and recall of each
community C compared to C∗ defined as follows.

p(C, C∗) =
|C ∩ C∗|
|C| , r(C, C∗) =

|C ∩ C∗|
|C∗|

F1-measure [Xie et al. 2013] is the harmonic mean of the precision and recall, while
F2-measure [Xie et al. 2013] magnifies the impact of recall in the results, as follows.

F1 =
1
|C| ∑

C∈C
max
C∗∈C∗

{
2 · p(C, C∗) · r(C, C∗)
p(C, C∗) + r(C, C∗)

}
, (6.7)

F2 =
1
|C| ∑

C∈C
max
C∗∈C∗

{
5 · p(C, C∗) · r(C, C∗)

4 · p(C, C∗) + r(C, C∗)

}
. (6.8)

Note that all the experiments are conducted on a desktop with a 3.06GHz CPU
and 16GB memory.

6.5.2 Performance evaluation of different algorithms

We first study the performance of the proposed algorithm CoreExp against the bench-
mark algorithms, by evaluating the quality of the found communities under two mea-
sures: F1-measure and F2-measure. We also compare the running times of different
algorithms and the number of communities delivered by each of them. Fig. 6.5 plots
the quality bars of the communities delivered by different algorithms, using different

82 Overlapping Community Structure in Complex Networks

datasets and community fitness metrics. Notice that algorithm Demon did not ter-
minate after 48 hours for datasets LiveJournal and Orkut. The results on those
datasets are not available, and thus cannot be shown in the bar chart.

F1-measure F2-measure
0

20

40

60

80

P
er
ce
n
t
(%

)

CoreExp Bayes FOCS
Bigclam Demon SeedExp

(a) Facebook
F1-measure F2-measure

0

20

40

P
er
ce
n
t
(%

)
CoreExp Bayes FOCS
Bigclam Demon SeedExp

(b) Twitter
F1-measure F2-measure

0

20

40

P
er
ce
n
t
(%

)

CoreExp Bayes FOCS
Bigclam Demon SeedExp

(c) Google Plus

F1-measure F2-measure
0

20

40

60

80

P
er
ce
n
t
(%

)

CoreExp Bayes FOCS
Bigclam Demon SeedExp

(d) Amazon

F1-measure F2-measure
0

20

40

P
er
ce
n
t
(%

)

CoreExp Bayes FOCS
Bigclam Demon SeedExp

(e) DBLP
F1-measure F2-measure

0

20

40

P
er
ce
n
t
(%

)

CoreExp Bayes FOCS
Bigclam Demon SeedExp

(f) LiveJournal
F1-measure F2-measure

0

20

40

60

80

P
er
ce
n
t
(%

)

CoreExp Bayes FOCS
Bigclam Demon SeedExp

(g) Orkut

Figure 6.5: The quality of overlapping communities found by various algorithms
compared with the quality of the ground-truth communities under different com-
munity fitness metrics. Note that algorithm Demon did not terminate for datasets
LiveJournal and Orkut after 48 hours, thus its results thus are not available in the
plots.

Fig. 6.5 shows that algorithm CoreExp delivers the most accurate communities
for most datasets (6 out of the 7 datasets). Specifically, it can be seen from Fig. 6.5a
that for dataset Facebook, algorithm CoreExp outperforms all other algorithms at
least by 10% in both F1 and F2-measures. Similarly, Fig. 6.5b demonstrates that algo-
rithm CoreExp outperforms all other algorithms by at least 12% in the ego network of
dataset Twitter. Fig. 6.5c indicates that algorithm CoreExp outperforms all other al-
gorithms by at least 15% for dataset Google Plus. For the dataset Amazon, Fig. 6.5d
shows that algorithm CoreExp is superior to other mentioned algorithms by at least
10% under both F1-measure and F2-measure. It can also be seen from Fig. 6.5e that for
the dataset DBLP, algorithm CoreExp outperforms the other algorithms by at least
11% based on both F1 and F2 measures. It is noticed that for dataset LiveJournal
Fig. 6.5f indicates that both algorithm Bigclam and algorithm FOCS beat algorithm
CoreExp. This may partially contribute to the specific topological structure of the
LiveJournal network. However, the better quality solution delivered by algorithm
Bigclam is at the expense of prohibitive running time that is several orders of magni-
tudes greater than that of algorithm CoreExp. On the other hand, despite that algo-
rithm FOCS has a less running time compared with algorithm CoreExp, the commu-
nities delivered by algorithms Bigclam and FOCSwill cause separation and free rider
effects that can be seen from Table 6.2, while the communities delivered by algorithm
CoreExp can avoid such effects. Fig. 6.5g demonstrates that algorithm CoreExp is
the best one among all comparison algorithms which has the highest accuracy of com-

§6.5 Experimental results 83

Facebook Twitter Google Plus Amazon DBLP LiveJournal Orkut
100

101

102

103

104

105
R
u
n
n
in
g
ti
m
e
(S
ec
on

d
s)

CoreExp
Bayes
FOCS
Bigclam
Demon
SeedExp

Figure 6.6: The running times of various algorithms. The bars with parallel lines
represent algorithms that did not terminate.

Facebook Twitter Google Plus Amazon DBLP LiveJournal Orkut
100

101

102

103

104

105

106

N
u
m
b
er

of
co
m
m
u
n
it
ie
s CoreExp

Bayes
FOCS
Bigclam
Demon
SeedExp

Figure 6.7: The number of detected communities by various algorithms. Algorithm
Demon did not terminate for datasets LiveJournal and Orkut, thus their results on
those datasets thus will not be available from the bar chart.

munities found for dataset Orkut. The reason is that dataset Orkut contains more
than 100 million edges and identifying communities in such a large-scale network is
challenging. Algorithm CoreExp demonstrates that even for such a massive dataset,
it outperforms the other algorithms significantly in terms of both the quality of the
solution and the running time (see Fig. 6.6).

Fig. 6.6 plots the running times of different algorithms. It is seen that algorithm
CoreExp takes a few hours for the massive dataset such as Orkut with more than
100 million edges and less than one hour for dataset LiveJournal with more than
34 million edges. It can be observed from Fig. 6.6 that the running time of algo-
rithm CoreExp is at least 10% less than that of all other algorithms except that of
algorithms Bayes and FOCS. However, the quality of the solutions delivered by al-
gorithms Bayes and FOCS is not as good as that by algorithm CoreExp. Similarly,
for dataset Orkut, the running time of algorithm SeedExp is the smallest, while the
communities obtained by SeedExp have the poor quality for this dataset.

Fig. 6.7 depicts the number of communities delivered by each mentioned algo-
rithm, from which, it can be seen that algorithm CoreExp delivers more communities
than that of any other mentioned algorithm except algorithms Bayes and FOCS. How-
ever, the quality of the solution delivered by algorithm CoreExp is better than either
by algorithms Bayes and FOCS in most cases.

6.5.3 Separation and free rider effects on the communities found by differ-
ent algorithms

We then evaluate separation and free rider effects on the communities found by dif-
ferent algorithms, using a synthetic dataset, as there is not any available information

84 Overlapping Community Structure in Complex Networks

Table 6.2: Separation and free rider effects caused by different algorithms, where “–”
means that algorithm does not terminate after 48 hours.

Algorithm Percentage of separation effect Percentage of free rider effect
CoreExp 0% 0%

Bayes 7.60% 2.036%
FOCS 65.320% 0%

Bigclam 64.24% 18.55%
Demon 4.150% 2.330%

SeedExp – –

of these two effects on real datasets. To examine whether the communities delivered
by different algorithms cause separation and free rider effects, we generate a synthetic
dataset based on SSCA2 synthetic networks. We first generate SSCA networks with
network size from 210 to 220, where each SSCA network consists of a set of cliques.
We then place a vertex vi j, if there is an edge between two cliques Ci and C j, and con-
nect vertex vi j to each vertex in cliques Ci and C j with a probability 0.5. Vertex vi j
is then treated as an overlapping vertex between communities Ci and C j, i.e, it will
belong to both overlapping communities derived from Ci and C j, respectively. Note
that the synthetic networks randomly generated may not be connected, and algorithm
SeedExp thus is inapplicable in this case.

Table 6.2 lists the experimental results of free rider and separation effects of the
communities delivered by different algorithms, using the constructed synthetic datasets.
For each benchmark algorithm, the percentage of vertices in the overlap that were as-
signed to only one community represents the separation effect, and the percentage of
detected communities spanning more than one community in the ground-truth com-
munities represents the free rider effect. The values reported in Table 6.2 are averaged
across all synthetic networks.

Table 6.2 indicates that algorithm CoreExp can avoid both free rider and sepa-
ration effects in these synthetic datasets. It can be observed from Table 6.2 that the
percent for separation effect by algorithm FOCS is 65.320%, which means that a large
number of vertices in the overlap were assigned to only one community. The reason
is that algorithm FOCS uses the modularity fitness metric, which is prone to separa-
tion effect. Similarly, the percent of separation effect in algorithm Bigclam is 64.24%,
which means that algorithm Bigclam also causes separation effect. Table 6.2 also
shows that the percent of free rider effect caused by algorithm Bigclam is 18.55%,
which is considerably larger than the other community detection algorithms. This
number is followed by the percent of free rider effect by algorithms Demon and Bayes.
While algorithm CoreExp can avoid both free rider and separation effects on these
datasets, none of the benchmark algorithms can avoid both the effects.

2http://www.cse.psu.edu/∼kxm85/software/GTgraph/

§6.6 Summary 85

6.6 Summary

We investigated the problem of finding high quality overlapping communities from
large-scale complex networks by taking both separation and free rider effects on found
overlapping communities into consideration. To this end, we first proposed a novel
community fitness metric - the overlapping triangle connectivity fitness metric for
overlapping community detection. We then devised an efficient yet scalable algo-
rithm for the problem. We finally validated the effectiveness of the proposed fitness
metric and evaluated the performance of the proposed algorithm, by conducting ex-
tensive experiments on seven real-world datasets. Experimental results show that the
proposed algorithm is very promising and outperforms state-of-the-arts.

86 Overlapping Community Structure in Complex Networks

Chapter 7

Community Search in Complex
Networks

7.1 Overview

The aim of this paper is to search all communities that are relevant to a given set of
query vertices without assuming that the given query vertices necessarily belong to
the same community. While removing this assumption makes the problem general,
it poses new challenges. Particularly, one key challenge is that the number of com-
munities that may contain a given set of query vertices is unknown. This raises two
questions: (1) how to efficiently group query vertices into different communities, as
there is an exponential number of ways in which query vertices can be grouped to-
gether, and (2) how to effectively measure the quality o fa community that covers the
given query vertices, which would require an effective way to expand communities
for a given group of query vertices that are related to each other.

To the best of our knowledge, the only research that has assumed that query ver-
tices may not belong to the same community is that of Ruchansky et al. [Ruchansky
et al. 2017], where the community search problem is defined as the problem of finding
a subgraph with minimum inefficiency that is not necessarily connected and contains
the query vertices. However, it can be shown that the inefficiency of a connected sub-
graph is always smaller than its disconnected subgraph. Thus, the optimal solution
to the minimum inefficiency problem is always a connected subgraph.

We formally define the problem of community search, which is compatible with
the assumption that query vertices may belong to different communities. We first
propose the notion of propinquity to measure the closeness between two vertices. We
show how to utilise the propinquity measure to determine whether query vertices are
in the same community or not, which enables us to find more than one community
per search. We ultimately exploit the propinquity measure to examine the community
membership of the given query vertices with other vertices in the network and expand
the communities. Thus, we formally define the problem of community search in a
network using a given propinquity measure, as the problem of finding a maximal
subgraph where two vertices are connected if their propinquity is no less than a given
`.

87

88 Community Search in Complex Networks

We propose a novel instance of propinquity measure and develop two efficient
algorithms for the community search problem. It is observed that a small length of
shortest path between two query vertices implies the closeness between them. How-
ever, only one shortest path may be insufficient to capture the propinquity between
two vertices, which denotes the likelihood that two vertices belong to the same com-
munity. Nevertheless, the top-k shortest paths provide more information about the
closeness between query vertices. We thus propose a novel propinquity measure in
terms of the top-k shortest paths, whose sum is no larger than a given `. We de-
velop our community expansion algorithms based on our second observation that
the shortest path between vertices in a community is unlikely to leave the commu-
nity, due to the highly connectivity among vertices in a community. In other words,
given two vertices that lie in the same community, the vertices on the shortest path
between them are likely to be in the same community. Since the shortest paths are
least expected to leave the community, the vertices on the shortest paths are expected
to be highly relevant to the query vertices, making the community resilient to the so-
called free-rider effect. Our experimental results show that the proposed algorithm
is capable of producing results that are significantly more accurate than the existing
algorithms.

Our contributions in this chapter are summarized as follows.

• We propose a novel notion, called propinquity, to measure the closeness be-
tween vertices, which represents the likelihood that two vertices belong to the
same community.

• We formally define the generic community search problem, under which vari-
ous existing community search methods can be formulated as special cases.

• We devise two efficient algorithms for the community search problem in large-
scale networks, which are capable of handling queries with more than one vertex
and finding more than one community per search.

• We conduct experiments on real-world datasets. Our experimental results show
that the proposed algorithms deliver communities that highly match with ground-
truth communities, outperforming the benchmark algorithms.

The remainder of this chapter is structured as follows. In Section 7.2 we formally
define the community search problem and propose a novel definition for propinquity.
We devise two algorithms for community search in Section 7.3 and analyze their time
complexities. We then present the results of our extensive experiments on real net-
works in Section 7.4. We summarise the chapter in Section 7.5.

7.2 Community search problem

In this section, we formally define the generic community search problem based on
the notion of propinquity between vertices.

§7.2 Community search problem 89

Given two vertices u and v in a network G, let ∆(u, v) denote the propinquity
value between vertices u and v, which represents the closeness of two vertices u
and v to each other, or how conveniently they can communicate with each other
across a network. Generally, a large ∆(u, v) means that u and v are likely to be in
the same community, while a small ∆(u, v) means that they are less acquainted with
each other, thus less likely to be in the same community. Since the strength of a chain
is measured in terms of the strength of its weakest link, we measure the propinquity
of a set of vertices V′ as the smallest propinquity between pairs of its vertices, i.e.
∆(V′) = minu,v∈V′ {∆(u, v)}.

We now define the community search problem in terms of a given propinquity
measure.

Definition 8 (Community Search Problem). Given a network G = (V, E), a query Q ⊆ V
and a positive number k, the community search problem is to detect a minimum cover C =
{V1, · · · , Vt} (t ≤ |Q|) such that:

1. the propinquity between every two vertices u and v in Vi (Vi ∈ C) is no less than k, i.e.
∆(Vi) ≥ k,

2. every community Vi ∈ C is maximal, and

3. for every pair of query vertices qi, q j ∈ Q the following holds,

∆(qi, q j) ≥ k⇒ ∃ Vp ∈ C ({qi, q j} ⊆ Vp).

We study several properties for propinquity measure such as reflexiveness, sym-
metry and transitivity to narrow down special cases of the community search prob-
lem. We say a propinquity measure ∆ is reflexive if for every vertex u in V we have
∆(u, u) = ∞. A propinquity ∆ is symmetric if ∆(u, v) = ∆(v, u) for any two vertices u
and v. To characterize a special case of the community search problem, we here define
the transitivity property for the propinquity measure as follows.

Definition 9 (Transitive propinquity). Given a network G = (V, E) and a positive number
k, a propinquity measure ∆ is transitive if ∆(u, v) ≥ k and ∆(v, w) ≥ k implies ∆(u, w) ≥ k
for any three vertices u, v and w in V.

Note that the definition of transitive propinquity is similar to the definition of
transitive binary relation. It is possible to convert the propinquity measure to a binary
relation R∆ with respect to a given k, where uR∆v if and only if ∆(u, v) ≥ k and
∀u, v, w ∈ V(uR∆v ∧ vR∆w⇒ uR∆w).

Using different definitions for propinquity may lead to different community struc-
tures. In the following, we show how the proposed problem can serve as a unified
form to explain the existing works on community search. We then propose a novel
definition for propinquity that addresses issues with the existing ones.

90 Community Search in Complex Networks

7.2.1 NP-hardness

In the following, we show the community search problem is NP-hard, using a reduc-
tion from the maximum clique problem. We first introduce the decision version of a
special case of the community search problem that deals with queries of size 2.

Definition 10 (CSD). Given a network G = (V, E), two vertices q1, q2 ∈ V, a positive num-
ber k and a positive integer r, the community search decision (CSD) problem is to determine if
there is a community V1 of size r that

1. if the propinquity between q1 and q2 is no less than k, then they both belong to V1, i.e.
q1, q2 ∈ V1,

2. for every pair of vertices u, v ∈ V1 the propinquity between u and v is no less than k,
i.e. ∆(u, v) ≥ k.

We now show that the maximum clique problem can be reduced to the CSD prob-
lem.

Theorem 10. The CSD problem is NP-complete.

Proof. We first show that the CSD problem is verifiable in polynomial time. Given a
certificate for the CSD problem, one can check ∆(u, v) ≥ k for all pairs (u, v) in the
solution (V1) in polynomial time. Thus, the CSD problem is in NP.

We reduce the maximum clique problem to the CSD problem. Let I = 〈G, r〉 be
an instance of the maximum clique decision problem, in which we are interested in
determining if there is a clique of size r in G. We construct an instance I′ = 〈G′, Q, k, r′〉
of the CSD problem, where the solution of I′ determines the solution of I. That is, there
is a clique of size r in G if and only if there is a community of size r′ with propinquity
k in G′ for query Q.

We now show how to construct G′ = (V′, E′) from G = (V, E). In order to con-
struct G′, for every vertex in G we add a vertex in G′, and for every edge in G we
add an edge to G′. For every edge (u, v) ∈ E, let ∆(u, v) = 2, and if u and v are not
connected with an edge let ∆(u, v) = 0. We then add two vertices q1 and q2, that are
connected to all vertices and ∆(q1, q2) = 2. Note that for every vertex v ∈ V′, we let
∆(q1, v) = ∆(q2, v) = 2. Let the query consists of vertices q1 and q2, i.e. Q = {q1, q2},
and let r′ = r + 2 and k = 1. Since two query vertices q1 and q2 have a propinquity
2, they must lie in the same community. We show that network G′ consists of a com-
munity V1 with size r′ if and only if the network G contains a clique with size r. Let
V1 be the community detected for the aforementioned instance of the CSD problem,
i.e. I′ = 〈G′, Q, k, r′〉. If the cardinality of V1 is r′, this means that there are r vertices
in G′ where the minimum propinquity is 1, and there is one edge between every pair
of those vertices in G; therefore, there is a clique with size r in G. Similarly, if there is
no community with size r′ in G′ for the CSD problem, this means that there is no set
of vertices with size r that form a clique. Therefore, the reduction is complete.

The following theorem can now be obtained.

§7.2 Community search problem 91

Theorem 11. The community search problem is NP-hard.

Proof. Since CSD is a special case of the community search problem, the theorem is
implied.

Although the general form of the community search problem is NP-hard, there are
several cases of this problem with special propinquity measures that can be solved in
polynomial time. The following lemma shows that a special case of the community
search problem can be solved in polynomial time.

Theorem 12. Given a network G = (V, E), a query Q ⊆ V (|Q| ≤ 2), and a positive number
k, if the propinquity measure ∆ has the transitive property, then the community search problem
can be solved in polynomial time.

Proof. Since the propinquity measure ∆ is transitive and the size of query is at most 2,
we can devise a polynomial time algorithm for the problem. The algorithm considers
three cases: (1) there is only one vertex in the query, (2) two query vertices are not in
the same community, (3) two query vertices are in the same community.

Case (1): If the query Q consists of only one vertex q, then we first find a set V′ of
all vertices v ∈ V such that ∆(q, v) ≥ k. Then we create a graph G′ = (V′, E′), where
there is an edge between two vertices u and v in E′ if and only if ∆(u, v) ≥ k. It can
be shown that the set of vertices in the connected component of G′ with the largest
number of vertices is the community which is associated with q. In order to prove
that the set of vertices in the largest connected component of G′ is the community for
q, we use contradiction. Let us assume that C ⊆ V′ is the set of vertices in the largest
connected component of G′. We assume that there is one vertex v in the solution of the
community search problem C∗ (|C∗| > |C|) that is not included in C, i.e. v /∈ C. Since
v is in C∗, then for every vertex u in C∗ we have ∆(u, v) ≥ k, which means that v is
connected to all vertices in C∗ in graph G′. Thus, G′[C∗] is a connected component of
G′, which is a contradiction to the fact that C with |C| < |C∗| is the largest connected
component of G′.

Case (2): If the value of the propinquity between query vertices is strictly smaller
than k, then for every vertex qi in the query Q, we find the appropriate community
similar to case (1). The correctness of this case can be proved with a similar proof of
Case (1).

Case (3): If the propinquity between query vertices q1 and q2 is no smaller than k,
then we find a set V′ of all vertices v ∈ V such that ∆(q1, v) ≥ k and ∆(q2, v) ≥ k.
We then create a graph G′ = (V′, E′), where there is an edge between two vertices u
and v, if and only if ∆(u, v) ≥ k. It can be shown that the set of vertices in the largest
connected component of G′ is the community which is associated with vertices in Q.
This case can also be proved in a similar way as Case (1).

7.2.2 A novel propinquity measure

We now propose a new propinquity measure based on the top-k shortest paths be-
tween vertices in a network. We show that the proposed propinquity measure avoids
the free rider effect.

92 Community Search in Complex Networks

u

v

(a)

u'

v'

(b)

Figure 7.1: An example that illustrates the distances between two different pairs of
vertices are equal, while the structure of network around these pairs is completely
different.

Given a network G = (V, E), one may naturally consider the inverse of the length
of a shortest path between two vertices can be considered as a propinquity measure
between the two vertices. However, existence of hubs [Watts and Strogatz 1998] and
structural hole spanners [Rezvani et al. 2015] implies that complex networks exhibit
a small-world characteristic, by which the diameter of such networks is small. As a
result, the length of a shortest path between any pair of vertices is usually small, and it
may obscure the propinquity of vertices with each other. This may lead to inaccurate
communities found for a query Q.

Nonetheless, the top-k shortest paths between vertices can provide sufficient in-
formation about the propinquity between vertices. Although the length of a shortest
path between a pair of vertices is usually small in complex networks, the top-k short-
est paths between them may vary, which helps expose the propinquity between pairs
of vertices. Fig. 7.1 shows two examples, where the distance between u and v is equal
to the distance between u′ and v′; however u′ and v′ are densely connected, while
u and v belong to different communities. Fig. 7.1a illustrates how a structural hole
spanner bridges vertices in two communities to shorten the shortest paths between
vertices in those communities. However, although the first shortest path between u
and v is small, i.e. 4, the second, third and fourth shortest paths between them are 5,
6 and 6, respectively. On the other hand, the first, second, third and fourth shortest
paths between u′ and v′ are all 4. Therefore, we here suggest using top-k shortest paths
in the propinquity, instead of only one single shortest path. Specifically, we consider
two vertices are close enough if the sum of lengths of the top-k shortest paths between
them is no larger than a given `.

Let N(1)
1 (v) denote the set of vertices whose shortest paths to vertex v are no larger

than 1, i.e. the 1-neighborhood of vertex v, and let N(1)
2 (v) denote the vertices whose

shortest paths to vertex v are no larger than 2, i.e. the 2-neighborhood of vertex v, and
let N(1)

` (v) denote that set of vertices whose shortest paths to v are no larger than `,

i.e. the `-neighborhood of vertex v. Similarly, let N(2)
` (v) be the set of vertices that

the sum of top-2 shortest paths between these vertices and v is no larger than `. Let
N(k)

` (v) be the set of vertices that the sum of the top-k shortest paths between these
vertices and vertex v is no larger than `. The propinquity between two vertices u and

§7.2 Community search problem 93

PapadimitriouJon M. Kleinberg

Evgeny Dantsin

Eva Tardos

(a) ` = 5

PapadimitriouJon M. Kleinberg

Uwe Schoning

Prabhakar Raghavan
Evgeny Dantsin

Eva Tardos

Robert Kleinberg

(b) ` = 11

PapadimitriouJon M. Kleinberg

Adam Kalai

Uwe Schoning

Edward A. Hirsch

Ronald Fagin

Prabhakar Raghavan

Evgeny Dantsin

Eva Tardos

Robert Kleinberg

(c) ` = 17

PapadimitriouJon M. Kleinberg

Tim Roughgarden

Robert KleinbergEva Tardos

Madhu SudanRavi Kannan

Edward A. Hirsch

Adam Kalai Ronald Fagin

Prabhakar Raghavan

Evgeny Dantsin

Uwe Schoning

(d) ` = 23
Figure 7.2: Communities that were detected for a query {Kleingerg, Papadimitriou}
using dataset DBLP.

v with respect to a certain ` is then defined as:

∆(u, v; `) = max{k : u ∈ N(k)
` (v)}. (7.1)

Notice that the propinquity measure defined in Eq. 7.1 represents how close two
vertices are in a network and whether they are likely to be in the same community.
Given two vertices u and v, a small value of propinquity between them (i.e. ∆(u, v; `)
is small) means that u and v are far from each other, because the sum of the lengths of
the top-k shortest paths between them is larger than `, therefore they are less likely to
be in the same community. In contrast, a large value of propinquity between u and v
means that there are many paths with short lengths between u and v, implying that
they are likely to be in the same community.

Fig. 7.2 illustrates the novel propinquity in action when searching communities for
two researchers in computer science, i.e. Jon Kleinberg and Christos Papadimitriou,
using different values of `. Fig. 7.2 shows that vertices on the shortest paths between
query vertices represent other researchers who work in the same area and reveal the
community structure around query vertices. Furthermore, it can be seen in Fig. 7.2
that vertices within the communities are densely connected and the distance between
them is quite short. Specifically, the diameter in each community is 2. Also, with the
increase of the value of parameter ` from Fig. 7.2a to Fig. 7.2d, the number of vertices
being identified in the community increases. This shows the flexibility of the proposed
propinquity in identifying communities.

7.2.3 Discussion on free rider effect

Free rider effect is a common issue with many community search methods [Wu et al.
2015; Huang et al. 2015]. Several existing works [Wu et al. 2015] have used a fitness
metric that evaluates the quality of a given community. Wu et al. [Wu et al. 2015] dis-
cussed the free rider effect in such community search methods . We here explain why
existing works suffer from the free rider effect based on a certain property of propin-
quity. We use the formal definition of free rider effect used by Huang et al. [Huang
et al. 2015].

Definition 11 (Free Rider Effect [Huang et al. 2015]). Given a network G = (V, E) and a
query Q ⊆ V, let H be a community found by a community search method based on a fitness
metric f (·). Let H∗ (H∗ 6⊆ H) be a community with f (H∗) > f (H). If f (H ∪H∗) ≥ f (H),

94 Community Search in Complex Networks

we say that f (·) suffers from the free rider effect and H∗ is called a free rider community for
query Q.

The following lemma shows that if a propinquity measure is transitive then it is
prone to the free rider effect.

Lemma 9. Given a network G = (V, E), a query Q ⊆ V and parameter k, let H be a
community found for Q, where ∆′(H) = k. If there exists a subgraph H∗, with ∆′(H∗) ≥ k
and ∆′(u, v) ≥ k for any u ∈ H and v ∈ H∗, then ∆′(H ∪ H∗) ≥ ∆′(H), i.e. ∆′ causes the
free rider effect.

Proof. Based on the definition of transitive propinquity ∆′(u, v) ≥ k for any two ver-
tices u ∈ H and v ∈ H∗ implies that ∆′(x, y) ≥ k for every two vertices x, y ∈ H ∪ H∗.
Therefore, ∆′(H ∪ H∗) ≥ k. Thus, the transitive propinquity ∆′ may cause the free
rider effect and the lemma is proved.

In the following we demonstrate how our proposed propinquity measure can
avoid such free rider effect.

Lemma 10. Given a network G = (V, E), a query Q ⊆ V and parameter k, let H be a
community found using the community search problem with the propinquity measure ∆. If
there exist a subgraph H∗ with ∆(H∗) > ∆(H) and ∆(H ∪ H∗) ≥ ∆(H) then H∗ ⊆ H.

Proof. We prove this lemma using contradiction. Assume that H∗ is not a subset of H,
yet ∆(H ∪ H∗) ≥ ∆(H). Therefore, there exists at least one vertex u ∈ H∗ − H. Since
∆(H ∪ H∗) ≥ ∆(H), for every vertex v ∈ H, ∆(u, v) ≥ ∆(H). Thus, for every vertex
v ∈ H, we have ∆(u, v) ≥ k, which is a contradiction to the fact that H is maximal as
stipulated in Definition 8.

7.3 Community search algorithm

In this section, we propose two efficient algorithms for the community search prob-
lem. One is called clique-based algorithm for community search (CAC) and the other
is called fast algorithm for community search (FAC). Each algorithm consists of two
main stages: (1) identifying the community profile of query vertices, which deter-
mines community membership of query vertices, and (2) expanding communities of
query vertices. In the first stage, each algorithm determines which query vertices are
in the same community using the pairwise propinquity between query vertices, while
in the second stage, each algorithm expands the communities using top-k shortest
paths to find other vertices that are in the same community as query vertices. Proce-
dure 3 describes the overall process of each algorithm.

It is noted that the main difference between algorithms CAC and FAC is in the
first stage, i.e. identifying the community profile. More specifically, this stage finds a
profile which consists assignment of query vertices to communities. Such community
profile of query vertices have a significant impact on the accuracy of the communities
found by the algorithms.

§7.3 Community search algorithm 95

Procedure 3 CommunitySearch(G, Q, `, k)

Input: G = (V, E), Query Q, `, k
Output: Communities of vertices in Q

1: /* Stage 1: Determine community membership */
2: GQ ← ConstructQueryRelevanceGraph(G, Q, `, k);
3: C ← Find communities of query vertices in GQ;
4: /* Stage 2: Expand each community of C */;
5: i← 0;
6: for each community C in C do
7: i← i + 1;
8: Vi ← ExpandCommunity(G, Q, C, `, k);
9: C ← C \ {C} ∪ {Vi};

10: output C;

Procedure 4 ConstructQueryRelevanceGraph(G, Q, `, k)

Input: G = (V, E), Query Q, `, k
Output: Query relevance graph GQ = (Q, EQ)

1: EQ ← ∅;
2: GQ ← (Q, EQ);
3: for each qi and q j ∈ Q do
4: if ∆(qi, q j; `) ≥ k then
5: EQ ← EQ ∪ {(qi, q j)};
6: return GQ = (Q, EQ);

7.3.1 Identifying the community profile

Given a set of query vertices, some vertices may belong to different communities.
Therefore, it is crucial to group these query vertices into communities. A community
profile for query vertices is an assignment of query vertices to one or more commu-
nities, where each vertex can belong to more than one community. Let us define the
query relevance graph, which enables us to determine the community membership
for query vertices.

Definition 12 (Query Relevance Graph). Given a network G = (V, E), a query Q, two
positive integers ` and k, the query relevance graph is a graph GQ = (Q, EQ) such that its
vertices are the query vertices, and there is an edge between two vertices q1 and q2 in GQ if
∆(q1, q2) ≥ k.

Procedure 4 details the construction of the query relevance graph.

Example 4. Fig. 7.3(b) illustrates the query relevance graph of query vertices Q = {v, u, z}
in the graph of Fig. 7.3(a), when parameters are set as suggested in the experiments section, i.e.
k = 4 and ` = 11. It is noticed that the set of vertices in this query relevance graph matches
the set of vertices in the given query. Since, the propinquity value between only vertices u and

96 Community Search in Complex Networks

 v

u

z

(a)

v

u z

(b)

Figure 7.3: Given a graph shown in (a), the query relevance graph of query vertices
Q = {u, v, z} is shown in (b), with the suggested parameters k = 4 and ` = 11.

v is no smaller than 4, there is an edge only between these two vertices. The query relevance
graph can show the community membership of query vertices more clearly.

In the following, we discuss how query relevance graphs can be used to determine
the community membership among query vertices.

7.3.1.1 Clique-based algorithm

In CAC, the community membership among query vertices is determined using max-
imal cliques of the query relevance graph. The proposed community search problem
in this chapter implies that if the propinquity between two query vertices qi and q j
is at least k, then there must be a community Vp which includes both query vertices.
Simultaneously, two vertices may belong to the same community only if the propin-
quity between them is at least k. Therefore, maximal cliques of the query relevance
graph must satisfy the first condition of the community search problem, which dic-
tates that two query vertices may belong to the same community if and only if their
propinquity is no smaller than k. Notice that these maximal cliques may overlap with
each other.

Please note that the set of maximal cliques of the query relevance graph does not
necessarily provide the minimum cover of query vertices. Instead it finds a feasible
cover. In order to find a minimum cover of query vertices, one may need to solve the
edge clique cover problem [Orlin 1977] in the query relevance graph.

Here we propose using a maximal clique detection algorithm, such as the one
proposed by Bron and Kerbosch [Bron and Kerbosch 1973], on the query relevance
subgraph to identify groups of query vertices that belong to the same community.

7.3.1.2 Fast algorithm

Since the running time of existing algorithms for finding maximal cliques in a network
is exponential [Bron and Kerbosch 1973], in FAC we propose a fast approach for deter-
mining the community membership among query vertices based on their connectivity
in the corresponding query relevant graph.

This approach determines whether the query vertices are in the same community
or not using the query relevance graph in a slightly different way. Two vertices qi ∈ Q

§7.3 Community search algorithm 97

and q j ∈ Q are considered to be in the same community if there is a path between
them in the query relevance graph. In other words, two query vertices lie in the same
community if they belong to the same connected component of the query relevance
graph.

7.3.2 Expanding communities

In order to find communities for query vertices, we use the communities of query
vertices identified from the query relevance graph by either algorithms CAC or FAC.
Given a current community C of the query relevance graph GQ, the algorithm ini-
tializes a new community C′ using the vertices in C. The algorithm processes two
different cases: (1) C consists of only one query vertex, and (2) C consists of more
than one query vertex. If C contains only one query vertex, the algorithm first finds a
neighbour u of q ∈ C with the largest propinquity value ∆(u, q; `) and then expands
the community C′ by adding the top-k shortest paths between u and q to community
C′. However, if C contains more than one query vertex, the algorithm then repeatedly
adds to C′ the vertices of the top-k shortest paths between every two pair of vertices
that have an edge between them in the query relevance graph GQ. In other words, let
qi ∈ Q and q j ∈ Q be two vertices that have an edge in the query relevance graph
GQ. The algorithm first finds the top-k shortest paths between qi and q j in G and then
adds to the community all vertices of the top-k shortest paths. To find the top-k short-
est paths in G between a pair of vertices qi and q j, the algorithm starts with k′ = 1 and
repeatedly finds the k′-th shortest path between qi and q j in G. Procedure 5 details the
community expansions.

Procedure 5 ExpandCommunity(G, Q, C, `, k)

Input: G = (V, E), Q, C, `, k
Output: Expanded community C′

1: C′ ← C;
2: if |C| > 1 then
3: for each qi and q j in C do
4: if ∆(qi, q j; `) ≥ k then
5: KP← top-k shortest paths between qi & q j;
6: C′ ← C′ ∪ KP;
7: else if |C| = 1 then
8: for q ∈ C, let u← argmaxv∈N(q){∆(v, q; `)};
9: C′ ← C′ ∪ {top-k shortest paths between u & q};

10: return C′;

7.3.3 Algorithm analysis

The rest is to analyze the time complexity of algorithms CAC and FAC.

98 Community Search in Complex Networks

Theorem 13. Given a network G = (V, E), a query Q ⊆ V and two positive integers ` and
k, algorithm CAC delivers a feasible solution to the community search problem in G in time
O(3|Q||Q|+ |Q|2k(|V|+ |E|)), where ` and k are the input arguments of Procedure 3.

Proof. Procedure 3 consists of two stages: (1) clique based algorithm for determining
community membership, and (2) expanding communities (Procedure 5). We study
the time complexity of each procedure separately.

In Steps 3-6 of Procedure 4, pairwise propinquity of query vertices is calculated.
Calculating the propinquity for every pair of vertices can be done using a top-k short-
est path algorithm. The best known algorithm for the top-k shortest paths runs in
time O(k(|V|+ |E|)) for unweighted graphs [Katoh et al. 1982]. Therefore, the time
complexity of Procedure 4 is O(|Q|2k(|V|+ |E|)). Next, the algorithm needs to find
the maximal cliques of the query relevance subgraph, where the time complexity of
the Bron and Kerbosch algorithm [Bron and Kerbosch 1973] for maximal clique detec-
tion [Bron and Kerbosch 1973] is O(3|Q||Q|).

In Steps 2-4 of Procedure 5, the set of vertices in the top-k shortest paths can be
found using the same top-k shortest paths algorithm in time O(k(|V| + |E|)). As
this procedure can be done for all pairs of query vertices in Q, the time required for
Steps 2-4 is O(|Q|2k(|V|+ |E|)). Thus, the overall time complexity of Algorithm 3 is
O(|Q|2k(|V|+ |E|)).

Theorem 14. Given a network G = (V, E), a query Q ⊆ V and two positive integers ` and
k, algorithm FAC delivers a feasible solution to the community search problem in G in time
O(|Q|2k(|V|+ |E|)), where ` and k are the input arguments of Procedure 3.

Proof. Procedure 3 consists of two stages: (1) determining community membership
(Procedure 4), and (2) expanding communities (Procedure 5). We study the time com-
plexity of each procedure separately.

In Steps 3-6 of Procedure 4, pairwise propinquity of query vertices is calculated.
Calculating the propinquity for every pair of vertices can be done using a top-k short-
est path algorithm. The best known algorithm for the top-k shortest paths runs in
time O(k(|V|+ |E|)) for unweighted graphs [Katoh et al. 1982]. Therefore, the time
complexity of Procedure 4 is O(|Q|2k(|V|+ |E|)).

In Steps 2-4 of Procedure 5, the set of vertices in the top-k shortest paths can be
found using the same top-k shortest paths algorithm in time O(k(|V| + |E|)). As
this procedure can be done for all pairs of query vertices in Q, the time required for
Steps 2-4 is O(|Q|2k(|V|+ |E|)). Thus, the overall time complexity of Algorithm 3 is
O(|Q|2k(|V|+ |E|)).

Note that the analysis on the time complexities O(3|Q||Q|+ |Q|2k(|V|+ |E|)) and
O(|Q|2k(|V| + |E|)) for Procedure 3 are very conservative. In our experiments, the
real running times of both algorithms CAC and FAC are nearly linear-time in terms
of the number of edges.

Parameter setting. Although communities in different networks share general char-
acteristics, such as the density of connections among vertices and sparsity of connec-

§7.4 Experimental results 99

tions between communities, their exact density of connections and size is inherited
from the network, thus may differ due to different network topologies. Communities
in some networks are small, while relatively large in other networks, and connections
among vertices in a community depends on the nature of the relationship between
vertices. Thus, one of the vital features of a good community search algorithm is to
provide a flexible way to deal with differences in network topologies. Two parameters
` and k are the keys that can be tuned to reveal communities in different networks.

It is possible to probe the proper values for parameters ` and k using a binary
search approach, since the values of parameters k and ` are bounded. Specifically, we
start by setting the values of these parameters as small as possible, i.e. ` = k = 2.
We then continuously double the values of ` and k, until the quality of the obtained
communities starts to decrease. We then reduce the value of parameters, until the
quality of the obtained communities starts to decrease. This process continues un-
til the proper values of ` and k are found. We later demonstrate this process in the
experimental results section.

7.4 Experimental results

We have evaluated the performance of our proposed community search algorithms
on real datasets. In this section, we start with presenting the experimental settings
(Section 7.4.1). We then discuss the performance of the proposed algorithms against
several benchmark algorithms.

7.4.1 Experimental settings

We present the settings of the experiments in this subsection, including datasets, bench-
mark algorithms, evaluation metrics and the computing environment.

Datasets. We adopted four real datasets that are publicly available1, and have been
widely used in the literature [Barbieri et al. 2015; Huang et al. 2014; Huang et al. 2015;
Shan et al. 2015b; Wu et al. 2015]. Dataset Amazon is a network of Amazon prod-
ucts, where if a product i is frequently co-purchased with another product j, there is
an edge between i and j. Products are categorized by Amazon, and each category
provided by Amazon is a ground-truth community. Dataset DBLP is a collaboration
network, where ground-truth communities are defined as major journals or confer-
ences. Dataset Youtube is a social network formed by users of the video sharing web-
site Youtube. Users in this network can create groups, and each user-defined group is
considered as a ground-truth community. Dataset LiveJournal is a friendship network
of users in the LiveJournal blogging web site. Users can create groups and join differ-
ent groups. These groups are considered as the ground-truth communities. Table 7.1
summarizes the details of datasets.

In order to evaluate the accuracy of different algorithms in finding the ground-
truth communities (Sections 7.4.2, 7.4.3, and 7.4.4), for each dataset in Table 7.1, we use

1http://snap.stanford.edu/data/index.html

100 Community Search in Complex Networks

250 queries of sizes 2, 4, 6, 8 and 10 that are chosen uniformly at random (50 samples
per size). In order to ensure that each random query lies in at least one community,
we first choose a community randomly, and then randomly select two vertices from
that community. We repeat this operation |Q|/2 times to generate a random query of
size |Q|.

For calculating the performance of the proposed algorithm in determining the
membership of query vertices in a community, we randomly select 150 pairs of query
vertices in the following manner: 50 pairs of vertices are selected completely ran-
domly, regardless of their community membership; 50 pairs are selected such that
vertices in each pair are in the same community; and 50 pairs are selected such that
vertices in each pair are in two different communities. We then calculate the accu-
racy of the proposed algorithms in determining the community membership for these
queries.

Benchmark algorithms. We compare the results of our proposed algorithms, denoted
by CAC and FAC, with the following benchmark algorithms,

• MIS [Ruchansky et al. 2017] – In MIS, a community is defined as a subgraph
with minimum inefficiency that includes all vertices of a query. Each connected
component in a minimum inefficiency subgraph is treated as a separate commu-
nity. We test the algorithm with the set of parameters suggested in the original
paper [Ruchansky et al. 2017].

• CSM [Barbieri et al. 2015] – In CSM, a community is defined as a subgraph that
includes all vertices of the query, and the smallest degree of its vertices is maxi-
mized. We use the greedy algorithm with ShellStruct as descrbed in the original
paper [Barbieri et al. 2015].

• CTC [Huang et al. 2015] – In CTC, a community is defined as a k-truss subgraph
that includes all vertices of the query, and the diameter of this subgraph is min-
imized.

Evaluation metrics. Measuring the quality of detected communities in a network
is challenging, as different metrics lead to different quality of communities. We here
employ two widely-adopted measures in the literature [Huang et al. 2015] for quanti-
tatively analyzing the accuracy of the detected communities by different algorithms.
Given a query Q, let C∗ be the set of ground-truth communities that contain at least
one vertex from Q, and C be the set of communities detected by one of the mentioned
algorithms. The F-measure is based on the precision and recall. The precision and re-
call of a detected community C ∈ C compared to a ground-truth community C∗ ∈ C∗,
are defined as follows.

p(C, C∗) =
|C ∩ C∗|
|C| , r(C, C∗) =

|C ∩ C∗|
|C∗| . (7.2)

§7.4 Experimental results 101

Table 7.1: Details of Datasets

Dataset # vertices # edges # communities
Amazon 334,863 925,872 253,345

DBLP 317,080 1,049,866 13,477
Youtube 1,134,890 2,987,624 8,385

LiveJournal 3,997,962 34,681,189 658,401

F1 and F2-measures [Huang et al. 2015] are then defined as follows.

F1 =
1
|C| ∑

C∈C
max
C∗∈C∗

{
2 · p(C, C∗) · r(C, C∗)
p(C, C∗) + r(C, C∗)

}
, (7.3)

F2 =
1
|C| ∑

C∈C
max
C∗∈C∗

{
5 · p(C, C∗) · r(C, C∗)

4 · p(C, C∗) + r(C, C∗)

}
. (7.4)

To evaluate the performance of the proposed algorithm in determining the com-
munity membership, we also use the traditional definitions of precision and recall, as
follows.

p(C, C∗) =
tp

tp + f p
, r(C, C∗) =

tp
tp + f n

, (7.5)

where tp stands for the number of true-positives, fp for the number of false-positives
and fn stands for the number of false-negatives.

All the experiments were conducted on a desktop with an Intel(R) Core(TM) i7
CPU (3.40GHz) with 32GB memory.

7.4.2 Quality evaluation

We evaluate the proposed algorithms, i.e. CAC and FAC, against the benchmark al-
gorithms for random queries by setting parameters ` = 11 and k = 4. Based on
our experimental results in Section 7.4.5, these values of parameters provide the best
solutions in the majority of datasets. Fig. 7.4 shows the performance of different algo-
rithms on four different datasets in terms of the quality of detected communities. It
can be seen in Fig. 7.4a that for dataset Amazon, the accuracy of results delivered by
CAC and FAC in terms of F1-measure is 100% higher than those of algorithms CTC, CSM
and MIS, while for larger queries (|Q| > 2), the performances of algorithms CAC and
FAC are at least three times better than those of algorithms CTC, and CSM and MIS. A
similar trend is observed in Fig. 7.4e that presents the accuracy of different algorithms
in terms of F2-measure, where the performance of algorithms CAC and FAC is 60%
better than that of algorithms CTC, CSM and MIS for the smallest query size, and the
accuracy is nearly 100% higher than other benchmark algorithms for larger queries. It
can be seen that the performance of algorithm CTC has a decreasing trend in Fig. 7.4a
and Fig. 7.4e. The reason is that algorithm CTC finds only one community per search,
while when the size of a query becomes larger, more communities are involved.

Fig. 7.4b plots the accuracy of the results delivered by different algorithms for
dataset DBLP, in terms of F1-measure. It can be seen in Fig. 7.4b that algorithm CAC

102 Community Search in Complex Networks

Table 7.2: Comparison of running times (seconds), where IT stands for Indexing Time
and ST stands for Searching Time.

Amazon DBLP Yoube LiveJournal
Algorithm IT ST IT ST IT ST IT ST

CAC 0 0.041 0 0.365 0 15.779 0 16.066
FAC 0 0.038 0 0.205 0 15.598 0 14.432
CTC 8.575 46.645 13.6 57.938 58.814 752 1,364 2,762
CSM 156 577 122 381 4,990 13,969 10,519 14,317

outperforms algorithms CTC, CSM and MIS by at least 100% across all query sizes in
terms of F1-measure. In a similar manner, algorithm FAC outperforms algorithms
CTC, CSM and MIS by at least 90% across different query sizes. Fig. 7.4b also shows
that algorithms CAC and FAC have some minor fluctuations in the accuracy, which
is due to the randomness of the queries. Similarly, in Fig. 7.4f, the accuracy of the
results provided by CAC is at least 110% higher than those of CTC, CSM and MIS across
all query sizes. Fig. 7.4f also shows that algorithm FAC outperforms algorithms CTC,
CSM and MIS by at least 10% in small queries (|Q| = 2) and by at least 110% for
larger queries (|Q| > 2). One of the interesting trends in Fig. 7.4b and 7.4f is that
the accuracy of algorithm CTC has a significant decreasing trend, as the size of query
increases, which is due to finding only one community per search.

Fig. 7.4c illustrates the accuracy of the communities detected by different algo-
rithms for dataset Youtube, in terms of F1-measure. It can be observed in Fig. 7.4c that
algorithm CAC outperforms algorithms CTC, CSM and MIS by at least 25% in terms of
F1-measure for query size |Q| = 2 and by at least 100% for larger queries (|Q| > 2).
Similarly, the accuracy of communities found by algorithm FAC is almost the same as
algorithm CTC for small queries (|Q| = 2), while the gap between these accuracies in-
creases significantly as the size of queries become larger. It is noted that the accuracy
gain of algorithms CAC and FAC over the benchmark algorithms for larger query sizes
increases rapidly, because the other algorithms fail to deliver more than one commu-
nity per search. Similarly, in Fig. 7.4g, the accuracy of the results provided by CAC is
slightly higher than that of algorithm CTC for small queries (|Q| = 2), while the per-
formance gap between algorithms CAC, CTC and MIS increases with larger queries.
On the other hand, the accuracy of communities found by algorithm FAC for small
queries (|Q| = 2) is lower than that of algorithm CTC, while for larger queries, algo-
rithm FAC consistently outperforms algorithms CTC. Fig. 7.4b and 7.4f illustrate that
the accuracy of algorithm CTC has a significant decreasing trend, as the size of query
increases. The reason behind is that algorithm CTC assumes that all query vertices
belong to the same community, which makes the accuracy of the algorithm drop by
increasing the number of query vertices that are likely to be in different communities.

In Fig. 7.4d, the accuracy of the results of each algorithm is presented in terms of
F1-measure for dataset LiveJournal, which shows that algorithms CAC and FAC out-
perform all other algorithms by at least 100% across different query sizes. For queries
with more vertices, the gap between accuracy of the results of FAC and CTC is becom-

§7.4 Experimental results 103

2 4 6 8 10
0

20

40

60

80

Query size |Q|

F1
-m

ea
su

re
(%

)

CAC FAC MIS
CTC CSM

(a) Amazon

2 4 6 8 10
0

20

40

60

Query size |Q|

F1
-m

ea
su

re
(%

)

(b) DBLP

2 4 6 8 10
0

10

20

30

40

Query size |Q|

F1
-m

ea
su

re
(%

)

(c) Youtube

2 4 6 8 10
0

10

20

30

40

50

Query size |Q|

F1
-m

ea
su

re
(%

)

(d) LiveJournal

2 4 6 8 10
0

20

40

60

80

Query size |Q|

F2
-m

ea
su

re
(%

)

CAC FAC MIS
CTC CSM

(e) Amazon

2 4 6 8 10
0

20

40

60

Query size |Q|

F2
-m

ea
su

re
(%

)

(f) DBLP

2 4 6 8 10
0

10

20

30

40

Query size |Q|

F2
-m

ea
su

re
(%

)

(g) Youtube

2 4 6 8 10
0

10

20

30

40

50

Query size |Q|

F2
-m

ea
su

re
(%

)

(h) LiveJournal

Figure 7.4: F1-measure and F2-measure of different algorithms on random queries of
various sizes.

2 4 6 8 10
10−2

10−1

100

101

102

103

Query size |Q|

Ru
nn

in
g

tim
e

(s
ec

)

CAC FAC MIS
CTC CSM

(a) Amazon

2 4 6 8 10
10−1

100

101

102

103

Query size |Q|

Ru
nn

in
g

tim
e

(s
ec

)

(b) DBLP

2 4 6 8 10
100

101

102

103

104

Query size |Q|

Ru
nn

in
g

tim
e

(s
ec

)

(c) Youtube

2 4 6 8 10
100

101

102

103

104

Query size |Q|

R
u
n
n
in
g
ti
m
e
(s
ec
)

(d) LiveJournal

Figure 7.5: Running time of different algorithms on random queries of various sizes.

ing larger, which means that algorithm FAC significantly outperforms algorithm CTC
even in queries with more vertices. Fig. 7.4h illustrates the accuracy of solutions in
terms of F2-measure. In Fig. 7.4h, it can be seen that the performance of algorithms
CAC and FAC is at least 100% higher than those of algorithms CTC and CSM.

Quality evaluations for queries of size 1. We now evaluate the quality of the com-
munities detected by the proposed algorithms using queries that consist of only one
vertex. Notice that queries are selected uniformly at random and the performance is
reported in terms of F1-measure and F2-measure. Fig. 7.6 presents the quality of com-
munities detected when the query size is 1. It is also noteworthy that the performance
of both algorithms CAC and FAC is identical when queries consist of only one vertex,
because the difference between these two algorithms is in determining community
membership for queries that consist of more than one vertex. It can be seen in Fig. 7.6a
that in terms of F1-measure, the quality of communities detected by algorithms CAC
and FAC is higher than other algorithms, i.e. MIS, CTC and CSM for datasets Amazon
and Youtube and LiveJournal. However, for dataset DBLP, the performance of algo-
rithm CTC is around 10% higher than that of algorithms CAC and FAC. The reason is
that algorithm CTC identifies a large community that contains the single query vertex,
which is a better match with the community structure of DBLP. Fig. 7.6b shows that

104 Community Search in Complex Networks

Amazon DBLP Youtube LiveJournal
0

20

40

60

Dataset

F1
-m

ea
su

re
(%

)

CAC FAC
MIS CTC
CSM

(a) F1-measure

Amazon DBLP Youtube LiveJournal
0

20

40

60

Dataset

F2
-m

ea
su

re
(%

)

CAC FAC
MIS CTC
CSM

(b) F2-measure

Figure 7.6: The quality of communities detected for queries of size 1 using different
datasets.

for dataset DBLP, the quality of communities detected by algorithms CAC and FAC is
at least 10% higher than that of other algorithms. However, for dataset Youtube, the
performance of algorithms CAC, FAC and CTC is almost identical. Fig. 7.6b illustrates
that for dataset Amazon and LiveJournal, the quality of communities detected by al-
gorithm CTC is larger than that of algorithms CAC and FAC. It is noteworthy that the
performance gap between F1-measure and F2-measure accuracy of communities iden-
tified by CTC clearly highlights that the main reason that the algorithm CTC achieved
a higher accuracy is because its identified communities are larger, leading to a better
recall value and consequently a better F2-measure accuracy, but not better F1-measure
accuracy. In general, the performance of algorithm CSM is consistently inferior to the
other algorithms, while algorithms CAC and FAC have similar performances on these
datasets for queries of size 1. It must be noted that the F-measure values obtained by
algorithm MIS are very small and barely noticeable in Fig. 7.6.

7.4.3 Time efficiency

Table 7.2 illustrates the running times of all different algorithms for different datasets.
Since algorithms CTC and CSM have an indexing phase, we separate the times required
for indexing and community searching, and present the running times for all queries
of size 2, to make a fair comparison.

In Table 7.2, it is noticed that for all datasets, the running time of algorithm CAC is
no larger than a fraction 1/50 of the running time algorithm CTC and no larger than
1/10 of the running time of algorithm MIS, while algorithm CAC has a more significant
improvement over algorithm CSM, which is nearly 1/900 of the running time of algo-
rithm CSM. This performance is in the light of the accuracy of the solution delivered by
algorithm CAC is noticeably better than those of algorithms CTC, CSM and MIS, such
running time improvement is still astonishing. It is also noticeable that algorithm FAC
has up to 30% improvement over the running time of algorithm CAC. The reason for
such significant performance of algorithms CAC and FAC is the efficiency of these al-
gorithms in identifying the top-k shortest paths, while other algorithms spend a large

§7.4 Experimental results 105

|Q| = 2 |Q| = 4 |Q| = 6 |Q| = 8 |Q| = 10

1
2
3
4
5
6
7
8
9

10
11

Query Size (|Q|)

Av
er

ag
e

#
of

co
m

m
un

iti
es CAC FAC MIS

CTC CSM

(a) Amazon

|Q| = 2 |Q| = 4 |Q| = 6 |Q| = 8 |Q| = 10

1
2
3
4
5
6
7
8
9

10

Query Size (|Q|)

Av
er

ag
e

#
of

co
m

m
un

iti
es

(b) DBLP

|Q| = 2 |Q| = 4 |Q| = 6 |Q| = 8 |Q| = 10

1
2
3
4
5
6
7
8
9

10

Query Size (|Q|)

Av
er

ag
e

#
of

co
m

m
un

iti
es

(c) Youtube

|Q| = 2 |Q| = 4 |Q| = 6 |Q| = 8 |Q| = 10

1
2
3
4
5
6
7
8
9

10

Query Size (|Q|)

Av
er

ag
e

#
of

co
m

m
un

iti
es

(d) LiveJournal

Figure 7.7: Average number of communities detected for each queries of various sizes.

amount of time on searching for communities, despite having stored search indexes
for communities.

Table 7.2 also shows the running time of different algorithms for dataset DBLP,
from which it is observed that the running times of algorithms CAC and FAC are still
significantly better than those of algorithms CTC, CSM and MIS. It is observed in Ta-
ble 7.2 that the running time of algorithms CAC and FAC is less than 1/100 of the
running time of algorithm CTC, while the running time of algorithm FAC is less than
1/1000 of the running time of algorithm CTC and 1/300 of the running time of algo-
rithm MIS.

Table 7.2 shows that the running times of algorithms CAC and FAC are much
smaller that of algorithms CTC and CSM for dataset LiveJournal, too. While the run-
ning time of algorithm FAC is less than 1/190 of the running time of algorithm CTC
and less than 1/900 of the running time of algorithm CSM, it is less than 1/13 of the
running time of algorithm MIS. In Table 7.2, it is noticed that the indexing time for
algorithms CAC and FAC is zero, while other algorithms spend a huge amount of time
on indexing. Nonetheless, in the presence of indexes for algorithms CTC and CSM, the
running times of algorithms CAC and FAC are still better than those of algorithms CTC
and CSM.

Fig. 7.5 also presents the running time of different algorithms using queries of
different sizes. It is noticed that the running time of algorithm CAC increases with the
growth of the query size. A similar trend is observed in Fig. 7.5 for algorithm FAC.
The reason behind is that algorithms CAC and FAC spend time in finding community
membership for different pairs of query vertices. By comparing plots in Fig. 7.5 and in
Fig. 7.4, it can be seen that algorithms CAC and FAC have increasing trends in running
time, while the plots of accuracy seem to be stable with minor fluctuations. It is noted
that minor fluctuations are due to randomness of queries. Unlike algorithms CAC
and FAC, the accuracy of the solution delivered by algorithm CTC reduces with the
increase of the query size, while its running time is almost flat across query sizes.

7.4.4 Number of detected communities

Fig. 7.7 reports the average number of detected communities by algorithms CAC and
FAC for all queries of different sizes, compared to the number of ground-truth com-
munities for each query size. It can be seen from Fig. 7.7a that for dataset Amazon,
the average number of detected communities by both algorithms CAC and FAC is

106 Community Search in Complex Networks

slightly higher than the number of ground-truth communities. This means that the
number of detected communities by algorithms CAC and FAC can be more than one.
The gap between the number of communities found by CAC and FAC and the number
of ground-truth communities suggests that the propinquity measure may have some
false-negative predictions in community membership. Similarly, for dataset DBLP,
the average number of detected communities has almost 75% similarity to the av-
erage number of communities in the ground-truth. However, for dataset Youtube,
the similarity between number of detected communities and number of ground-truth
communities is slightly less obvious, but the overall number of communities is more
than one in most cases. The reason behind is that the parameters selected for the ex-
periments should be tuned for dataset Youtube separately. For dataset LiveJournal,
the average number of communities detected for each query is again almost identical
to the average number of communities in the ground-truth. Note that algorithms CTC
and CSM find only one community, while the quality of the communities detected by
CAC and FAC are significantly higher than those of algorithms CTC and CSM. It is no-
ticed that algorithm MIS consistently finds a large number of communities per search,
which is far more than the number of communities in the ground-truth. This indi-
cates that algorithm MIS tends to find approximately one community per vertex in
the query.

7.4.5 Impact of parameters ` and k

We discuss the accuracy of the proposed propinquity measure in determining if query
vertices belong to the same community and the impact of parameters ` and k on the
accuracy and quality of communities detected by the algorithms. We randomly select
pairs of vertices and check if the value of propinquity between them is no smaller than
a given number k, and vary the values of these parameters ` and k for performance
evaluations. Fig. 7.8 plots the accuracy of propinquity for random query vertices with
varying values of parameters ` and k, where each column is associated with one value
for ` in different datasets.

Fig. 7.8 shows the trend of precision and recall, when varying the value of ` (5 ≤
` ≤ 14), and the value of k (1 ≤ k ≤ 4) for different datasets. For the dataset Amazon,
It can be seen in the first row of Fig. 7.8 that as we increase the value of k, the precision
is increased. The reason behind is that when we increase the value of parameter k, the
algorithms become stricter for adding vertices to the same community. Therefore, the
precision increases as the value of k increases. However, with the increase on the value
of k, the recall decays. The reason is that when the community membership becomes
stricter, the number of false-negative results increases and we observe a decreasing
trend of recall. Similarly in the second row of Fig. 7.8 for dataset DBLP, the precision
value increases, with the increase of the required number of top-k shortest paths for
membership, i.e. k, while the recall gets decreased. The third row of Fig. 7.8 illustrates
the results for dataset Youtube, where the precision value gets increased, when the
required number of paths for membership, i.e. k, is increased, while the recall gets
decreased. The last row in Fig. 7.8 shows the results for dataset LiveJournal, where

§7.4 Experimental results 107

0%

50%

100%

A
m
az
on

Precision
Recall

0%

50%

100%

D
B
L
P

0%

50%

100%

Y
ou

tu
b
e

1 2 3 4
0%

50%

100%

k

L
iv
eJ
ou

rn
al

1 2 3 4
k

1 2 3 4
k

1 2 3 4
k

` = 5 ` = 8 ` = 11 ` = 14

Figure 7.8: Impact of parameters on community membership detection. In each row,
precision and recall of the community membership for each dataset is shown, using
different values of ` and k.

the trend is similar to the one for Amazon, DBLP and Youtube.
The ideal point for choosing proper values for k and ` is the position where the line

of precision and recall meet each other at their highest value. For example, for dataset
Amazon, the perfect point is {` = 11, k = 2}, for datasets DBLP and LiveJournal,
the perfect point is {` = 11, k = 3} and for dataset Youtube, the perfect point is
{` = 14, k = 3}. It is also noted that in each dataset, as we increase the value of `,
the value of k for which precision and recall meet is also increased. The reason is that
when we increase the value of `, the threshold for considering vertices in the same
community needs to be stricter, i.e. the value of k needs to be increased.

We now evaluate the impact of parameters on the quality of the communities de-
tected by the proposed algorithms in terms of size and density. We randomly generate
50 sample queries each consisting of 2 vertices and report the average size of commu-
nities (|C|) and density of edges in the communities (E[C]/|C|) by varying parameters
k and ` in Fig. 7.9. Since the query consists of only two vertices, both algorithms CAC
and FAC have an identical performance. Therefore, in this section, we discuss the
performance of both algorithms under the name of FAC.

Fig. 7.9a illustrates the average size of communities detected for different datasets

108 Community Search in Complex Networks

24 8 16 32 64
0

10

20

30

40

Number of shortest paths (k)

C
om

m
u
n
it
y
S
iz
e

Amazon DBLP
LiveJournal Orkut

(a)

24 8 16 32 64

0

10

20

30

40

Length of shortest paths (`)
C
om

m
u
n
it
y
S
iz
e

(b)

24 8 16 32 64

0

100

200

300

Number of shortest paths (k)

D
en
si
ty

(c)

24 8 16 32 64

0

100

200

300

Length of shortest paths (`)

D
en
si
ty

(d)
Figure 7.9: Average size and density of communities detected based on parameters k
and `.

by varying parameter k. It can be seen in Fig. 7.9a that as we increase the value of
parameter k, the size of communities increases, for all four datasets. The reason is
that by increasing the parameter k, more shortest paths between query vertices will
be discovered and more vertices will be added to communities. Similarly, Fig. 7.9b
shows that parameter ` has a similar effect, that is the average size of communities
increases as we increase the value of `. The reason is that as we increase the value of
parameter `, the length of the shortest paths will be increased. Consequently more
vertices will be added to each community and the size of communities increases.

Fig. 7.9c shows the average density of communities detected for different datasets
by varying parameter k. It can be seen that by increasing the value of parameter k,
the size of communities increases and as a result, the number of edge between them
increases. Fig. 7.9d illustrates that parameter ` exhibits a similar characteristic, by
which the density of edges inside communities increases. The reason behind is that
the size of communities increases, as we increase the value of parameter `, thereby
more edges between communities get revealed.

7.5 Summary

We studied the community search problem for a given query of vertices, where the
vertices in the query may belong to different communities. We first defined the notion
of propinquity in a network that represents the closeness between a pair of vertices
and the likelihood that they lie in the same community. We then proposed a generic
problem definition for community search based on the propinquity measure and uti-
lized the propinquity measure to determine which query vertices belong to the same
community. We made an interesting observation about the community structure in
networks, that is vertices on the shortest path between two query vertices are most
likely to be in the same community. Using this intuition, we devised an instance of the
propinquity measure that captures the cohesiveness of a pair of vertices. We further
devised two efficient algorithms for the community search problem that are capable
of finding more than one communities for a given query. We finally conducted ex-
periments on real-world datasets and compared our results with several benchmark
algorithms for community search. Our experimental results showed that the proposed
algorithm delivers communities that accurately match with ground-truth communi-
ties, while its running time is only a fraction of the running time of the benchmark
algorithms.

Chapter 8

Conclusion and future works

In this thesis, we studied some of the problems that are related to community struc-
ture in complex networks, such as hierarchical and overlapping community detec-
tion, community search and structural hole spanners. While the existing algorithms
for these problems mainly suffer from scalability and accuracy, we showed that the
shortest path in a network can be used to devise accurate, yet scalable algorithms for
a variety of problems related to community structure. In particular, we solved sev-
eral problems including structural hole spanners, hierarchical community detection,
community search and overlapping community detection in large-scale complex net-
works. We utilised the shortest path between communities as a measure to determine
community membership and importance of a vertex in the communication between
communities. In the following we summarise our conclusions for each of these prob-
lems.

8.1 Hierarchical community detection

In Chapter 4, we studied the hierarchical community detection problem in large-scale
complex networks. We proposed the notion of a cohesive hierarchy of communities,
as a rooted tree of communities where each community is a subset of its parent in
the tree, and the information centralities of communities is no less than that of their
parent in the hierarchical tree. We then formally defined the problem of cohesive hi-
erarchy detection, as the problem of identifying a cohesive hierarchy of communities
with maximum information centrality, and we showed that the problem of finding
hierarchical communities is NP-hard. We devised two efficient and scalable heuristic
algorithms for this problem, which use a sparsification method to reduce the network
size for finding global cuts. We also proposed a fast randomized algorithm to esti-
mate the value of information centrality in large-scale networks. We finally validated
the effectiveness of our proposed algorithms using extensive experiments using five
large-scale real-world datasets.

The research conducted on hierarchical communities can be used to explore the re-
lationships among users in real-world social networks and biological networks. One
of the key problems to solve in social network analysis is the study of hierarchies of
relationships among users, where each relationship in lower levels of the hierarchy

109

110 Conclusion and future works

can be given a higher weight, compared to the edges in higher levels of the hierar-
chy. Other instances where our findings on hierarchical community detection can
contribute to include hierarchical clustering in data mining and finding the connec-
tivity patterns in the network of organisms.

8.2 Structural hole spanners

In Chapter 5, we studied the top-k structural hole spanner problem in a large-scale
complex network and proposed a novel model to measure the quality of structural
hole spanners. We then formulated a novel top-k structural hole spanner problem
and showed its NP-hardness. We thirdly devised two fast yet scalable linear-time
algorithms for the problem by exploring the bounded inverse closeness centrality of
vertices and articulation points in the network. We finally validated the effectiveness
of the proposed model and evaluated the performance of the proposed algorithms
through extensive experiments on real and synthetic datasets. Our experimental re-
sults demonstrated that the proposed model can capture the characteristics of struc-
tural hole spanners accurately, and the proposed algorithms are promising.

The result of the research on structural hole spanners can contribute to several ap-
plications and research areas. One of the interesting areas to explore and apply our
findings of structural hole spanners is the disease propagation control, where identi-
fying the top-k structural hole spanners in a network can disconnect communities and
stop the spread of disease to a wider span. Our findings of structural hole spanners
can be applied to identify multi-disciplinary researchers, who are active in bridging
ideas from theorists to practitioners in different research areas to solve a wide range
of problems. Similarly, influential papers in the citation network of publications can
be found by structural hole spanners that make impact in several research areas.

8.3 Overlapping community detection

In Chapter 6, we designed an efficient algorithm for the problem of overlapping com-
munities detection from a complex network. We first proposed a novel community
fitness metric that can model the quality of detected communities more accurately. We
then devised an efficient yet scalable algorithm for detecting overlapping communi-
ties, using the proposed community fitness metric. We finally validated the effective-
ness of the fitness metric, and evaluated the efficiency of the proposed algorithm by
conducting extensive experiments on real datasets with considerable network sizes.
The experimental results show that the proposed algorithm outperforms the state-of-
the-arts and runs faster, while it finds higher quality overlapping communities.

The proposed overlapping community detection algorithm in this thesis can be
used to study the overlap between communities. These communities can be then
used in several applications including marketing, influence maximization and find-
ing webpages with high content commonality. It is noted that communities in real
networks usually overlap with each other. Our approach can also be used as an ad-

§8.4 Community search 111

dition to the hierarchical community detection algorithm and the community search
algorithm to enable those works to detect the overlap between communities.

8.4 Community search

In Chapter 7, we investigated the problem of community search for a given query of
vertices. We first discussed one of the main properties of complex networks that is
vertices that lie on the shortest path between two query vertices are most likely to
be in the same community as them. We further analysed the community structure
and formulated the problem of community search, as the problem of finding top-k
shortest paths between vertices that are relevant, i.e. have many paths with short
length between them. We then devised an efficient algorithm for the problem and
conducted several experiments on real-world datasets and compared our results with
the state-of-the-art algorithms for community search problem. Our experimental re-
sults showed that the proposed algorithm delivers communities that accurately match
with ground-truth communities, while the running time of the proposed algorithm is
reasonably fast compared to the existing ones.

The community search algorithm described in this thesis can be used to solve sev-
eral real-world problems. One of the instances where our community search algo-
rithm can contribute to is the expansion of communities around seed vertices, which
is useful in finding global communities of the network. Furthermore, our community
search algorithm can be useful in detection of key players in the relationship between
huge organisations and groups. Finding the affiliation between individuals in social
networks and revealing hidden communication patterns among users is another ma-
jor contributors of our community search algorithm.

8.5 Concluding remarks

In this thesis, we showed that shortest path can be used in different ways to solve a
large span of problems that deal with large-scale networks. We showed that the top-k
structural hole spanners can be seen as the top-k vertices that their removal can incur
the largest increase in the information centrality of a network. Furthermore, we shows
that the information centrality, i.e. mean length of shortest paths, in communities gets
increased, as we move towards the leaves of a hierarchical structure of communities.
Similarly, the top-k shortest paths between query vertices can be used to determine
whether two query vertices are in the same community. Furthermore, the top-k short-
est paths provide an approach to expand communities of a given set of query vertices
in a network. Last but not least, when the length of the second shortest path between
two adjacent vertices is two, the top-k shortest paths (same as the number of triangles
formed by the edge between them) can be used to find overlapping communities. Our
findings in this thesis suggest several directions of research for future researchers to
pursue.

One of the important directions for future research is studying weighted networks.

112 Conclusion and future works

The main approach presented in this thesis is specific to undirected and unweighted
networks, though it is possible to extend this approach to work on weighted networks
using a simple extension of the unweighted shortest path algorithm (such as BFS) to
the weighted shortest path algorithms (such as Dijkstra and Floyd-Warshall). In order
to find edge-cuts in a weighted network to find the hierarchy of communities, it is
possible to adopt the weighted version of the maximum adjacency algorithm [Stoer
and Wagner 1994]. Therefore, one might be interested in extending the proposed ap-
proaches in this thesis and examining the ideas on weighted networks.

Another direction to explore in future research is the parallel computing approach
in community detection. The algorithms presented in this thesis are sequential algo-
rithms, while the presented algorithms including structural hole spanners detection
algorithm, hierarchical and overlapping community detection and community search
could also be parallelized. Conducting extensive experiments to determine the effec-
tiveness of parallelization on the efficiency of the proposed algorithms in this thesis is
another interesting direction for future research.

The hierarchical community detection algorithm that was presented in this thesis
can be extended to find overlapping hierarchical communities. The cut-based ap-
proach that has been adopted in hierarchical community detection partitions a net-
work into disjoint communities. A further study could assess the impact of commu-
nity expansion based on the overlapping community detection fitness metric to detect
the overlapping communities in large-scale networks.

Throughout this thesis, we studied several problems related to community detec-
tion, including structural hole spanners, hierarchical and overlapping community de-
tection and community search, and proposed efficient algorithms that were scalable
to networks with hundreds of millions of vertices using a single desktop computer.
We showed that the shortest paths between vertices can provide a useful, yet efficient
way to identify the underlying structure of communities in large-scale networks.

Appendix A

Appendix

Lemma 11. Given a graph G = (V ∪ {s, t}, E), a positive integer k, and the constructed
graph G′ = (V ∪ S ∪ T, E′) from G, assume that the s − t vertex connectivity in G is at
least k + 1 and graph G does not contain edge (s, t), where |S| = |T| = l = 4n6 and n =
|V ∪ {s, t}|. For each subset VS of V ∪ S ∪ T with |VS| = k, if VS ∩ S 6= ∅ or VS ∩ T 6= ∅,
then there is a subset V∗S of V with |V∗S | = k such that D(G′ \V∗S) > D(G′ \VS).

Proof. We only consider the case that VS ∩ S 6= ∅, since the proofs for the cases of
VS ∩ T 6= ∅ is similar.

In the following, we show that we can construct a subset V′S of V ∪ S ∪ T from VS
with |V′S| = k , by replacing any vertex si ∈ VS ∩ S with a special vertex w ∈ V \ VS,
i.e., V′S = (VS \ {si}) ∪ {w}, so that D(G′ \ V′S) > D(G′ \ VS). Then, we can find
a subset V∗S of V with |V∗S | = k so that D(G′ \ V∗S) > D(G′ \ VS), by repeatedly
performing such a construction until there is a set V∗S containing no vertices in both S
and T. The rest is to show how to find vertex w.

Denote by κG(u, v) the u − v vertex connectivity of any two vertices u and v in
graph G. Given any pair of vertices s j ∈ S \ VS and t j ∈ T \ VS, following the con-
struction of G′, the s j − t j vertex connectivity in graph G′ is at least k + 1 too, i.e.,
κG′(s j, t j) ≥ k + 1, since the s− t vertex connectivity in G is no less than k + 1. Thus,
the s j − t j vertex connectivity in G′ \VS is no less than κG′(s j, t j)− |VS| ≥ k + 1− k =
1.

As the s j − t j vertex connectivity in graph G′ \ VS is at least 1, there is a shortest
path Ps jt j between s j and t j in graph G′ \VS. Assume that path Ps jt j starts from vertex
s j and ends at vertex t j. Let w be the second vertex on path Ps jt j from left to right.
We can see that w is in the vertex set V \ VS. Otherwise, w is in (S \ VS) \ {s j} or
T \ VS. This implies that there is an edge between two different vertices in S, or one
vertex in S and another vertex in T, which contradicts the construction of graph G′

or the assumption that there is no edge connecting vertices s and t in G. Following
the construction of graph G′, we know that vertex w is adjacent to every vertex si ∈ S
in graph G′, and dG′

siw = 1. Furthermore, the shortest path between any two different
vertices si and s j in S is si −w− s j. Then, dG′

si ,s j
= 2. Similarly, dG′

tit j
= 2, where ti, t j ∈ T

and i 6= j.
We then show that D(G′ \ V′S) > D(G′ \ VS) as follows. Let nS = |VS ∩ S| and

113

114 Appendix

nT = |VS ∩ T|. Also, let V′ = V ∪ S ∪ T be the set of vertices in graph G′, and Vc =
V′ \ (Vs ∪ {w}). Then,

V′ \VS = Vc ∪ {w}, (A.1)

and

V′ \V′S = V′ \ ((VS \ {si}) ∪ {w})
= (V′ \ (VS ∪ {w})) ∪ {si}
= Vc ∪ {si}.

We now calculate D(G′ \VS).

D(G′ \VS) = ∑
u,v∈V′\VS

dG′\VS
uv ,

following Eq. (A.1),

D(G′ \VS) = ∑
u,v∈Vc∪{w}

dG′\VS
uv

= ∑
u,v∈Vc

dG′\VS
uv + 2 ∑

v∈Vc

dG′\VS
wv

= ∑
u,v∈Vc

dG′\VS
uv + 2

 ∑
s j∈Vc∩S

dG′\VS
ws j + ∑

v∈Vc∩V
dG′\VS

wv + ∑
t j∈Vc∩T

dG′\VS
wt j

since dG′\VS

ws j = 1 and |Vc ∩ S| = l − nS,

D(G′ \VS) = ∑
u,v∈Vc

dG′\VS
uv + 2

(l − nS) + ∑
v∈Vc∩V

dG′\VS
wv + ∑

t j∈Vc∩T
dG′\VS

wt j

 .

The value of D(G′ \V′S) can be calculated similarly, which is described as follows.

D(G′ \V′S) = ∑
u,v∈V′\V′S

dG′\V′S
uv ,

following Eq. (A.1),

D(G′ \V′S) = ∑
u,v∈Vc∪{si}

dG′\V′S
uv

= ∑
u,v∈Vc

dG′\V′S
uv + 2

 ∑
s j∈Vc∩S

dG′\V′S
sis j + ∑

v∈Vc∩V
dG′\V′S

siv + ∑
t j∈Vc∩T

dG′\V′S
sit j

115

since dG′\V′S
sis j = 2 and |Vc ∩ S| = l − nS,

D(G′ \V′S) = ∑
u,v∈Vc

dG′\V′S
uv + 2

2(l − nS) + ∑
v∈Vc∩V

dG′\V′S
siv + ∑

t j∈Vc∩T
dG′\V′S

sit j

 .

In the following we calculate the difference between D(G′ \V′S) and D(G′ \VS),

D(G′ \V′S)− D(G′ \VS)

= ∑
u,v∈Vc

(dG′\V′S
uv − dG′\VS

uv) + 2(l − nS)

+ 2 ∑
v∈Vc∩V

(
dG′\V′S

siv − dG′\VS
wv

)
+ 2 ∑

t j∈Vc∩T

(
dG′\V′S

sit j
− dG′\VS

wt j

)
,

we note that G′ \ VS = G′[V′ \ VS] = G′[Vc ∪ {w}] and G′ \ V′S = G′[V′ \ V′S] =
G′[Vc ∪ {si}]. Consider graph G′[Vc ∪ {w, si}]. On one hand, the removal of vertex si
from graph G′[Vc ∪ {w, si}] does not increase the distance between vertices u and v in
the resulting graph, i.e., dG′[Vc∪{w}]

uv = dG′[Vc∪{w,si}]
uv , since if si is contained in a u − v

shortest path in graph G′[Vc ∪ {w, si}], we can construct another u− v shortest path
in graph G′[Vc ∪ {w, si}], which does not contain si, by replacing si with any vertex
s j ∈ S \ VS. On the other hand, if w is included in a u − v shortest path in graph

G′[Vc ∪ {w, si}], then dG′[Vc∪{si}]
uv ≥ dG′[Vc∪{w,si}]

uv . Therefore, dG′\V′S
uv ≥ dG′[Vc∪{w,si}]

uv =

dG′\VS
uv ,

D(G′ \V′S)− D(G′ \VS) ≥ 0 + 2(l − nS) + 2 ∑
v∈Vc∩V

(
dG′\V′S

siv − dG′\VS
wv

)
+2 ∑

t j∈Vc∩T

(
dG′\V′S

sit j
− dG′\VS

wt j

)
,

we now observe that for each vertex s j ∈ Vc ∩ S, we have dG′\V′S
s jv = dG′\V′S

siv . Since

s j, v ∈ Vc, following dG′\V′S
uv ≥ dG′\VS

uv , we have dG′\V′S
s jv ≥ dG′\VS

s jv . On the other hand,
following the definition of vertex w, graph G′ \VS contains edge (w, s j). Then, given
a shortest path Ps jv between s j and v in graph G′ \VS, we can construct another path
Pwv between w and v in graph G′ \ VS, by concatenating edge (w, s j) and path Ps jv,

i.e., Pwv = (w, s j)Ps jv. We thus have dG′\VS
wv ≤ dG′\VS

s jv + 1. Therefore, dG′\V′S
s jv ≥ dG′\VS

s jv ≥
dG′\VS

wv − 1,

D(G′ \V′S)− D(G′ \VS) ≥ 2(l − nS) + 2|Vc ∩V| · (−1) + 2 ∑
t j∈Vc∩T

(
dG′\V′S

sit j
− dG′\VS

wt j

)

we see that dG′\V′S
sit j

≥ dG′\VS
wt j

+ 1 for any vertex t j ∈ Vc ∩ T. Following the definition of
vertex w, there is a shortest path Ps jt j between s j and t j in graph G′ \VS, which starts
from s j and ends at t j, so that vertex w is the second vertex in path Ps jt j . Then, we can

116 Appendix

construct another path Pw,t j between w and t j, by removing vertex s j and edge (s j, w)
from path Ps jt j . We can see that path Pw,t j is a shortest path between w and t j. Then,

dG′\VS
s jt j

= dG′\VS
wt j

+ 1. Since dG′\V′S
s jt j

≥ dG′\VS
s jt j

, therefore dG′\V′S
s jt j

≥ dG′\VS
wt j

+ 1,

D(G′ \V′S)− D(G′ \VS) ≥ 2(l − nS)− 2|Vc ∩V|+ 2(l − nT)

> 2(2l − nS − nT − n), as |Vc ∩V| ≤ |V| = n− 2 < n

> 2(2l − 2n), as nS + nT ≤ k < n

≥ 0, as l = 4n6 ≥ n,

i.e., D(G′ \V′S) > D(G′ \VS). The lemma then follows.

Lemma 12. Given a graph G = (V ∪ {s, t}, E), a positive integer k, and the constructed
graph G′ = (V ∪ S ∪ T, E′) from G, assume that the s− t vertex connectivity in graph G is
at least k + 1, where |S| = |T| = l = 4n6 and n = |V ∪ {s, t}|. Let nV = |V| = n− 2. For
each subset VS of V with |VS| = k, we have

D(G′ \VS) ≥ 4l(nV − k) + 4l(l − 1) + (nV − k)(nV − k− 1) + 2l2dG′\VS
s jt j

, (A.2)

and

D(G′ \VS) ≤ 4l(nV − k)ζ + 4l(l − 1) + (nV − k)(nV − k− 1)ζ + 2l2dG′\VS
s jt j

,(A.3)

where s j ∈ S and t j ∈ T.

Proof. Since V′ = S ∪V ∪ T and VS ⊂ V, we calculate D(G′ \VS) as follows.

D(G′ \VS) = ∑
u,v∈(S∪V∪T)\VS

dG′\VS
uv

= ∑
si ,s j∈S

dG′\VS
sis j + 2 ∑

si∈S,v∈V\VS

dG′\VS
siv + 2 ∑

si∈S,t j∈T
dG′\VS

sit j

+ ∑
u,v∈V\VS

dG′\VS
uv + 2 ∑

v∈V\VS ,t j∈T
dG′\VS

vt j
+ ∑

ti ,t j∈T
dG′\VS

tit j

since dG′\VS
sis j = dG′\VS

tit j
= 2 and |S| = |T| = l,

D(G′ \VS) = 2l(l − 1) + 2 ∑
si∈S,v∈V\VS

dG′\VS
siv + 2 ∑

si∈S,t j∈T
dG′\VS

sit j

+ ∑
u,v∈V\VS

dG′\VS
uv + 2 ∑

v∈V\VS ,t j∈T
dG′\VS

vt j
+ 2l(l − 1)

and since dG′\VS
siv = dG′\VS

s jv holds for any two vertices si, s j ∈ S and a vertex v ∈ (V \

117

VS) ∪ T, dG′\VS
vti

= dG′\VS
vt j

for any two vertices ti, t j ∈ T and a vertex v ∈ (V \VS) ∪ S,

D(G′ \VS) = 2l(l − 1) + 2l ∑
v∈V\VS

dG′\VS
siv + 2l2dG′\VS

sit j

+ ∑
u,v∈V\VS

dG′\VS
uv + 2l ∑

v∈V\VS

dG′\VS
vt j

+ 2l(l − 1), (A.4)

We can see that 1 ≤ dG′\VS
siv , dG′\VS

vti
, dG′\VS

uv ≤ ζ . Then, both inequality (A.2) andinequal-

ity (A.3) hold when we substitute 1 and ζ for dG′\VS
siv , dG′\VS

vti
, and dG′\VS

uv , respectively.

118 Appendix

Bibliography

AGGARWAL, C. C., WOLF, J. L., AND YU, P. S.-L. 2004. Method for targeted ad-
vertising on the web based on accumulated self-learning data, clustering users and
semantic node graph techniques. US Patent 6,714,975. (p. 8)

AHN, Y.-Y., BAGROW, J. P., AND LEHMANN, S. 2010. Link communities reveal
multiscale complexity in networks. Nature 466, 7307, 761–764. (pp. 23, 38)

AHUJA, G. 2000. Collaboration networks, structural holes, and innovation: A lon-
gitudinal study. Administrative science quarterly 45, 3, 425–455. (p. 22)

AKBAS, E. AND ZHAO, P. 2017. Truss-based community search: a truss-
equivalence based indexing approach. Proc. of VLDB’17 10, 11, 1298–1309. (p. 10)

ANDERSEN, R. AND LANG, K. J. 2006. Communities from seed sets. In WWW’06
(New York, NY, USA, 2006), pp. 223–232. ACM. (p. 7)

ARENAS, A., FERNANDEZ, A., AND GOMEZ, S. 2008. Analysis of the structure of
complex networks at different resolution levels. New journal of physics 10, 5, 053039.
(p. 3)

BANDYOPADHYAY, S., CHOWDHARY, G., AND SENGUPTA, D. 2015. Focs: Fast
overlapped community search. TKDE’15 27, 11, 2974–2985. (pp. 8, 65, 80)

BAR-NOY, A., KHULLER, S., AND SCHIEBER, B. 1998. The complexity of finding
most vital arcs and nodes. Technical report. (p. 45)

BARABÁSI, A.-L. AND ALBERT, R. 1999. Emergence of scaling in random net-
works. science 286, 5439, 509–512. (p. 49)

BARBIERI, N., BONCHI, F., GALIMBERTI, E., AND GULLO, F. 2015. Efficient and
effective community search. Data Mining and Knowledge Discovery 29, 5, 1406–1433.
(pp. 9, 10, 24, 25, 99, 100)

BEAUCHAMP, M. A. 1965. An improved index of centrality. Systems Research and
Behavioral Science 10, 2, 161–163. (pp. 15, 43)

BENSON, A. R., GLEICH, D. F., AND LESKOVEC, J. 2016. Higher-order organiza-
tion of complex networks. Science 353, 6295, 163–166. (p. 66)

BOCCALETTI, S., LATORA, V., MORENO, Y., CHAVEZ, M., AND HWANG, D.-U.
2006. Complex networks: Structure and dynamics. Physics reports 424, 4-5, 175–
308. (p. 1)

BONDY, J. A., MURTY, U. S. R., ET AL. 1976. Graph theory with applications, Volume
290. Citeseer. (p. 1)

119

120 Bibliography

BOZORGI, A., HAGHIGHI, H., ZAHEDI, M. S., AND REZVANI, M. 2016. Incim: A
community-based algorithm for influence maximization problem under the linear
threshold model. Information Processing & Management 52, 6, 1188–1199. (p. 4)

BRON, C. AND KERBOSCH, J. 1973. Algorithm 457: finding all cliques of an undi-
rected graph. Communications of the ACM 16, 9, 575–577. (pp. 30, 96, 98)

BUDAK, C., AGRAWAL, D., AND EL ABBADI, A. 2011. Limiting the spread of mis-
information in social networks. In WWW’11 (New York, NY, USA, 2011), pp. 665–
674. (p. 7)

BURT, R. S. 1992. Structural holes: The social structure of competition. Harvard uni-
versity press. (pp. 4, 6, 22, 45, 57)

BURT, R. S. 2004. Structural holes and good ideas. American journal of sociol-
ogy 110, 2, 349–399. (p. 22)

BURT, R. S. 2007. Secondhand brokerage: Evidence on the importance of local
structure for managers, bankers, and analysts. Academy of Management Journal 50, 1,
119–148. (p. 22)

CAI, L., MENG, T., HE, T., CHEN, L., AND DENG, Z. 2017. K-hop community
search based on local distance dynamics. In International Conference on Neural Infor-
mation Processing (2017), pp. 24–34. Springer.

CHANG, L., YU, J. X., QIN, L., LIN, X., LIU, C., AND LIANG, W. 2013. Efficiently
computing k-edge connected components via graph decomposition. In SIGMOD’13
(2013), pp. 205–216. (p. 31)

CHEN, J., ZAÏANE, O., AND GOEBEL, R. 2009. Local community identification in
social networks. In Proc. of ASONAM’09 (2009), pp. 237–242. IEEE. (p. 25)

CHENG, J., KE, Y., CHU, S., AND ÖZSU, M. T. 2011. Efficient core decomposition
in massive networks. In Proc. of ICDE’11 (2011), pp. 51–62. IEEE. (p. 6)

CLAUSET, A., NEWMAN, M. E., AND MOORE, C. 2004. Finding community struc-
ture in very large networks. Physical review E 70, 6, 066111. (p. 38)

COHEN, J. 2008. Trusses: Cohesive subgraphs for social network analysis. National
Security Agency Technical Report, 16. (pp. 6, 21, 65, 68, 74, 76)

CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN, C. 2001. Introduction
to algorithms, Volume 6. MIT press Cambridge. (p. 30)

COSCIA, M., ROSSETTI, G., GIANNOTTI, F., AND PEDRESCHI, D. 2012. Demon: a
local-first discovery method for overlapping communities. In Proc. of SIGMOD’12
(2012), pp. 615–623. ACM. (pp. 23, 24, 80)

CUI, W., XIAO, Y., WANG, H., AND WANG, W. 2014. Local search of communities
in large graphs. In Proc. of SIGMOD’14 (2014), pp. 991–1002. ACM. (pp. 9, 10, 24,
25)

DOURISBOURE, Y., GERACI, F., AND PELLEGRINI, M. 2007. Extraction and classi-
fication of dense communities in the web. In Proc. of WWW’07 (2007), pp. 461–470.
ACM. (p. 8)

Bibliography 121

DU, N., WANG, B., AND WU, B. 2008. Overlapping community structure detec-
tion in networks. In Proc. of CIKM’08 (2008), pp. 1371–1372. ACM. (pp. 21, 24)

EPPSTEIN, D. AND WANG, J. 2001. Fast approximation of centrality. In Proceedings
of SODA’01 (2001), pp. 228–229. Society for Industrial and Applied Mathematics.
(p. 35)

EUSTACE, J., WANG, X., AND CUI, Y. 2015. Overlapping community detection
using neighborhood ratio matrix. Physica A: Statistical Mechanics and its Applica-
tions 421, 510–521. (p. 23)

FELL, D. A. AND WAGNER, A. 2000. The small world of metabolism. Nature
biotechnology 18, 11, 1121. (p. 1)

FORTUNATO, S. 2010. Community detection in graphs. Physics reports 486, 3, 75–
174. (pp. 1, 2, 4, 5, 18, 19, 20, 24, 28)

FORTUNATO, S. AND BARTHELEMY, M. 2007. Resolution limit in community de-
tection. PNAS’07 104, 1, 36–41. (pp. 8, 65, 66)

FORTUNATO, S., LATORA, V., AND MARCHIORI, M. 2004. Method to find com-
munity structures based on information centrality. Physical review E 70, 5, 056104.
(pp. 5, 16, 21, 29)

GIRVAN, M. AND NEWMAN, M. E. 2002. Community structure in social and bio-
logical networks. PNAS’02 99, 12, 7821–7826. (pp. 3, 5, 20, 25, 44)

GLEICH, D. F. AND SESHADHRI, C. 2012. Vertex neighborhoods, low conductance
cuts, and good seeds for local community methods. In Proc. of KDD’12 (2012), pp.
597–605. ACM. (pp. 25, 81)

GOPALAN, P. K. AND BLEI, D. M. 2013. Efficient discovery of overlapping com-
munities in massive networks. PNAS’13 110, 36, 14534–14539. (pp. 38, 39, 80, 81)

GOYAL, S. AND VEGA-REDONDO, F. 2007. Structural holes in social networks.
Journal of Economic Theory 137, 1, 460–492. (pp. 7, 22, 57)

GUILLE, A., HACID, H., FAVRE, C., AND ZIGHED, D. A. 2013. Information diffu-
sion in online social networks: A survey. SIGMOD’13 42, 2 (July), 17–28. (p. 7)

HOEFFDING, W. 1963. Probability inequalities for sums of bounded random vari-
ables. Journal of the American statistical association 58, 301, 13–30. (p. 36)

HOPCROFT, J. AND TARJAN, R. 1973. Algorithm 447: efficient algorithms for graph
manipulation. Communications of the ACM 16, 6, 372–378. (p. 52)

HUANG, X., CHENG, H., LI, R.-H., QIN, L., AND YU, J. X. 2013. Top-k structural
diversity search in large networks. Proceedings of the VLDB Endowment 6, 13, 1618–
1629. (p. 22)

HUANG, X., CHENG, H., QIN, L., TIAN, W., AND YU, J. X. 2014. Querying k-
truss community in large and dynamic graphs. In Proc. of SIGMOD’14 (2014), pp.
1311–1322. ACM. (pp. 9, 10, 24, 99)

122 Bibliography

HUANG, X., LAKSHMANAN, L. V., YU, J. X., AND CHENG, H. 2015. Approximate
closest community search in networks. VLDB’15 9, 4, 276–287. (pp. 10, 24, 25, 68, 93,
99, 100, 101)

JONSSON, P. F., CAVANNA, T., ZICHA, D., AND BATES, P. A. 2006. Cluster anal-
ysis of networks generated through homology: automatic identification of impor-
tant protein communities involved in cancer metastasis. BMC bioinformatics 7, 1, 2.
(p. 3)

KANG, U. AND FALOUTSOS, C. 2011. Beyond ’caveman communities’: Hubs and
spokes for graph compression and mining. In ICDM’11 (Washington, DC, USA,
2011), pp. 300–309. (p. 7)

KANNAN, R., VEMPALA, S., AND VETTA, A. 2004. On clusterings: Good, bad and
spectral. J. ACM 51, 3 (May), 497–515. (pp. 8, 18)

KATOH, N., IBARAKI, T., AND MINE, H. 1982. An efficient algorithm for k shortest
simple paths. Networks 12, 4, 411–427. (p. 98)

KATZ, L. 1953. A new status index derived from sociometric analysis. Psychome-
trika 18, 1, 39–43. (p. 26)

KEMPE, D., KLEINBERG, J., AND TARDOS, É. 2003. Maximizing the spread of in-
fluence through a social network. In SIGKDD’03 (2003), pp. 137–146. ACM. (p. 7)

KLEINBERG, J., SURI, S., TARDOS, É., AND WEXLER, T. 2008. Strategic network
formation with structural holes. In EC’08 (2008), pp. 284–293. (pp. 7, 22)

KLEINBERG, J. M. 2000. Navigation in a small world. Nature 406, 6798, 845. (pp. 2,
49)

KUMAR, R., NOVAK, J., RAGHAVAN, P., AND TOMKINS, A. 2004. Structure and
evolution of blogspace. Communications of the ACM 47, 12, 35–39. (p. 3)

LANCICHINETTI, A., FORTUNATO, S., AND KERTÉSZ, J. 2009. Detecting the over-
lapping and hierarchical community structure in complex networks. New Journal of
Physics 11, 3, 033015. (pp. 20, 21, 24)

LANCICHINETTI, A., RADICCHI, F., RAMASCO, J. J., AND FORTUNATO, S. 2011.
Finding statistically significant communities in networks. PloS one 6, 4, e18961.
(p. 38)

LATAPY, M. 2008. Main-memory triangle computations for very large (sparse
(power-law)) graphs. TCS 407, 1, 458–473. (pp. 75, 79)

LEE, C., REID, F., MCDAID, A., AND HURLEY, N. 2010. Detecting highly over-
lapping community structure by greedy clique expansion. SNA/KDD’10, 33–42.
(pp. 21, 24)

LESKOVEC, J. AND KREVL, A. 2014. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data. (p. 56)

LIM, K. H. AND DATTA, A. 2013. A seed-centric community detection algorithm
based on an expanding ring search. In Proceedings of the First Australasian Web
Conference-Volume 144 (2013), pp. 21–25. Australian Computer Society, Inc.

Bibliography 123

LIU, J., WANG, D., FENG, S., ZHANG, Y., AND ZHAO, W. 2016. A novel approach
of discovering local community using node vector model. In International Conference
on Web Information Systems Engineering (2016), pp. 513–521. Springer.

LOU, T. AND TANG, J. 2013. Mining structural hole spanners through information
diffusion in social networks. In Proc. of WWW’13 (2013), pp. 825–836. International
World Wide Web Conferences Steering Committee. (pp. 7, 23, 56, 57, 58)

LUO, F., WANG, J. Z., AND PROMISLOW, E. 2008. Exploring local community
structures in large networks. Web Intelligence and Agent Systems 6, 4, 387–400. (pp. 8,
18)

LUSSEAU, D. 2003. The emergent properties of a dolphin social network. Proceed-
ings of the Royal Society of London B: Biological Sciences 270, Suppl 2, S186–S188.
(p. 3)

MARATHE, M. AND VULLIKANTI, A. K. S. 2013. Computational epidemiology.
Communications of the ACM 56, 7, 88–96. (p. 7)

MIHAIL, M., GKANTSIDIS, C., SABERI, A., AND ZEGURA, E. 2002. On the seman-
tics of internet topologies. Technical Report GIT-CC-02-07, College of Computing,
Georgia Institute of Technology, Atlanta, GA. (pp. 8, 18)

NAGAMOCHI, H. AND IBARAKI, T. 1992. Computing edge-connectivity in multi-
graphs and capacitated graphs. SIAM Journal on Discrete Mathematics 5, 1, 54–66.
(p. 33)

NEMHAUSER, G. L., WOLSEY, L. A., AND FISHER, M. L. 1978. An analysis of
approximations for maximizing submodular set functionsi. Mathematical Program-
ming 14, 1, 265–294. (p. 69)

NEPUSZ, T., PETRÓCZI, A., NÉGYESSY, L., AND BAZSÓ, F. 2008. Fuzzy commu-
nities and the concept of bridgeness in complex networks. Physical Review E 77, 1,
016107. (p. 23)

NEWMAN, M. E. 2004. Fast algorithm for detecting community structure in net-
works. Physical review E 69, 6, 066133. (pp. 5, 8)

NEWMAN, M. E. 2006. Modularity and community structure in networks.
PNAS’06 103, 23, 8577–8582. (pp. 8, 18)

NEWMAN, M. E. AND GIRVAN, M. 2003. Mixing patterns and community struc-
ture in networks. In Statistical mechanics of complex networks, pp. 66–87. Springer.

ORLIN, J. 1977. Contentment in graph theory: covering graphs with cliques. In
Indagationes Mathematicae (Proceedings), Volume 80 (1977), pp. 406–424. Elsevier.
(p. 96)

PAGE, L., BRIN, S., MOTWANI, R., AND WINOGRAD, T. 1999. The pagerank ci-
tation ranking: Bringing order to the web. Technical Report 1999-66 (November),
Stanford InfoLab. (p. 57)

124 Bibliography

PALLA, G., DERÉNYI, I., FARKAS, I., AND VICSEK, T. 2005. Uncovering the over-
lapping community structure of complex networks in nature and society. Na-
ture 435, 7043, 814–818. (pp. 21, 24)

PLESNÍK, J. 1984. On the sum of all distances in a graph or digraph. Journal of Graph
Theory 8, 1, 1–21. (pp. 15, 51)

RAVASZ, E., SOMERA, A. L., MONGRU, D. A., OLTVAI, Z. N., AND BARABÁSI, A.-
L. 2002. Hierarchical organization of modularity in metabolic networks. Sci-
ence 297, 5586, 1551–1555. (pp. 3, 5)

REZVANI, M., LIANG, W., LIU, C., AND YU, J. X. 2018. Efficient detection of over-
lapping communities using asymmetric triangle cuts. IEEE Transactions on Knowl-
edge and Data Engineering. (p. iii)

REZVANI, M., LIANG, W., XU, W., AND LIU, C. 2015. Identifying top-k structural
hole spanners in large-scale social networks. In Proc. of CIKM’15 (2015), pp. 263–272.
ACM. (pp. iii, 7, 8, 92)

REZVANI, M., WANG, Q., AND LIANG, W. 2018. Fach: Fast algorithm for detecting
cohesive hierarchies of communities in large networks. In Proceedings of the Eleventh
ACM International Conference on Web Search and Data Mining (2018), pp. 486–494.
ACM. (p. iii)

RINIA, E., VAN LEEUWEN, T., BRUINS, E., VAN VUREN, H., AND VAN RAAN,
A. 2001. Citation delay in interdisciplinary knowledge exchange. Scientomet-
rics 51, 1, 293–309. (p. 6)

ROSVALL, M. AND BERGSTROM, C. T. 2011. Multilevel compression of random
walks on networks reveals hierarchical organization in large integrated systems.
PloS one 6, 4, e18209. (p. 38)

RUCHANSKY, N., BONCHI, F., GARCIA-SORIANO, D., GULLO, F., AND KOURTELLIS,
N. 2017. To be connected, or not to be connected: That is the minimum ineffi-
ciency subgraph problem. In Proc. of CIKM’17 (2017), pp. 879–888. ACM. (pp. 87,
100)

SAHA, B., HOCH, A., KHULLER, S., RASCHID, L., AND ZHANG, X.-N. 2010.
Dense subgraphs with restrictions and applications to gene annotation graphs. In
Annual International Conference on Research in Computational Molecular Biology (2010),
pp. 456–472. Springer. (pp. 8, 18)

SALATHÉ, M. AND JONES, J. H. 2010. Dynamics and control of diseases in net-
works with community structure. PLoS computational biology 6, 4, e1000736. (p. 8)

SALES-PARDO, M., GUIMERA, R., MOREIRA, A. A., AND AMARAL, L. A. N. 2007.
Extracting the hierarchical organization of complex systems. PNAS’07 104, 39,
15224–15229. (p. 5)

SARIYUCE, A. E., SESHADHRI, C., PINAR, A., AND CATALYUREK, U. V. 2015.
Finding the hierarchy of dense subgraphs using nucleus decompositions. In Proc.
of WWW’15 (2015), pp. 927–937. ACM.

Bibliography 125

SCHAEFFER, S. E. 2007. Graph clustering. Computer science review 1, 1, 27–64.
(pp. 5, 20)

SHAN, J., SHEN, D., NIE, T., KOU, Y., AND YU, G. 2015a. An efficient approach of
overlapping communities search. In DASFAA’15 (2015), pp. 374–388. Springer.

SHAN, J., SHEN, D., NIE, T., KOU, Y., AND YU, G. 2015b. Searching overlapping
communities for group query. World Wide Web, 1–24. (pp. 10, 25, 99)

SHEN, H., CHENG, X., CAI, K., AND HU, M.-B. 2009. Detect overlapping and
hierarchical community structure in networks. Physica A: Statistical Mechanics and
its Applications 388, 8, 1706–1712. (pp. 21, 24)

Š ÍMA, J. AND SCHAEFFER, S. E. 2006. On the NP-completeness of some graph clus-
ter measures. In SOFSEM 2006: Theory and Practice of Computer Science, pp. 530–537.
Springer. (p. 70)

SOZIO, M. AND GIONIS, A. 2010. The community-search problem and how to plan
a successful cocktail party. In Proceedings of the 16th ACM SIGKDD international con-
ference on Knowledge discovery and data mining (2010), pp. 939–948. ACM. (p. 10)

STOER, M. AND WAGNER, F. 1994. A simple min cut algorithm. In Proc. of European
Symposium on Algorithms (1994), pp. 141–147. Springer. (pp. 27, 112)

STROGATZ, S. H. 2001. Exploring complex networks. nature 410, 6825, 268.

TANG, J., LOU, T., AND KLEINBERG, J. 2012. Inferring social ties across heteroge-
nous networks. In WSDM’12 (2012), pp. 743–752. (pp. 22, 57)

TANG, J., WU, S., AND SUN, J. 2013. Confluence: Conformity influence in large
social networks. In KDD’13 (2013), pp. 347–355. ACM. (p. 7)

TANG, Y., XIAO, X., AND SHI, Y. 2014. Influence maximization: Near-optimal time
complexity meets practical efficiency. In SIGMOD ’14 (New York, NY, USA, 2014),
pp. 75–86. (p. 7)

TONG, H., PAPADIMITRIOU, S., FALOUTSOS, C., PHILIP, S. Y., AND ELIASSI-RAD, T.
2012. Gateway finder in large graphs: problem definitions and fast solutions.
Information retrieval 15, 3-4, 391–411. (pp. 1, 22, 23)

TSOURAKAKIS, C., PACHOCKI, J., AND MITZENMACHER, M. 2016. Scalable motif-
aware graph clustering. arXiv preprint arXiv:1606.06235. (p. 66)

UGANDER, J., BACKSTROM, L., MARLOW, C., AND KLEINBERG, J. 2012. Structural
diversity in social contagion. Proceedings of the National Academy of Sciences 109, 16,
5962–5966. (p. 22)

WANG, L., LOU, T., TANG, J., AND HOPCROFT, J. E. 2011. Detecting community
kernels in large social networks. In ICDM’11 (Washington, DC, USA, 2011), pp.
784–793. (p. 7)

WANG, N., ZHANG, J., TAN, K.-L., AND TUNG, A. K. 2010. On triangulation-
based dense neighborhood graph discovery. Proc. of VLDB’10 4, 2, 58–68.

WATTS, D. J. AND STROGATZ, S. H. 1998. Collective dynamics of small-
worldnetworks. nature 393, 6684, 440–442. (pp. 2, 36, 49, 92)

126 Bibliography

WHANG, J. J., GLEICH, D. F., AND DHILLON, I. S. 2013. Overlapping community
detection using seed set expansion. In Proc. of CIKM’13 (2013), pp. 2099–2108. ACM.
(pp. 20, 21, 24, 38, 39, 80, 81)

WU, Y., JIN, R., LI, J., AND ZHANG, X. 2015. Robust local community detection:
on free rider effect and its elimination. VLDB’15 8, 7, 798–809. (pp. 8, 10, 24, 25, 65,
67, 69, 93, 99)

XIE, J., KELLEY, S., AND SZYMANSKI, B. K. 2013. Overlapping community de-
tection in networks: The state-of-the-art and comparative study. ACM Computing
Surveys (csur) 45, 4, 43. (pp. 4, 7, 20, 23, 24, 38, 39, 80, 81)

XU, W., REZVANI, M., LIANG, W., YU, J. X., AND LIU, C. 2017. Efficient algo-
rithms for the identification of top-k strutural hole spanners in large social net-
works. IEEE Transactions on Knowledge and Data Engineering 29, 5, 1–17–1030.

YANG, J. AND LESKOVEC, J. 2013. Overlapping community detection at scale: a
nonnegative matrix factorization approach. In Proc. of WSDM’13 (2013), pp. 587–
596. ACM. (pp. 4, 7, 23, 38, 39, 80, 81)

YANG, J., MCAULEY, J., AND LESKOVEC, J. 2014. Detecting cohesive and 2-mode
communities indirected and undirected networks. In Proc. of WSDM’14 (2014), pp.
323–332. ACM. (p. 25)

ZHANG, Y. AND PARTHASARATHY, S. 2012. Extracting analyzing and visualizing
triangle k-core motifs within networks. In ICDE’12 (2012), pp. 1049–1060. IEEE.

ZHAO, Y., KARYPIS, G., AND FAYYAD, U. 2005. Hierarchical clustering algorithms
for document datasets. Data mining and knowledge discovery 10, 2, 141–168. (pp. 38,
39)

ZHENG, D., LIU, J., LI, R.-H., ASLAY, C., CHEN, Y.-C., AND HUANG, X. 2017.
Querying intimate-core groups in weighted graphs. In Semantic Computing (ICSC),
2017 IEEE 11th International Conference on (2017), pp. 156–163. IEEE.

ZHOU, R., LIU, C., YU, J. X., LIANG, W., CHEN, B., AND LI, J. 2012. Finding max-
imal k-edge-connected subgraphs from a large graph. In Proc. of EDBT’12 (2012),
pp. 480–491. ACM. (pp. 21, 25, 26)

